Лекции по эконометрике для экономистов – ()

лекции по эконометрике

Федеральное агентство по образованию Государственное образовательной учреждение высшего профессионального образования

Ульяновский государственный технический университет

Н. И. Шанченко

ЛЕКЦИИ ПО ЭКОНОМЕТРИКЕ

Учебное пособие для студентов высших учебных заведений, обучающихся

по специальности «Прикладная информатика (в экономике)»

2

УДК 330.43 (075.8)

ББК 65в6я73

Ш 20

Рецензенты:

Доктор физико-математическихнаук, профессор кафедры информационной безопасности и управления УлГУ, А. С. Андреев; Кафедра общепрофессиональных дисциплин УВАУГА

Утверждено редакционно-издательскимсоветом университета в качестве учебного пособия

Шанченко, Н. И.

Лекции по эконометрике : учебное пособие для студентов высших

Ш20 учебных заведений, обучающихся по специальности «Прикладная информатика (в экономике)» / Н. И. Шанченко. – Ульяновск : УлГТУ, 2008. – 139 с.

ISBN 978-5-9795-0504-6

Содержит краткий курс лекций по дисциплине «Эконометрика», включая описание основных задач эконометрики и методов, применяемых для их решения. Предназначено для студентов экономических и информационных специальностей.

 

УДК 330.43 (075.8)

 

ББК 65в6я73

 

© Н. И. Шанченко, 2008

ISBN 978-5-9795-0504-6

© Оформление. УлГТУ, 2008

3

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ...................................................................................................

3

Введение...............................................................................................................

7

1. Предмет и методы эконометрики................................................................

10

1.1. Предмет и методы эконометрики.........................................................

10

1.2. Характеристика взаимосвязей.............................................................

12

1.3. Основные этапы построения эконометрической модели.................

13

1.4. Выбор вида эконометрической модели...............................................

16

1.5. Методы отбора факторов ......................................................................

18

1.6. Оценка параметров моделей.................................................................

20

1.7. Примеры эконометрических моделей..................................................

21

Контрольные вопросы..................................................................................

22

2. Парный регрессионный анализ....................................................................

23

2.1. Понятие парной регрессии....................................................................

23

2.2. Построение уравнения регрессии.........................................................

24

2.2.1. Постановка задачи ..........................................................................

24

2.2.2. Спецификация модели....................................................................

25

2.3. Оценка параметров линейной парной регрессии ...............................

26

2.4. Оценка параметров нелинейных моделей...........................................

28

2.5. Качество оценок МНК линейной регрессии.

 

Теорема Гаусса-Маркова..............................................................................

29

2.6. Проверка качества уравнения регрессии. F-критерийФишера........

30

2.7. Коэффициенты корреляции. Оценка тесноты связи ..........................

32

2.8. Точность коэффициентов регрессии. Проверка значимости ............

33

2.9. Точечный и интервальный прогноз по уравнению

 

линейной регрессии......................................................................................

35

2.10. Коэффициент эластичности................................................................

36

Контрольные вопросы..................................................................................

37

3. Множественный регрессионный анализ.....................................................

38

3.1. Понятие множественной регрессии.....................................................

38

3.2. Отбор факторов при построении множественной регрессии............

39

3.2.1. Требования к факторам..................................................................

39

3.2.2. Мультиколлинеарность..................................................................

40

3.3. Выбор формы уравнения регрессии.....................................................

42

3.4. Оценка параметров уравнения линейной множественной

 

регрессии..................................................................................................

43

3.5. Качество оценок МНК линейной множественной регрессии.

 

Теорема Гаусса-Маркова........................................................................

46

3.6. Проверка качества уравнения регрессии. F-критерийФишера........

47

3.7. Точность коэффициентов регрессии. Доверительные интервалы....

49

3.8. Частные уравнения регрессии. Частная корреляция..........................

50

3.9. Обобщенный метод наименьших квадратов.

 

Гетероскедастичность...................................................................................

52

3.9.1. Обобщенный метод наименьших квадратов................................

52

4

 

3.9.2. Обобщенный метод наименьших квадратов в случае

 

гетероскедастичности остатков .....................................................

53

3.10. Проверка остатков регрессии на гетероскедастичность..................

55

3.11. Построение регрессионных моделей при наличии

 

автокорреляции остатков........................................................................

56

3.12. Регрессионные модели с переменной структурой.

 

Фиктивные переменные..........................................................................

58

3.12.1. Фиктивные переменные...............................................................

58

3.12.2. Тест Чоу .........................................................................................

59

3.11. Проблемы построения регрессионных моделей...............................

59

Контрольные вопросы..................................................................................

60

4. Системы эконометрических уравнений......................................................

61

4.1. Структурная и приведенная формы модели........................................

61

4.2. Оценка параметров структурной формы модели ...............................

65

4.3. Косвенный метод наименьших квадратов...........................................

66

4.4. Двухшаговый метод наименьших квадратов......................................

68

4.5. Трехшаговый метод наименьших квадратов ......................................

69

Контрольные вопросы..................................................................................

70

5. Моделирование одномерных временных рядов и прогнозирование.......

71

5.1. Составляющие временного ряда ..........................................................

71

5.2. Автокорреляция уровней временного ряда.........................................

72

5.3. Моделирование тенденции временного ряда......................................

73

5.3.1. Методы определения наличия тенденции....................................

73

5.3.2. Сглаживание временного ряда по методу скользящей

 

средней..............................................................................................

74

5.3.3. Метод аналитического выравнивания..........................................

76

5.3.4. Выбор вида тенденции ...................................................................

77

5.3.5. Оценка адекватности и точности модели тенденции..................

79

5.4. Моделирование периодических колебаний ........................................

82

5.4.1. Выделение периодической компоненты по методу

 

скользящей средней.........................................................................

82

5.4.2. Моделирование сезонных колебаний с помощью

 

фиктивных переменных..................................................................

83

5.4.3 Моделирование сезонных колебаний с помощью

 

гармонического анализа..................................................................

83

5.5. Прогнозирование уровней временного ряда

 

на основе кривых роста. ........................................................................

84

5.5.1. Метод аналитического выравнивания..........................................

84

5.6. Адаптивные модели прогнозирования ................................................

86

5.6.1. Понятие адаптивных методов прогнозирования.........................

86

5.6.2. Экспоненциальное сглаживание ...................................................

87

5.6.3. Использование экспоненциальной средней

 

для краткосрочного прогнозирования...........................................

88

5.6.4. Адаптивные полиномиальные модели..........................................

88

5.7. Исследование взаимосвязи двух временных рядов............................

89

5

 

5.8. Коинтеграция временных рядов...........................................................

91

Контрольные вопросы..................................................................................

92

6. Линейные модели стохастических процессов ...........................................

93

6.1. Стационарные стохастические процессы...........................................

93

6.1.1. Основные понятия...........................................................................

93

6.1.2. Параметрические тесты стационарности .....................................

94

6.1.3. Непараметрические тесты стационарности .................................

96

6.2. Линейные модели стационарных временных рядов.

 

Процессы ARMA.....................................................................................

97

6.2.1. Модели авторегрессии (AR) ..........................................................

97

6.2.2. Модели скользящего среднего (MA) ............................................

98

6.2.3. Модели авторегрессии-скользящегосреднего (ARMA).............

99

6.3. Автокорреляционные функции ............................................................

99

6.3.1. Автокорреляционная функция.......................................................

99

6.3.2. Частная автокорреляционная функция.......................................

100

6.4. Прогнозирование ARMA-процессов..................................................

101

6.4.1. AR-процессы..................................................................................

101

6.4.2. MA-процессы.................................................................................

102

6.4.3. ARMA-процессы...........................................................................

103

6.5. Нестационарные интегрируемые процессы......................................

103

6.5.1. Нестационарные стохастические процессы.

 

Нестационарные временные ряды...............................................

103

6.5.2. Тесты Дики-Фуллера....................................................................

104

6.5.3. Модификации теста Дики-Фуллерадля случая

 

автокорреляции..............................................................................

104

6.5.4. Метод разностей и интегрируемость..........................................

105

6.6. Модели ARIMA....................................................................................

105

6.6.1. Определение и идентификация модели......................................

105

6.6.2. Прогнозирование ARIMA-процессов.........................................

106

Контрольные вопросы................................................................................

107

7. Динамические эконометрические модели................................................

108

7.1. Общая характеристика динамических моделей................................

