Возведение в степень комплексного числа — энциклопедический справочник и словарь для студента от А до Я
Наиболее удобно поднять до степенных комплексных чисел, записанных в экспоненциальной или тригонометрической форме.
Экспоненциальность в экспоненциальной форме
Для поднятия до степени комплексных чисел формула истинна в экспоненциальной форме:
ПРИМЕР Возвести число в квадрат Модуль комплексного числа равен Поэтому квадрат числа равен: Экспоненциальность в тригонометрической форме Обычно комплексные числа обычно поднимаются до степени тригонометрической формы, для которой справедлива формула Моиварда: Эта формула непосредственно вытекает из формулы Эйлера, связывающей тригонометрическую и экспоненциальную функции , поскольку Примеры решения проблем ПРИМЕР 1 Возвести в квадрат число Применяя формулу Мойвра для квадрата числа и формулы, описанные выше, получаем: ПРИМЕР 2 Возвести в 10-й степень число z = 1 + i. Начнем с того, что мы выражаем комплексное число в тригонометрической форме. Вещественной частью комплексного числа z = 1 + i является число x = Re z = 1; мнимая часть равна y = Im z = 1. Чтобы найти тригонометрическую форму написания комплексного числа, вам нужно найти его модуль и аргумент. Модуль комплексного числа z является числом . Аргумент вычисляется по формуле: Следовательно, тригонометрическая форма комплексного числа: Применяя формулу Моиварда: для возведения в степень, получаем:
sciterm.ru
Возведение комплексных чисел в степень
Поиск ЛекцийНачнем со всем любимого квадрата.
Пример 9
Возвести в квадрат комплексное число
Здесь можно пойти двумя путями, первый способ это переписать степень как произведение множителей и перемножить числа по правилу умножения многочленов.
Второй способ состоит в применение известной школьной формулы сокращенного умножения :
Для комплексного числа легко вывести свою формулу сокращенного умножения:
. Аналогичную формулу можно вывести для квадрата разности, а также для куба сумма и куба разности. Но эти формулы более актуальны длязадач комплексного анализа, поэтому на данном уроке я воздержусь от подробных выкладок.
Что делать, если комплексное число нужно возвести, скажем, в 5-ую, 10-ую или 100-ую степень? Ясно, что в алгебраической форме проделать такой трюк практически невозможно, действительно, подумайте, как вы будете решать пример вроде ?
И здесь на помощь приходит тригонометрическая форма комплексного числа и, так называемая, формула Муавра: Если комплексное число представлено в тригонометрической форме , то при его возведении в натуральную степень справедлива формула:
Данная формула следует из правила умножения комплексных чисел, представленных в тригонометрической форме: чтобы найти произведение чисел , нужно перемножить их модули и сложить аргументы:
Аналогично для показательной формы: если , то:
Просто до безобразия.
Пример 10
Дано комплексное число , найти .
Что нужно сделать? Сначала нужно представить данное число в тригонометрической форме. Внимательные читатели заметили, что в Примере 8 мы это уже сделали:
Тогда, по формуле Муавра:
Упаси боже, не нужно считать на калькуляторе , а вот угол в большинстве случае следует упростить. Как упростить? Образно говоря, нужно избавиться от лишних оборотов. Один оборот составляет радиан или 360 градусов. Выясним сколько у нас оборотов в аргументе . Для удобства делаем дробь правильной: , после чего становится хорошо видно, что можно убавить один оборот: . Надеюсь всем понятно, что и – это один и тот же угол.
Таким образом, окончательный ответ запишется так:
Любители стандартов везде и во всём могут переписать ответ в виде:
(т.е. убавить еще один оборот и получить значение аргумента в стандартном виде).
Хотя – ни в коем случае не ошибка.
Пример 11
Дано комплексное число , найти . Полученный аргумент (угол) упростить, результат представить в алгебраической форме.
Это пример для самостоятельного решения, полное решение и ответ в конце урока.
Отдельная разновидность задачи возведения в степень – это возведение в степень чисто мнимых чисел.
Пример 12
Возвести в степень комплексные числа , ,
Здесь тоже всё просто, главное, помнить знаменитое равенство.
Если мнимая единица возводится в четную степень, то техника решения такова:
Если мнимая единица возводится в нечетную степень, то «отщипываем» одно «и», получая четную степень:
Если есть минус (или любой действительный коэффициент), то его необходимо предварительно отделить:
Пример 13
Возвести в степень комплексные числа ,
Это пример для самостоятельного решения.
Извлечение корней из комплексных чисел.
Квадратное уравнение с комплексными корнями
Наконец-то. Меня всю дорогу подмывало привести этот маленький примерчик:
Нельзя извлечь корень? Если речь идет о действительных числах, то действительно нельзя. В комплексных числах извлечь корень – можно! А точнее, два корня:
Действительно ли найденные корни являются решением уравнения ? Выполним проверку:
Что и требовалось проверить.