108

7.2. Модели с распределенным лагом.......................................................

109

7.2.1. Оценка параметров модели с распределенным лагом

 

методом Койка...............................................................................

109

7.2.2. Оценка параметров модели с распределенным лагом

 

методом Алмон. .............................................................................

110

7.2.3. Интерпретация параметров..........................................................

111

7.3. Модели авторегрессии.........................................................................

112

7.3.1. Интерпретация параметров..........................................................

112

7.3.2. Оценка параметров моделей авторегрессии ..............................

113

7.4. Модель частичной корректировки.....................................................

114

7.5. Модель адаптивных ожиданий...........................................................

115

Контрольные вопросы................................................................................

116

8. Информационные технологии эконометрических исследований..........

117

 

 

6

 

8.1. Электронные таблицы Excel ...............................................................

118

8.2. Статистический пакет общего назначения STATISTICA................

119

8.3. Эконометрические программные пакеты. Matrixer 5.1....................

120

8.4. Анализ временных рядов в системе ЭВРИСТА ...............................

122

Контрольные вопросы................................................................................

124

Глоссарий.........................................................................................................

 

125

Приложения.....................................................................................................

 

131

1.

Нормированная функция Лапласа.........................................................

131

2.

Значения критических уровней tα,k для распределения Стьюдента...

132

3.

Значения F-критерияФишера на уровне значимости α = 0,05 .........

133

4.

Значения F-критерияФишера на уровне значимости α = 0,01 ..........

134

5.

Значения 2

;k критерия Пирсона...........................................................

135

6.

Значения статистик Дарбина-УотсонаdL dU ........................................

136

7.

Критические значения f-критериядляDF-,ADF- иРР-тестов,

 

 

рассчитанные по Маккиннону............................................................

137

8.

Критические значения коинтеграционного ADF-критерия................

137

Библиографический список ...........................................................................

138

Интернет-ресурсы.......................................................................................

138

7

Введение

Развитие экономики, усложнение экономических процессов и повышение требований к принимаемым управленческим решениям в области макро и микроэкономики потребовало более тщательного и объективного анализа реально протекающих процессов на основе привлечения современных математических

истатистических методов.

Сдругой стороны, проблема нарушения предпосылок классических статистических методов при решении реальных экономических задач привели к необходимости развития и совершенствования классических методов математической статистики и уточнения постановок соответствующих задач.

В результате этих процессов осуществилось выделение и формирование новой отрасли знания под названием Эконометрика, связанной с разработкой и применением методов количественной оценки экономических явлений и процессов и их взаимосвязей.

Основным методом исследования в эконометрике является экономикоматематическое моделирование. Правильно построенная модель должна давать ответ на вопрос о количественной оценке величины изменения изучаемого явления или процесса в зависимости от изменений внешней среды. Например, как скажется увеличение или уменьшение уровня инвестиций на совокупном валовом продукте, какие дополнительные ресурсы понадобятся для запланированного увеличения выпуска продукции и т. п.

Практическая значимость эконометрики определяется тем, что применение ее методов позволяет выявить реально существующие связи между явлениями, дать обоснованный прогноз развития явления в заданных условиях, проверить и численно оценить экономические последствия принимаемых управленческих решений.

Построение эконометрических моделей приходится осуществлять в условиях, когда нарушаются предпосылки классических статистических методов, и учитывать наличие таких явлений, как:

–мультиколлинеарность объясняющих переменных;

–закрытость механизма связи между переменными в изолированной регрессии;

–эффект гетероскедастичности, т. е. отсутствия нормального распределения остатков для регрессионной функции;

–автокорреляция остатков;

–ложная корреляция.

Разработка методов, преодолевающих эти трудности, составляет теоретическую основу эконометрики.

Наряду с логически правильным формальным применением имеющегося математического и статистического инструментария важными составляющими успеха эконометрического исследования являются экономически адекватная постановка задачи и последующая экономическая интерпретация полученных результатов.

8

Огромный толчок развитию эконометрических методов и их широкому внедрению в практику дало развитие средств вычислительной техники и особенно появление персональных и портативных компьютеров. Разработка программных пакетов, реализующих методы построения и исследования эконометрических моделей привело к тому, что выполнение эконометрических процедур становится доступным самому широкому кругу аналитиков, экономистов и менеджеров. В настоящее время основные усилия прикладного исследователя сводятся к подготовке качественных исходных данных, к правильной постановке проблемы и экономически обоснованной интерпретации результатов исследования. Вместе с тем, от исследователя требуется четкое понимание областей применимости используемых методов и сложности и неочевидности процесса перенесения полученных теоретическихрезультатовнареальнуюдействительность.

Настоящее пособие отражает содержание односеместрового курса лекций, читаемых на факультете информационных систем и технологий УлГТУ студентам специальности «Прикладная информатика (в экономике)» и соответствует Государственному образовательномустандарту подисциплине«Эконометрика». Пособиесостоитизвосьми главиприложения.

Впервойглаведаетсяхарактеристикапредметуэконометрикииприменяемымметодам, освещаются основные аспекты эконометрического моделирования, применяемыеметодикиивидыиспользуемыхпеременных.

Во второй главе рассмотрены вопросы построения парных регрессионных моделей: постановка задачи, спецификация и оценка параметров моделей, оценка качества полученных моделей, получение точечного и интервального прогнозных значений, экономическая интерпретация модели.

Третья глава посвящена построению множественных регрессионных моделей. Подробно рассмотрены вопросы спецификации и оценки параметров модели, оценки качества полученной модели и ее статистической значимости. Приведены условия, обеспечивающие эффективность метода наименьших квадратов (теорема Гаусса-Маркова).Описан обобщенный метод наименьших квадратов, позволяющий получать эффективные оценки параметров в условиях мультиколлинеарности факторов и автокорреляции остатков. Рассмотрены регрессионные модели с переменной структурой.

Четвертая глава посвящена построению моделей в виде системы эконометрических уравнений. Изложены особенности моделей, возникающие трудности применения классических методов и описаны наиболее широко применяемые методы оценки параметров, такие как косвенный, двухшаговый и трехшаговый методы наименьших квадратов.

Впятой главе рассмотрены вопросы моделирования одномерных временных рядов и прогнозирования: структура временного ряда, явление автокорреляции, моделирование тенденции и периодической составляющей ряда, прогнозирование уровней ряда. Отдельное внимание уделено адаптивным методам прогнозирования и моделированию коинтегрируемых временных рядов.

Вшестой главе освещены вопросы построения линейных моделей стохастических процессов: AR, MA и ARMA-моделейстационарных процессов,

9

ARIMA-моделейнестационарных процессов. Описаны методы проверки временных рядов на стационарность.

Вседьмой главе излагаются модели и методы, применяемые для исследования эконометрических моделей, описывающих динамику развития экономических процессов. Рассмотрены модели авторегрессии и модели с распределенным лагом. Описаны применяемые для оценки параметров моделей, такие как методы инструментальных переменных, методы Койка и Алмон.

Восьмая глава посвящена информационным технологиям эконометрических исследований. Изложены общие требования к программному обеспечению и возможности программных пакетов Excel, STATISTICA, ЭВРИСТА, Matrixer 5.1.

Вприложении даны часто используемые статистические таблицы. Пособие предназначено студентам экономических и информационных

специальностей. Изложение материала ориентировано на читателя, обладающего знаниями в пределах курсов высшей математики и математической статистики, читаемых студентам экономических и информационных специальностей. Пособие будет также полезно всем желающим познакомиться с основными задачами, моделями и методами эконометрики.

10

1.Предмет и методы эконометрики

1.1.Предмет и методы эконометрики

Эконометрика как наука возникла в первой половине 20-говека в результате активного использования для решения задач экономической теории математических и статистических методов.

Термин эконометрика введен в научную литературу в 1930 году норвежским статистиком Рагнаром Фришем. Он первым определил эконометрику, как научную дисциплину, базирующуюся на синтезе экономической теории, статистики и математики.

Вдословном переводе слово эконометрика означает «экономические измерения». Это очень широкое толкование данного понятия. Как правило, термин эконометрика применяется в более узком смысле. А именно, под эконометрикой понимается раздел науки, изучающий конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей (БСЭ).

Можно сказать, что главной задачей эконометрики является количественная оценка имеющихся взаимосвязей между экономическими явлениями и процессами.

Экономические явления взаимосвязаны и взаимообусловлены. Следствием этого является то, что значения соответствующих экономических показателей изменяются во времени с учетом этих взаимосвязей. Так, например, известно, что совокупный спрос зависит от уровня цен, потребление – от располагаемого дохода, инвестиции – от процентной ставки и так далее. Перед исследователем стоит задача выявления таких связей, количественная их оценка и изучение возможности использования выявленных связей в экономическом анализе и прогнозировании. Разработкой соответствующего инструментария и его применением для решения конкретных практических экономических задач как раз

изанимается эконометрика.

Воснове любого эконометрического исследования лежит построение эко- номико-математическоймодели, адекватной изучаемым реальным экономическим явлениям и процессам.

Процесс построения эконометрических моделей начинается с качественного исследования проблемы методами экономической теории, формулируются цели исследования, выделяются факторы, влияющие на изучаемый показатель,

иформулируются предположения о характере предполагаемой зависимости. На этой основе изучаемые зависимости выражаются в виде математичес-

ких формул и соотношений.

Следует отметить, что ввиду невозможности одновременно учесть большое количество факторов, влияющих на изучаемый показатель, предполагаемые зависимости между переменными будут выполняться не точно, а с определенной погрешностью. Кроме того, экономическим явлениям присуща внутренняя неопределенность, связанная с целенаправленной деятельностью субъектов экономики.

studfiles.net

Лекции по эконометрике: учебное пособие

АННОТАЦИЯ

Содержит краткий курс лекций по дисциплине «Эконометрика», включая описа-
ние основных задач эконометрики и методов, применяемых для их решения. Предназначено для студентов экономических и информационных специальностей.

Учебное пособие является электронной версией книги:
Шанченко, Н. И. Лекции по эконометрике : учебное пособие / Ульяновск : УлГТУ, 2008. – 139 с.

ОГЛАВЛЕНИЕ

СОДЕРЖАНИЕ
Введение
1. Предмет и методы эконометрики
1.1. Предмет и методы эконометрики
1.2. Характеристика взаимосвязей
1.3. Основные этапы построения эконометрической модели
1.4. Выбор вида эконометрической модели
1.5. Методы отбора факторов
1.6. Оценка параметров моделей
1.7. Примеры эконометрических моделей
Контрольные вопросы .
2. Парный регрессионный анализ
2.1. Понятие парной регрессии
2.2. Построение уравнения регрессии
2.2.1. Постановка задачи
2.2.2. Спецификация модели
2.3. Оценка параметров линейной парной регрессии
2.4. Оценка параметров нелинейных моделей
2.5. Качество оценок МНК линейной регрессии. Теорема Гаусса-Маркова
2.6. Проверка качества уравнения регрессии. F-критерий Фишера
2.7. Коэффициенты корреляции. Оценка тесноты связи
2.8. Точность коэффициентов регрессии. Проверка значимости
2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
2.10. Коэффициент эластичности
Контрольные вопросы
3. Множественный регрессионный анализ
3.1. Понятие множественной регрессии
3.2. Отбор факторов при построении множественной регрессии
3.2.1. Требования к факторам
3.2.2. Мультиколлинеарность
3.3. Выбор формы уравнения регрессии
3.4. Оценка параметров уравнения линейной множественной регрессии
3.5. Качество оценок МНК линейной множественной регрессии. Теорема Гаусса-Маркова
3.6. Проверка качества уравнения регрессии. F-критерий Фишера
3.7. Точность коэффициентов регрессии. Доверительные интервалы
3.8. Частные уравнения регрессии. Частная корреляция
3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
3.9.1. Обобщенный метод наименьших квадратов
3.9.2. Обобщенный метод наименьших квадратов в случае
гетероскедастичности остатков
3.10. Проверка остатков регрессии на гетероскедастичность
3.11. Построение регрессионных моделей при наличии автокорреляции остатков
3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
3.12.1. Фиктивные переменные
3.12.2. Тест Чоу
3.11. Проблемы построения регрессионных моделей
Контрольные вопросы
4. Системы эконометрических уравнений
4.1. Структурная и приведенная формы модели
4.2. Оценка параметров структурной формы модели
4.3. Косвенный метод наименьших квадратов
4.4. Двухшаговый метод наименьших квадратов
4.5. Трехшаговый метод наименьших квадратов
Контрольные вопросы
5. Моделирование одномерных временных рядов и прогнозирование
5.1. Составляющие временного ряда
5.2. Автокорреляция уровней временного ряда
5.3. Моделирование тенденции временного ряда
5.3.1. Методы определения наличия тенденции
5.3.2. Сглаживание временного ряда по методу скользящей средней
5.3.3. Метод аналитического выравнивания
5.3.4. Выбор вида тенденции
5.3.5. Оценка адекватности и точности модели тенденции
5.4. Моделирование периодических колебаний
5.4.1. Выделение периодической компоненты по методу
скользящей средней
5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
5.5. Прогнозирование уровней временного ряда на основе кривых роста
5.5.1. Метод аналитического выравнивания
5.6. Адаптивные модели прогнозирования
5.6.1. Понятие адаптивных методов прогнозирования
5.6.2. Экспоненциальное сглаживание
5.6.3. Использование экспоненциальной средней
для краткосрочного прогнозирования
5.6.4. Адаптивные полиномиальные модели
5.7. Исследование взаимосвязи двух временных рядов
5.8. Коинтеграция временных рядов
Контрольные вопросы
6. Линейные модели стохастических процессов
6.1. Стационарные стохастические процессы
6.1.1. Основные понятия
6.1.2. Параметрические тесты стационарности
6.1.3. Непараметрические тесты стационарности
6.2. Линейные модели стационарных временных рядов. Процессы ARMA
6.2.1. Модели авторегрессии (AR)
6.2.2. Модели скользящего среднего (MA)
6.2.3. Модели авторегрессии-скользящего среднего (ARMA)
6.3. Автокорреляционные функции
6.3.1. Автокорреляционная функция
6.3.2. Частная автокорреляционная функция
6.4. Прогнозирование ARMA-процессов
6.4.1. AR-процессы
6.4.2. MA-процессы
6.4.3. ARMA-процессы
6.5. Нестационарные интегрируемые процессы
6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
6.5.2. Тесты Дики-Фуллера
6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
6.5.4. Метод разностей и интегрируемость
6.6. Модели ARIMA
6.6.1. Определение и идентификация модели
6.6.2. Прогнозирование ARIMA-процессов
Контрольные вопросы
7. Динамические эконометрические модели
7.1. Общая характеристика динамических моделей
7.2. Модели с распределенным лагом
7.2.1. Оценка параметров модели с распределенным лагом методом Койка
7.2.2. Оценка параметров модели с распределенным лагом методом Алмон
7.2.3. Интерпретация параметров
7.3. Модели авторегрессии
7.3.1. Интерпретация параметров
7.3.2. Оценка параметров моделей авторегрессии
7.4. Модель частичной корректировки
7.5. Модель адаптивных ожиданий
Контрольные вопросы
8. Информационные технологии эконометрических исследований
8.1. Электронные таблицы Excel
8.2. Статистический пакет общего назначения STATISTICA
8.3. Эконометрические программные пакеты. Matrixer 5.1
8.4. Анализ временных рядов в системе ЭВРИСТА
Контрольные вопросы
Глоссарий
Приложения

1. Нормированная функция Лапласа
2. Значения критических уровней t?,k для распределения Стьюдента
3. Значения F-критерия Фишера на уровне значимости ? = 0,05
4. Значения F-критерия Фишера на уровне значимости ? = 0,01
5. Значения X2a ;k критерия Пирсона
6. Значения статистик Дарбина-Уотсона dL dU
7. Критические значения f-критерия для DF-, ADF- и РР-тестов, рассчитанные по Маккиннону
8. Критические значения коинтеграционного ADF-критерия
Библиографический список
Интернет-ресурсы