Часто используется сокращенная запись, оба корня записывают в одну строчку под «одной гребёнкой»: .
Такие корни также называют сопряженными комплексными корнями.
Как извлекать квадратные корни из отрицательных чисел, думаю, всем понятно: , , , , и т.д. Во всех случаях получается двасопряженных комплексных корня.
О том, как извлечь квадратный корень из комплексного числа с ненулевой мнимой частью, я расскажу чуть позже, а пока нечто знакомое:
Пример 14
Решить квадратное уравнение
Вычислим дискриминант:
Дискриминант отрицателен, и в действительных числах уравнение решения не имеет. Но корень можно извлечь в комплексных числах!
По известным формулам получаем два корня:
– сопряженные комплексные корни
Таким образом, уравнение имеет два сопряженных комплексных корня: ,
Нетрудно понять,что в поле комплексных чисел «школьное» квадратное уравнение всегда при двух корнях! И вообще, любое уравнение вида имеет ровно корней, часть из которых могут быть комплексными.
Простой пример для самостоятельного решения:
Пример 15
Найти корни уравнения и разложить квадратный двучлен на множители.
Разложение на множители осуществляется опять же по стандартной школьной формуле. Но на этом тема не закрыта! Совсем скоро вы будете уверенно решать квадратные уравнения с комплексными коэффициентами (которые не являются действительными).
Рекомендуемые страницы:
Поиск по сайту
poisk-ru.ru
Комплексные числа. Сложение и вычитание, умножение и деление КЧ. Возведение в степень и извлечение корня.
Комплексные числа записываются в виде: a+ bi. Здесь a и b – действительные числа, а i – мнимая единица, т.e. i 2 = –1.Число a называетсяабсциссой, a b – ординатой комплексного числа a+ bi. Два комплексных числа a+ bi и a – bi называются сопряжёнными комплексными числами.
Сложение. Суммой комплексных чисел a+ bi и c+ di называется комплексное число ( a+ c ) + ( b+ d ) i. Таким образом, при сложениикомплексных чисел отдельно складываются их абсциссы и ординаты.
Это определение соответствует правилам действий с обычными многочленами.
Вычитание. Разностью двух комплексных чисел a+ bi (уменьшаемое) и c+ di
Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.
Умножение. Произведением комплексных чисел a+ bi и c+ di называется комплексное число:
( ac – bd ) + ( ad + bc ) i . Это определение вытекает из двух требований:
1) числа a+ bi и c+ di должны перемножаться, как алгебраические двучлены,
2) число i обладает основным свойством: i 2 = –1.
Деление.Разделить комплексное число a+ bi (делимое) на другое c+ di (делитель) — значит найти третье число e+ f i (чатное), которое будучи умноженным на делитель c+ di, даёт в результате делимое a+ bi.
Если делитель не равен нулю, деление всегда возможно.
Возведение в степень:
,
где n – целое положительное число.
(Отметим, что перемножать, делить и возводить в степень часто удобнее, когда комплексное число задается в тригонометрической или показательной форме)
Извлечение корня из комплексного числа
Определение
Корнем-ой степени из комплексного числа называется такое комплексное число , -я степень которого равна , то есть
Корень -ой степени из комплексного числа обозначается символом и на множестве комплексных чисел имеет ровно значений.
Если комплексное число задано в тригонометрической форме: , то все значения корня -ой степени вычисляются по формуле Муавра (Абрахам де Муавр (1667 — 1754) — английский математик):
Геометрически все значения корня лежат на окружности радиуса с центром в начале координат и образуют правильный -угольник.
Показательная функция. Формулы Эйлера. Логарифм комплексного числа
Показательная функция
Функцию вида y=ax, где а>0, a≠1, х – любое число, называют показательной функцией.
· Область определения показательной функции: D (y)=R –множество всех действительных чисел.
· Область значений показательной функции: E (y)=R+ — множество всех положительных чисел.
· Показательная функция y=ax возрастает при a>1.
· Показательная функция y=ax убывает при 0<a<1.
Справедливы все свойства степенной функции:
· а0=1 Любое число (кроме нуля) в нулевой степени равно единице.
· а1=а Любое число в первой степени равно самому себе.
· ax∙ay=ax+y При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.
· ax:ay=ax-y При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
· (ax)y=axy При возведении степени в степень основание оставляют прежним, а показатели перемножают
· (a∙b)x=ax∙by При возведении произведения в степень возводят в эту степень каждый из множителей.
· (a/b)x=ax/by При возведении дроби в степень возводят в эту степень и числитель и знаменатель дроби.
· а-х=1/ax
· (a/b)-x=(b/a)x.
· Формула Эйлера
Логарифм комплексного числа
infopedia.su
Как возвести комплексное число в степень
Автор КакПросто!