Введение
Развитие экономики, усложнение экономических процессов и повышение
требований к принимаемым управленческим решениям в области макро и мик-
роэкономики потребовало более тщательного и объективного анализа реально
протекающих процессов на основе привлечения современных математических
и статистических методов.
С другой стороны, проблема нарушения предпосылок классических статистических методов при решении реальных экономических задач привели к необходимости развития и совершенствования классических методов математической статистики и уточнения постановок соответствующих задач.
В результате этих процессов осуществилось выделение и формирование новой отрасли знания под названием Эконометрика, связанной с разработкой и применением методов количественной оценки экономических явлений и процессов и их взаимосвязей.
Основным методом исследования в эконометрике является экономико-математическое моделирование. Правильно построенная модель должна давать
ответ на вопрос о количественной оценке величины изменения изучаемого явления или процесса в зависимости от изменений внешней среды. Например, как скажется увеличение или уменьшение уровня инвестиций на совокупном валовом продукте, какие дополнительные ресурсы понадобятся для запланированного увеличения выпуска продукции и т. п.
Практическая значимость эконометрики определяется тем, что применение ее методов позволяет выявить реально существующие связи между явлениями,
дать обоснованный прогноз развития явления в заданных условиях, проверить и
численно оценить экономические последствия принимаемых управленческих
решений.
Построение эконометрических моделей приходится осуществлять в условиях, когда нарушаются предпосылки классических статистических методов, и учитывать наличие таких явлений, как:
– мультиколлинеарность объясняющих переменных;
– закрытость механизма связи между переменными в изолированной регрессии;
– эффект гетероскедастичности, т. е. отсутствия нормального распределения остатков для регрессионной функции;
– автокорреляция остатков;
– ложная корреляция.
Разработка методов, преодолевающих эти трудности, составляет теоретическую основу эконометрики.
Наряду с логически правильным формальным применением имеющегося
математического и статистического инструментария важными составляющими
успеха эконометрического исследования являются экономически адекватная
постановка задачи и последующая экономическая интерпретация полученных
результатов.
Огромный толчок развитию эконометрических методов и их широкому
внедрению в практику дало развитие средств вычислительной техники и особенно появление персональных и портативных компьютеров. Разработка программных пакетов, реализующих методы построения и исследования эконометрических моделей привело к тому, что выполнение эконометрических процедур становится доступным самому широкому кругу аналитиков, экономистов и ме-
неджеров. В настоящее время основные усилия прикладного исследователя
сводятся к подготовке качественных исходных данных, к правильной постанов-
ке проблемы и экономически обоснованной интерпретации результатов иссле-
дования. Вместе с тем, от исследователя требуется четкое понимание областей
применимости используемых методов и сложности и неочевидности процесса
перенесения полученных теоретических результатов на реальную действительность.
Настоящее пособие отражает содержание односеместрового курса лекций, читаемых на факультете информационных систем и технологий УлГТУ студентам специальности «Прикладная информатика (в экономике)» и соответствует Государственному образовательному стандарту по дисциплине «Эконометрика». Пособие состоит из восьми глав и приложения.
В первой главе дается характеристика предмету эконометрики и применяемым ме-
тодам, освещаются основные аспекты эконометрического моделирования, применяемые методики и виды используемых переменных.
Во второй главе рассмотрены вопросы построения парных регрессионных
моделей: постановка задачи, спецификация и оценка параметров моделей,
оценка качества полученных моделей, получение точечного и интервального
прогнозных значений, экономическая интерпретация модели.
Третья глава посвящена построению множественных регрессионных моделей. Подробно рассмотрены вопросы спецификации и оценки параметров модели, оценки качества полученной модели и ее статистической значимости.
Приведены условия, обеспечивающие эффективность метода наименьших квадратов (теорема Гаусса-Маркова). Описан обобщенный метод наименьших
квадратов, позволяющий получать эффективные оценки параметров в условиях
мультиколлинеарности факторов и автокорреляции остатков. Рассмотрены рег-
рессионные модели с переменной структурой.
Четвертая глава посвящена построению моделей в виде системы эконометрических уравнений. Изложены особенности моделей, возникающие трудности применения классических методов и описаны наиболее широко применяемые методы оценки параметров, такие как косвенный, двухшаговый и трехшаговый методы наименьших квадратов.
В пятой главе рассмотрены вопросы моделирования одномерных временных рядов и прогнозирования: структура временного ряда, явление автокорреляции, моделирование тенденции и периодической составляющей ряда, прогнозирование уровней ряда. Отдельное внимание уделено адаптивным методам прогнозирования и моделированию коинтегрируемых временных рядов.
В шестой главе освещены вопросы построения линейных моделей стохастических процессов: AR, MA и ARMA-моделей стационарных процессов, ARIMA-моделей нестационарных процессов. Описаны методы проверки временных рядов на стационарность.
В седьмой главе излагаются модели и методы, применяемые для исследования эконометрических моделей, описывающих динамику развития экономических процессов. Рассмотрены модели авторегрессии и модели с распределенным лагом. Описаны применяемые для оценки параметров моделей, такие как методы инструментальных переменных, методы Койка и Алмон.
Восьмая глава посвящена информационным технологиям эконометрических
исследований. Изложены общие требования к программному обеспечению и возможности программных пакетов Excel, STATISTICA, ЭВРИСТА, Matrixer 5.1.
В приложении даны часто используемые статистические таблицы.
Пособие предназначено студентам экономических и информационных специальностей. Изложение материала ориентировано на читателя, обладающе-
го знаниями в пределах курсов высшей математики и математической статистики, читаемых студентам экономических и информационных специальностей. Пособие будет также полезно всем желающим познакомиться с основными задачами, моделями и методами эконометрики.

Электронная версия книги: Скачать.

producm.ru

Курс лекций – эконометрика для заочников. Степанов в.Г.

КРАТКОЕ ИСТОРИЧЕСКОЕ ВВЕДЕНИЕ

Эконометрика – молодая наука, которая своим происхождение обязана развитию статистики и совершенствованию ее методов с одной стороны. С другой стороны эконометрика многим обязана в своем становлении и развитии укреплению позиций системного подхода в современной науке в целом и особенно усовершенствованию математических методов и моделей в экономике. Формирование эконометрики в качестве самостоятельной науки (а не просто раздела статистики) относится к первой трети 20 века и окончательное ее утверждение в виде важного самостоятельного направления в экономических исследованиях относят к середине 20 века.

Эконометрика рассматривает модели реальных экономических систем, которые значительно ближе к реальным рыночным процессам, чем модели экономической теории и в то же время характеризуются значительно большей целостностью (общесистемным подходом) по сравнению с старыми статистическими моделями. Последние нередко представляли эклектический набор разрозненных методов, искусственно собранных вместе и не объединенных одной интегрирующей идеей. Сами эконометрические модели – это по сути своей математические модели, а именно, уравнения (уравнения регрессии), не учитывающие упорядоченности данных во времени; математические соотношения, известные как временные ряды и фактически тоже своеобразные уравнения, описывающие процессы с дискретным временем, развитие их в хронологически упорядоченной последовательности; наконец, системы уравнений (системы эконометрических уравнений), которые успешно применяются для описания макроэкономических процессов и систем.

Несколько конкретнее эконометрика - это существенно междисциплинарная наука, возникшая на стыке экономики, высших методов статистики, математической статистики и в самое последнее время информационных технологий, эффективно реализующих интеграцию этих наук. От первых простейших попыток применения точных количественных методов математики к экономическим проблемам она довольно быстро перешла к использованию методов математической статистики для решения задач экономики и успешно развивает применение математической статистики и даже теории нечетких множеств и нечеткой логики к исследованию сложных процессов социально-экономической природы.

Еще в рамках статистики – способствуя зарождению эконометрики – ученые-экономисты и статистики занимались исследованием макроэкономических проблем на основе временных рядов таких показателей, как валютные курсы и пр. Изучался рынок труда, разрабатывались методы статистической проверки теории производительности организации труда на производстве. Приблизительно в это время (19 век) метод множественной регрессии был применен для оценки функции спроса.

Следующим важным этапом стали работы по применению основных методов математической статистики (корреляционно-регрессионного анализа, анализа временных рядов, метода множественной регрессии) для изучения социально-экономических явлений и процессов, включая оценку функции спроса. Тогда же (первая половина XX века) выполнялись исследования по циклическим процессам в экономике и выделению бизнес-циклов. Так изучение динамики временных рядов и экстраполяция подмеченных закономерностей в сочетании с использованием некоторых базовых теоретических предпосылок привело к построению экономических барометров (гарвардский барометр). Концепция экономического барометра использует следующую важную идею: в динамике различных компонентов экономического процесса имеются такие показатели, изменение которых опережает изменение других компонентов. Таким образом, показатели, изменение которых опережает в своем развитии изменение других показателей, являются в некотором роде предвестниками последних. Конкретно для гарвардского барометра имеется 5 групп показателей. Они затем сводятся в три отдельные кривые: одна характеризует фондовый рынок, другая – товарный рынок, третья кривая – денежный рынок. В основу прогноза с использованием гарвардского барометра было положено свойство каждой отдельной кривой повторять движение остальных кривых в определенной последовательности и с определенным отставанием.

Однако в конце первой трети двадцатого века эффективность подобных методов стала снижаться и их применение сошло на нет. Это связано с существенным изменением структуры мировых экономических отношений и изменением природы регулирующих факторов в экономике, в частности переходом к кейнсианской модели воздействия на экономику со стороны государства. Одновременно пытались применить методы Фурье-анализа и периодограмм к эконометрическим построениям.

Необходимость использования моделирования (в эконометрике это особенно очевидно), а не простого совершенствования вычислительных методов определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств. Процесс моделирования включает три элемента: 1) субъект (исследователь), 2) объект исследования, 3)модель, опосредствующую отношения познающего субъекта и познаваемого объекта. Модель сначала строится – первый этап; затем исследуется – второй этап; после этого полученные знания аккуратно переносятся на исследуемую реальную систему – третий этап. Только после этого переходят к практической проверке и использованию полученных выводов (знаний) в реальной жизни, например, решению задачи прогноза – четвертый этап.

На этапе построения модели используются гипотезы о виде статистической зависимости и определяются неизвестные (на этом этапе) коэффициенты (параметры) моделей при помощи метода наименьших квадратов (МНК). Далее модель исследуется с применением методов математической статистики (проверки гипотез) – второй этап. На третьем этапе выполняются наиболее сложные и тонкие процессы переноса полученных знаний о модели на реальную систему – они требуют особого внимания и аккуратности. Затем наступает наиболее ответственный четвертый этап проверки полученных выводов в реальных условиях и их соответствующего применения, которые не выполняются автоматически, а требуют особого внимания к границам применимости этих выводов.

ЛЕКЦИЯ 1. ПОСТРОЕНИЕ МОДЕЛИ: ОПРЕДЕЛЕНИЕ

ПАРАМЕТРОВ МОДЕЛИ (МНК).

Вернемся к первому этапу. После формирования гипотезы о виде зависимости (функционального вида правой части уравнения регрессии) необходимо выполнить определение входящих в уравнение коэффициентов – подбор параметров зависимости - и тем самым установить окончательно модель явления. Это осуществляется методом наименьших квадратов (МНК). Получающаяся модель проверяется на значимость с помощью различных критериев, представляющих основу статистической проверки гипотез, например, если

yi = f(xi) + εi , где f(xi)=ao + a1x (1.2)

то коэффициенты определяются по МНК условием обращения в минимум функции

∑(yi-ao-a1x)2→min, (1.3)

где требование минимизации квадратов отклонений приводит к системе нормальных уравнений (линейные алгебраические уравнения особого вида) для нахождения из нее коэффициентов ai.

В экономике и, следовательно, в эконометрике исследуемые явления и характеризующие их величины это сложные случайные процессы и случайные величины, параметры этих процессов. Случайные величины в процессе анализа представляются состоящими из постоянной компоненты и случайной компоненты. При этом постоянная составляющая это математическое ожидание, или среднее арифметическое (среднее) значение исходной случайной величины:

= (1.4)

Если же данные не сгруппированы, то все частоты f равны 1 и получаем формулу простого среднего:

(1.5)

Среднее случайной компоненты, или остатка равно нулю. Если бы это оказалось не так, то это ненулевое значение следовало бы включить в среднее значение исходной случайной величины и, таким образом, все свелось бы к предыдущему. Мера разброса (вариации) случайной величины, или, что то же, ее распределения, - это дисперсия.

Первоначально дисперсия определяется как среднее квадрата разности между самой случайной величиной и средним этой случайной величины:

Var(χ) = 2 = (1.6)

В этом выражении коэффициенты ƒ не что иное как веса, или весовые коэффициенты значений величины χ . Это попросту величины, показывающие сколько раз входят те или иные значения в данное эмпирическое распределение величины χ для дискретных распределений или же в данный интервал (данную группу) для непрерывных распределений.

Часто при расчетах используют выражение для дисперсии в виде разности среднего от квадрата исходной случайной величины и квадрата среднего от нее:

σ2 = -(1.7)

Тогда окончательно для дисперсии исходной случайной величины получаем, что она равна дисперсии остатка, поскольку вся вариация исходной случайной величины равна вариации остатка, просто по самому определению остатка.

В действительности, кроме самых простых и редких случаев, неизвестно распределение случайной величины и даже основные характеристики изучаемой генеральной совокупности. Требуется получить информацию о случайной величине, характеризующей данное явление или процесс или соответственно генеральной совокупности, из результатов наблюдений. Совокупность результатов наблюдений представляет собой выборку из генеральной совокупности и по этим данным (выборки) с применением подходящей формулы и методов оценивания (прежде всего метода наименьших квадратов) получают приближенное значение неизвестной характеристики (параметра) исследуемой случайной величины или в терминах статистики генеральной совокупности.

Эконометрика использует для изучения различных явлений и процессов признаки, характеризующие эти явления и процессы. Признаки могут быть количественными и атрибутивными, не поддающимися непосредственно количественному измерению. Эконометрика сосредоточена преимущественно на исследовании явлений и процессов, характеризующихся количественными признаками. Тем не менее, она способна исследовать и взаимосвязи между атрибутивными (не количественными) признаками. Сами количественные признаки это фактически случайные величины, которые описываются своими распределениями (совокупностью принимаемых значений и совокупностью вероятностей, с которыми эти значения принимаются). Соответственно для признаков определяются средние, а сами случайные величины могут быть представлены в виде суммы средней и остатка, характеризующего случайные флуктуации.

у = + ε, (1.8)

где средняя (первое слагаемое) может быть приближена или просто заменена некоторой функцией, например линейной:

= ao+ a1x (1.9)

Это представление имеет глубокий смысл и будет неоднократно использоваться и обсуждаться далее. Далее помимо среднего для признака как для случайной величины определяется дисперсия, которая служит мерой вариации признака в целом (интегральная характеристика колеблемости признака).

D=σ2= (1.10)

Эконометрика исследует взаимозависимости между признаками и динамику их изменения во времени. Признаки, зависящие от других называются зависимыми, или объясняющими. Признаки от которых зависят первые (зависимые) называются независимыми, или факторами, или регрессорами. Далее мы увидим, что их так называемая независимость друг от друга отнюдь не носит абсолютный характер. Тем не менее понятие независимости факторов является весьма важным и весьма полезным начальным предположением. После исследования соответствующих базовых моделей начального уровня удается строить и изучать более сложные и более совершенные модели, в которых возможно учитывать частичную зависимость факторов.

Также естественно, что в качестве начальных базовых моделей используются простейшие зависимости, например линейные. После этого рассматривают модели, которые можно преобразовать к линейным. И наконец, только после этого существенно нелинейные модели. О том, каков точный смысл этих понятий речь пойдет в следующих лекциях.

Прежде всего, необходимо определить остаток (иначе отклонения, или погрешности) для каждого конкретного наблюдения. Этот остаток после принятия гипотезы линейной зависимости определяется как разность между фактическим значением наблюденной зависимой величины у и ее расчетным значением, получаемым по значению фактора х и формуле линейной зависимости у от х.

Линия графика (линейной зависимости), или линия регрессии должна быть такова, чтобы указанные остатки являлись минимальными. Как понимать требование минимальности именно всех остатков? Ведь уменьшая одни остатки, мы всегда с необходимостью будем увеличивать другие. Наилучший способ это потребовать минимизации суммы квадратов остатков. Остатки еще называют отклонения. В этом случае говорят о минимизации суммы квадратов отклонений. Это одно и то же. Наилучшее соответствие кривой точкам наблюдений получилось бы в предельном случае абсолютно точного соответствия, когда кривая (в нашем случае прямая) пройдет точно через все точки. Но это нереально для линии регрессии, ввиду наличия случайного члена и ошибок наблюдений.

Именно описанный только что принцип минимизации квадратов остатков и его реализация называются методом наименьших квадратов (МНК). Поскольку существует также модификация и развитие его, то говорят также о традиционном, или обычном МНК. В математике (математической статистике и теории приближенных вычислений) МНК рассматривается в качестве одного из наиболее важных и эффективных методов приближенных вычислений и методов оценивания. По существу именно ситуации, когда система алгебраических линейных уравнений не имеет точного решения, является наиболее общей и важной с практической точки зрения. И в большинстве случаев удается найти содержательные приближенные решения, дающие ответ на вопросы, поставленные в данной задаче.