Действительных чисел не достаточно для того, чтобы решить любое квадратное уравнение. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел — это x^2+1=0. При его решении получается, что x=±sqrt(-1), а согласно законам элементарной алгебры, извлечь корень четной степени из отрицательного числа нельзя. В данном случае есть два пути: следовать установленным запретам и считать, что это уравнение корней не имеет, или же расширить систему действительных чисел до такой степени, что уравнение будет обладать корнем.
Статьи по теме:
Вам понадобится
- — бумага;
- — ручка.
Инструкция
Так появилось понятие комплексных чисел вида z=a+ib, в которых (i^2)=-1, где i – мнимая единица. Числа a и b называются, соответственно, действительной и мнимой частями числа z Rez и Imz.
Важную роль в действиях с комплексными числами играют числа комплексно-сопряженные. Сопряженным к комплексному числу z=a+ib называется zs=a-ib, то есть число имеющее противоположный знак перед мнимой единицей. Так, если z=3+2i, то zs=3-2i. Любое действительное число является частным случаем комплексного числа, мнимая часть которого равна нулю. 0+i0 — комплексное число, равное нулю. Комплексные числа можно складывать и перемножать так же, как это делают с алгебраическими выражениями. При этом привычные законы сложения и умножения остаются в силе. Пусть z1=a1+ib1, z2=a2+ib2.Сложение и вычитание.z1+z2=(a1+a2)+i(b1+b2), z1-z2=(a1-a2)+i(b1-b2). Умножение.z1*z2=(a1+ib1)(a2+ib2)=a1a2+ia1b2+ia2b1+(i^2)b1b2=(a1a2-b1b2)+i(a1b2+a2b1).При умножении просто раскрывают скобки и применяют определение i^2=-1. Произведение комплексно-сопряженных чисел является действительным числом: z*zs=(a+ib)(a-ib)==a^2-(i^2)(b^2) = a^2+b^2. Деление.Чтобы привести частное z1/z2=(a1+ib1)/(a2+ib2) к стандартному виду нужно избавиться от мнимой единицы в знаменателе. Для этого проще всего умножить числитель и знаменатель на число, сопряженное знаменателю: ((a1+ib1)(a2-ib2))/((a2+ib2)(a2-ib2))=((a1a2+b1b2)+i(a2b1-a1b2))/(a^2+b^2)=(a1a2+b1b2)/(a^2+b^2)+i(a2b1-a1b2)/(a^2+b^2).Операции сложения и вычитания, а также умножения и деления являются взаимно обратными.Пример. Вычислить (1-3i)(4+i)/(2-2i)=(4-12i+i+3)(2+2i)/((2-2i)(2+2i))=(7-11i)(2+2i)/(4+4)=(14+22)/8+i(-22+14)/8=9/2-iРассмотрите геометрическую интерпретацию комплексных чисел. Для этого на плоскости с прямоугольной декартовой системой координат 0xy каждому комплексному числу z=a+ib необходимо поставить в соответствие точку плоскости с координатами a и b (см. рис. 1). Плоскость, на которой реализовано такое соответствие, называется комплексной плоскостью. На оси 0x расположены действительные числа, поэтому она называется действительной осью. На оси 0y расположены мнимые числа, она носит название мнимой оси.
C каждой точкой z комплексной плоскости связан радиус-вектор этой точки. Длина радиус-вектора, изображающего комплексное число z, называется модулемr=|z| комплексного числа; а угол, между положительным направлением действительной оси и направлением вектора 0Z, называется аргументом argz этого комплексного числа.
Аргумент комплексного числа считается положительным, если он отсчитывается от положительного направления оси 0x против часовой стрелки, и отрицательным при противоположном направлении. Одному комплексному числу соответствует множество значений аргумента argz+2пk. Из этих значений главными считаются значения argz, лежащие в пределах от –п до п. Сопряженные комплексные числа z и zs имеют равные модули, а их аргументы равны по абсолютной величине, но отличаются знаком. Таким образом, |z|^2=a^2+b^2, |z|=sqrt(a^2+b^2). Так, если z=3-5i, то |z|=sqrt(9+25)=6. Кроме того, так как z*zs=|z|^2=a^2+b^2, то становится возможным вычисление модулей целых комплексных выражений, в которых мнимая единица может появляться многократно.
Так как z=(1-3i)(4+i)/(2-2i)=9/2-i, то непосредственное вычисление модуля z даст |z|^2=81/4+1=85/4 и |z|=sqrt(85)/2.Минуя стадию вычисления выражение, учитывая, что zs=(1+3i)(4-i)/(2+2i), можно записать:|z|^2=z*zs==(1-3i)(1+3i)(4+i)(4-i)/((2-2i)(2+2i))=(1+9)(16+1)/(4+4)=85/4 и |z|=sqrt(85)/2.
www.kakprosto.ru