Важно понимать, что в МНК переменные и коэффициенты как бы меняются местами. Из требования минимизации суммы квадратов остатков вытекает довольно простая система линейных алгебраических уравнений. Она называется нормальная система, или система нормальных уравнений. В этой системе уравнений в качестве известных величин выступают величины, получаемые в результате перемножения, возведения в квадрат и последующего суммирования наблюденных значений переменных. Надо отчетливо понимать, что, несмотря на свой нередко относительно громоздкий вид, это всего лишь известные величины, играющие теперь роль коэффициентов системы. С другой стороны сами исходные коэффициенты линейной зависимости (параметры) неизвестны. Именно их и надо определить из системы нормальных уравнений.

Для решения системы алгебраических линейных уравнений существуют различные методы от простого исключения переменных до использования определителей и обратных матриц, метод Гаусса, систематизирующий и обобщающий исключение переменных и называемый поэтому методом последовательного исключения неизвестных. Для случая двух переменных эти формулы нахождения решения системы нормальных уравнений довольно просты. Для множественной регрессии, когда рассматриваются зависимости от множества факторов такие формулы становятся более громоздкими.

Важно то, что в очень большом количестве исследуемых ситуаций выборочная дисперсия весьма близка к генеральной дисперсии и является хорошим приближением и тем самым хорошей оценкой для генеральной дисперсии, кроме отдельных специальных случаев. В то же время выборочное среднее не является достаточно хорошей оценкой, а служит всего лишь грубым первоначальным приближением к оценке генерального среднего, которое уточняется с помощью формул, использующих выборочную дисперсию.

Итак, оценки – это приближения к неизвестным величинам с некоторыми важными хорошими свойствами. Опираясь на оценки важнейших характеристик случайных величин, выявляют и исследуют связи между ними, определяют величину этих связей, исходя из важнейших показателей, характеризующих статистические зависимости между величинами и процессами. Мерой взаимосвязи между переменными является выборочная ковариация, которая для последовательности наблюдений двух переменных представляет среднее произведений разностей результатов наблюдений и их соответствующих средних. Есть другая форма вычисления ковариации, когда она представляется в виде среднего попарных произведений соответствующих результатов наблюдений этих двух переменных, из которого вычитается произведение средних этих двух переменных:

Cov(x,y)=å(x-`x)(y-`y)/n=[(∑xy)/n] – [] (1.11)

Ковариация легко вычисляется, но при всей ее простоте она вовсе не является наилучшим измерителем взаимосвязи между величинами. Более точно характеризует зависимость коэффициент корреляции. Выборочный коэффициент корреляции, или просто выборочная корреляция это просто частное от деления выборочной ковариации на произведение выборочных дисперсий соответствующих переменных. Преимущество коэффициента корреляции перед ковариацией заключается в том, что ковариация зависит от единиц, в которых измеряются переменные, коэффициент корреляции это величина безразмерная.

r=Cov(x,y)/Övar(x)var(y) (1.12)

studfiles.net

Лекция 1. Введение в эконометрику. Модель парной регрессии - Лекции по Эконометрике с примерами решения (8 лекций)

Лекции по Эконометрике с примерами решения (8 лекций)
скачать (1277.8 kb.)
Доступные файлы (8):
Победи орков


n1.doc

Лекция 1.

Введение в эконометрику. Модель парной регрессии.
Вопросы:

1. Предмет – эконометрика.

2. Экономические переменные и эконометрические модели.

3. Основные понятия и проблемы эконометрического моделирования.

4. МНК оценки коэффициентов линейной парной регрессии.

5. Геометрическая интерпретация МНК. Матричная форма определения

коэффициентов.

6. Литература.


  1. Предмет – эконометрика.

Эконометрика – это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе: экономической теории, экономической статистики и экономических измерений, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией.

Сегодня деятельность в любой области экономики (управлении, финансово-кредитной сфере, маркетинге, учете, аудите) требует от специалиста применения современных методов работы, знания достижений мировой экономической мысли, понимания научного языка. Большинство новых методов основано на эконометрических моделях, концепциях, приемах. Без глубоких знаний эконометрики научиться их использовать невозможно. Чтение современной экономической литературы также предполагает хорошую эконометрическую подготовку.

Специфической особенностью деятельности экономиста является работа в условиях недостатка информации и неполноты исходных данных. Анализ такой информации требует специальных методов, которые составляют один из аспектов эконометрики. Центральной проблемой эконометрики является построение эконометрической модели и определение возможностей ее использования для описания, анализа и прогнозирования реальных экономических процессов.

Название «эконометрика» введено в 1926 г. норвежским экономистом и статистиком Рагнаром Фришем. Буквальный перевод этого понятия – «измерения в экономике». Р.Фриш дал следующее определение эконометрики.

Эконометрика – это не то же самое, что экономическая статистика. Она не идентична и тому, что мы называем экономической теорией, хотя значительная часть этой теории носит количественный характер. Эконометрика не является синонимом приложений математики к экономике. Как показывает опыт, каждая из трех отправных точек – статистика, экономическая теория и математика – необходимое, но не достаточное условие для понимания количественных соотношений в современной экономической жизни. Это – единство всех трех составляющих. И это единство образует эконометрику.

При этом в рамках экономической теории интересуют не просто качественные взаимосвязи переменных, но и подходы к их формализации, включающие в себя методы спецификации моделей с проблемой их идентификации. В экономической статистике непосредственно будет интересовать лишь информационное обеспечение модели (выбор показателя, обоснование способа измерения, статистические наблюдения и т.п.). Математический аппарат эконометрики включает классическую линейную модель регрессии, обобщенную линейную модель регрессии, анализ временных рядов, системы одновременных уравнений и т.п. Это «приземление» экономической теории на конкретную статистику и получение конкретных количественных показателей является ключевым в понимании сути эконометрики. Экономическая теория становится эконометрикой, когда символически представленные в экономических взаимосвязях коэффициенты заменяются конкретными численными оценками, полученными на базе соответствующих экономических данных.

Главное назначение эконометрики – экономические и социально-экономические приложения, т.е. модельное описание конкретных количественных взаимосвязей, существующих между экономическими показателями.

Задачи эконометрики можно классифицировать по трем параметрам: по конечным прикладным целям, по уровню иерархии и по профилю анализируемой экономической системы:


  • По конечным целям – две основные:

а) прогноз экономических, социально-экономических показателей, характеризующих состояние и развитие экономической системы;

б) имитация возможных сценариев социально-экономического развития системы;


  • По уровню иерархии анализируемой экономической системы можно выделить:

а) макроуровень – это страна в целом, модели национальной экономики;

б) мезоуровень – модели региональной экономики, отраслей, корпораций;

в) микроуровень - модели поведения потребителей, семьи, фирмы, предприятия.


  • По профилю – исследование может быть сконцентрировано на проблемах рынка, инвестиционной, финансовой или социальной политики, ценообразования, распределительных отношений, спроса и потребления и т.п.

  1. Экономические переменные и эконометрические модели.

Основные идеи экономики – взаимосвязь между экономическими переменными.

- Спрос на товар – функция его цены.

- Затраты на производство - функция объема производства.

- Потребительские расходы – функция дохода и т.д.

Это примеры взаимосвязей между двумя переменными, одна из которых (спрос, затраты, расходы) является объясняемой переменной (результирующим показателем), а другие – объясняющими переменными (факторами-аргументами). Как правило, в каждое такое соотношение вводится несколько объясняющих переменных и остаточная, случайная составляющая, отражающая влияние всех неучтенных факторов. Например, спрос на товар можно рассматривать как функцию его цены, потребительского дохода и цен на конкурирующие и дополняющие товары.

Случайная составляющая обуславливает стохастический характер зависимости: даже фиксировав значения объясняющих переменных, мы не можем ожидать однозначно, каким будет спрос на товар. В прикладном статистическом анализе изучаются различные варианты формализации понятия стохастической зависимости. Наиболее распространенной формализацией зависимости между результирующим показателем у и объясняющими переменными х1, х2, …, хn в экономике является аддитивная линейная форма:

где - некоторые параметры (обычно неизвестные до проведения анализа), - случайная составляющая, характеризующая разницу между модельным и наблюдаемым значениями. Под модельным значением переменной понимают её значение, восстановленное по заданным значениям объясняющих переменных при условии, что коэффициенты известны.

Поясним понятия аддитивности и линейности.

Функция линейна по всем независимым переменным тогда и только тогда, когда не включает, эффект данного изменения по не зависит от .

Функция является аддитивной потогда и только тогда, когда не включает ( ), эффект данного изменения по каждой независимой переменной не зависит от уровня другой. Аддитивность позволяет совместный эффект изменения по всем учтенным независимым переменным получить сложением отдельно вычисленных эффектов изменений по каждой из них.

Рассмотрим некоторые примеры оценки линейности и аддитивности.


Функция




Линейность

Аддитивность по х1, х2

по х1

по х2

а1х12+а2х22+а3х1х2

2а1х1+а3х2

2а2х2+а3х1

нет

нет

нет

х2/x1

2/x12

1/x1

нет

да

нет

а1х12+а2х2

2а1х1

а2

нет

да

да

x1aх2b

ax1a-1х2b

bx1aх2b-1

нет

нет

нет

а1х1x2 2+а2lnх2

а1x2 2

2а1х1x22+а22

да

нет

нет

а1х1+а2х2+а3х1х2

а1+а3х2

а2+а3х1

да

да

нет

а1х1+а2lnх2

а1

а22

да

нет

да

а1х1+а2х2

а1

а2

да

да

да

После выявления отдельных соотношений их группируют в модель. Математическая модель – это упрощенное, формализованное представление реальности. «Модели должны быть настолько простыми, насколько возможно, но не проще» - сказал Эйнштейн.

Все экономические модели имеют общие особенности:

- они основаны на предположении, что поведение экономических переменных определяется с помощью совместных и одновременных операций с некоторым числом экономических соотношений;

- принимается, что модель улавливает главные характеристики изучаемого объекта;

- полагается, что на основе достигнутого с ее помощью понимания реальной системы удастся предсказать будущее движение экономических показателей.

Можно выделить три основных класса моделей.

Регрессионные модели с одним уравнением.

,

- параметры, - независимые объясняющие переменные. В зависимости от вида функции f модели делятся на линейные и нелинейные:

, ,

,

Модели временных рядов. К ним относятся модели:

Тренда –

Сезонности –

Тренда и сезонности - - аддитивная

- мультипликативная

Системы одновременных уравнений. Модели описываются системами уравнений, состоящих из тождеств и регрессионных уравнений, каждое из которых может кроме объясняющих переменных, включать в себя объясняемые переменные из других уравнений системы.

Классическим примером такой системы является модель спроса Qd и предложения Qs, когда спрос на товар определяется его ценой Р и доходом потребителя I, предложение товара – его ценой Р и достигается равновесие между спросом и предложением:

При моделировании экономических процессов встречаются два типа данных:

- пространственные данные – данные по разным фирмам и предприятиям в один момент времени;

- временные ряды – ежеквартальные данные по инфляции, з.п., национальному доходу и т.п.
3. Основные понятия и проблемы эконометрического моделирования.
К основным понятиям эконометрики можно отнести:

- понятия экзогенных и эндогенных переменных, объясняемых и объясняющих переменных, предопределенных переменных;

- понятия структурной и приведенной форм модели.
Экзогенные переменные – «внешние», автономные, в определенной степени управляемые.

Эндогенные переменные – формируются в процессе и «внутри» социально-экономической системы в большей мере под воздействием экзогенных переменных, в модели – объясняемые переменные.

Предопределенные переменные – факторы-аргументы, объясняющие переменные. Множество предопределенных переменных формируется из всех экзогенных переменных и лаговых эндогенных переменных – эндогенных переменных, значения которых уже вычислены в прошлые моменты времени.

В модели спроса и предложения экзогенной переменной выступает доход потребителя I, а эндогенными – спрос (предложение) товара Qd = Qs = Q и цена товара (цена равновесия) Р.

При построении и анализе эконометрических моделей различают её структурную и приведенную формы. Структурная форма модели отражает наше представление о характере связи между переменными и наборе переменных, участвующих в уравнениях. Часто эндогенные переменные обозначают через Y, а экзогенные переменные – через Х. Эндогенные и экзогенные переменные могут находиться как по разные стороны, так и по одну сторону от знака равенства. Если удается выразить все эндогенные переменные через предопределенные, то получают приведенную (редуцированную) форму модели.


Структурная форма

Приведенная форма




В процессе эконометрического моделирования приходится решать следующие проблемы.

Проблема спецификации модели включает в себя:

- определение конечных целей моделирования;

- определение набора экзогенных и эндогенных переменных;

- определение состава системы уравнений, их структур, набора предопределенных переменных;

- формулировка исходных ограничений относительно стохастической составляющей.

Спецификация модели – важнейший этап исследования, от успешности решения которого зависит успех всего исследования. Спецификация опирается на имеющиеся экономические теории, специальные знания, интуицию.

Проблема идентифицируемости заключается в том, что нас интересует поведение эндогенных переменных, которые являются случайными величинами.

Уравнение структурной формы называется точно идентифицируемым, если все участвующие неизвестные коэффициенты однозначно восстанавливаются по коэффициентам приведенной формы без ограничений на значения последних. Эконометрическая модель точно идентифицируема, если все уравнения ее структурной формы являются точно идентифицируемыми. Если хотя бы один коэффициент не может быть восстановлен, то уравнение – не идентифицируемо и модель – тоже. Проблема идентификации заключается в «настройке» модели на реальные статистические данные.

Необходимо различать проблему идентифицируемости – проблему возврата от ПФМ к ее структурной форме – от проблемы идентификации – т.е. проблемы выбора и реализации методов статистического оценивания параметров.

Проблема верификации модели заключается в решении вопроса о возможностях применения модели. Какова точность прогнозных и имитационных расчетов. Методы верификации основаны на статистической проверке гипотез и анализе характеристик точности оценивания. Часто используют ретроспективные расчеты: все исходные данные разбивают на две части – обучающую выборку и экзаменующую выборку. По 1-й части определяют значения всех неизвестных параметров и получают модельные значения для 2-й части, которые сравнивают с реальными значениями.


  1. МНК оценки коэффициентов линейной парной регрессии.

Рассмотрим простейшую модель . Величина у рассматривается как зависимая переменная, состоящая из двух частей: неслучайной составляющей , где х – объясняющая переменная, и - параметры, - случайный член. Имеется несколько причин включения случайного члена.

1. Невключение объясняющих переменных. Соотношение между х и у является упрощением, и существуют другие факторы, влияющие на у. Или переменные, которые мы хотели бы включить, не можем измерить их, например, психологический фактор. Или мы просто не знаем пока какие ещё переменные влияют на у.


  1. Агрегирование переменных. Во многих случаях рассматриваемая зависимость – это попытка объединить вместе некоторое число микроэкономических соотношений. Например, функция суммарного потребления, т.е. объединение решений многих индивидов. Наблюдаемое расхождение объясняет случайный член.

  2. Неправильное описание структуры. Структура модели неправильна или не вполне правильна. Например, у зависит не от фактического х, а от уt-1 – предыдущего значения, при этом может казаться, что между х и у существует связь. Расхождения при этом описываются .

  3. Неправильная функциональная спецификация. Математически зависимость х и у описывается не так. Например, зависимость не является линейной.

  4. Ошибки измерения. Неизбежны.

Таким образом, является суммарным проявлением всех этих причин.

Рассмотрим задачу «наилучшей» аппроксимации набора наблюдений Хt и Уt, линейной функцией в смысле минимизации функционала . Необходимое условие экстремума:

,

или в стандартной форме нормальных уравнений:

или
Решение системы можно записать в виде

, .

Получим значения и в отклонениях, т.е. пусть

xt = Xt - , yt = Yt - . Можно показать, что = = 0. Замена Xt, Yt на xt, yt означает перенос системы координат, а прямая останется прежней. После замены получим:

= 0, .

Часто удобно перейти к стандартизованному масштабу:

, .

Уравнение регрессии в стандартизованном масштабе примет вид: ,

где . Связь между обычным и стандартизованным масштабом выражается следующим образом:

, .

И, наконец, коэффициенты регрессии могут быть определены с помощью ППП Excel, Statgraphic.

Параметр называют коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Формально - значение у при х = 0. Если х не имеет и не может иметь нулевого значения, то у = не имеет смысла. Параметр может не иметь экономического содержания, и попытка его интерпретировать может привести к абсурду. Интерпретировать можно лишь знак : если > 0, то относительное изменение результата происходит медленнее, чем изменение фактора.

Пример. Предположим по группе предприятий, выпускающих один и тот же вид продукции, рассматривается функция издержек . Информация, необходимая для расчета и дана в таблице.


№ предприятия

1

2

3

4

5

6

7

Выпуск продукции, х

1

2

4

3

5

3

4

Затраты на производство, у

30

70

150

100

170

100

150

Решение.


    1. По данным таблицы определим: , , , , .

2) =

Уравнение регрессии примет вид: у = -5,789 + 36,842 х.
5. Геометрическая интерпретация МНК. Матричная форма определения коэффициентов.

Рассмотрим n-мерное векторное пространство Rn со стандартным евклидовым скалярным произведением

(Х,У) = ХТУ = . Пусть

, , , , .

Здесь и - числовые коэффициенты, - вектор, лежащий в плоскости, образованной векторами S и Х ( естественно, что S и Х неколлинеарны, т.е. у Х не все числа одинаковы). Задача состоит в отыскании таких и , чтобы длина вектора е была минимальна. Очевидно, что решением является такой вектор , для которого вектор е перпендикулярен плоскости, образованной S и Х. Для этого необходимо, чтобы

, и или ,

т.е. опять пришли к стандартным нормальным уравнениям. Обозначим теперь

, , , условие ортогональности е плоскости (S,X) запишется так ХТе = 0 или ХТ(У - Х) = ХТУ - ХТХ = 0 ХТУ = ХТХ и

.

Нетрудно проверить, что все соотношения для и совпадают.
6. Литература


1.
2.
3.
4.

5.


Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. М.: ЮНИТИ. 1998.

Бородич С.А. Вводный курс эконометрики. Мн.: Новое знание, 2001.

Доугерти К. Введение в эконометрику. М.: Инфра-М, 2001.

Елисеева И.И., Курышева С.В., Костеева Т.В., Бабаева И.В., Михайлов Б.А. Эконометрика. Учебник. М.: Финансы и статистика, 2006.

Катышев П.К., Пересецкий А.А. Сборник задач к начальному курсу эконометрики. М.: Дело, 1999.

6. Магнус Я.Р., Катышев П.К., Пересецкий А.А.

Эконометрика. Начальный курс. М.: Дело,1999.

7. Фишер Ф. Проблемы идентификации в эконометрии. М.:

Статистика, 1978.


8.

9.
10.

11.
12.

13.

14.


Бородич С.А. Эконометрика. Мн.: Новое знание, 2001.

Кремер Н.Ш., Путко Б.А. Эконометрика. М.: ЮНИТИ –

ДАНА, 2002.


Орлов А.И. Эконометрика. М.: Изд-во «Экзамен», 2002.

Новиков А.И. Эконометрика. М.:ИНФРА-М,2003.-106 с.

Колемаев В.А. Эконометрика. М.: ИНФРА-М, 2004.-160 с.

Замков О.О. Эконометрические методы в макроэкономи-ческом анализе: Курс лекций. М.:ГУ ВШЭ, 2001. – 122 с.

Тихомиров Н.П., Дорохина Е.Ю. Эконометрика. М.: Изд-во «Экзамен», 2003. – 512 с.

Дорохина Е.Ю., Пресняков Л.Ф., Тихомиров Н.П. Сборник задач по эконометрике. М.: Изд-во «Экзамен», 2003. –224 с.

Джонстон Дж. Эконометрические методы. М.: Статистика, 1980

15.

Дубров А.М. Многомерные статистические методы. М.: Финансы и статистика, 2000.

16.

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. М.: МГУ Изд-во «ДИС», 1997.

17.

Кулинич Е.И. Эконометрия. М.: Финансы и статистика, 2001.

18.

Мацкевич И.П., Свирид Г.П. Высшая математика: Теория вероятностей и математическая статистика. Мн.: Вышэйшая школа, 1993.

19.

Булдык Г.М. Сборник задач и упражнений по высшей математике: Теория вероятностей и математическая статистика. Мн.: Вышэйшая школа, 1996.

20.

Сошникова Л.А., Тамашевич В.Н., Уебе Г., Шефер М. Многомерный статистический анализ в экономике М.: ЮНИТИ – ДАНА, 1999.

21.

Экономическая статистика, эконометрика: Программы, тесты, задачи, решения. Под ред. Л.С. Гребнева.- М.: ГУ – ВШЭ, 2000.

22.

Мардас А. Н. Эконометрика. СПб: Питер, 2001.

23.

Грицан В. Н. Эконометрика. М.: Издательско-книготорговый центр «Маркетинг», МУПК, 2001.

24.

Салманов О.Н. Эконометрика. Учебное пособие. – М.: Экономистъ, 2006. – 320 с.

25.

Луговская Л.В. Эконометрика в вопросах и ответах: учеб. пособие. – М.:ТК Велби, Изд-во Проспект, 2005. – 208 с.

26.

Просветов Г.И. Эконометрика: Задачи и решения: Учебно-методическое пособие. 3-е изд., доп. - М.: Изд-во РДЛ, 2006. – 160 с.


Лекция 1. Введение в эконометрику. Модель парной регрессии

nashaucheba.ru

Лекции по "Эконометрика" - Курс лекций

Лаптева Елена Александровна

практика 1, 8.2.16

Выписать данные: урожайность и себестоимость 1 ц (колхоз "Красный маяк")

(3 таблицы – файл эксель)

лекция 1, 11.2.16

ПРЕДМЕТ И МЕТОД ЭКОНОМЕТРИКИ

1. Предмет и метод эконометрики;

2. Задачи эконометрики;

3. Этапы эконометрического исследования;

4. Основные понятия эконометрического моделирования.

1. ПРЕДМЕТ И МЕТОД ЭКОНОМЕТРИКИ

Эконометрика – это одна из базовых дисциплин экономического образования во всём мире. Но до 90-х годов ХХ века эконометрика в России по существу не была признана, поэтому не включалась в учебные планы подготовки специалистов экономического профиля. Сегодня ситуация изменилась: её изучают студенты экономических специальностей всех ВУЗов.

Термин «эконометрия» был впервые введён в 1910 году бухгалтером Цьемной, который пытался применить методы алгебры и геометрии к анализу данных бухгалтерского учёта для получения нового представления о результатах хозяйственной деятельности. Эта концепция не прижилась, но название оказалось удачным для определения нового направления в экономической науке. В настоящее время этот термин используется для раздела эконометрики, микро- и макроэкономики, который изучает влияние факторов, формирующих результаты работы предприятий.

Термин «эконометрика» был введён в 1926 году норвежским учёным Фритом для обозначения количественного подхода к исследованию экономических процессов. Этот термин представляет собой комбинацию 2 слов – экономика и метрика; таким образом, сам термин подчёркивает специфику содержания эконометрики как науки: количественное выражение связей и соотношений, которые раскрыты и обоснованы микро- и макроэкономикой; т.е. эконометрика – это наука об измерении и анализе экономических явлений.

Однако однозначного определения эконометрики пока не существует. Приведены следующие определения:

Эконометрика – это наука, в которой на базе реальных статистических данных анализируются и совершенствуются модели реальных экономических явлений. Эта наука позволяет найти количественное подтверждение (опровержение) того или иного экономического закона или гипотезы.

Эконометрика – это быстроразвивающаяся отрасль науки, цель которой состоит в том, чтобы придать количественные меры экономическим отношениям.

Эконометрика – наука, которая даёт количественное выражение взаимосвязей экономических явлений и процессов при помощи методов математической статистики.

Эконометрика – это любое приложение математических или статистических методов к изучению экономических явлений.

Таким образом, цель эконометрики заключается в придании конкретного количественного выражения общим качественным закономерностям экономической теории на базе данных статистического наблюдения с использованием математико-статистических инструментов.

Зарождение эконометрики является следствием междисциплинарного подхода к изучению экономики. Она представляет собой сочетание 3 наук: микро – и макроэкономик, математической и экономической статистик, математики. На современном этапе неотъемлемым фактором развития эконометрики как науки является развитие компьютерных технологий и специальных пакетов прикладных программ.

Предметом исследования микро- и макроэкономик являются экономические явления; но в отличие от этой науки, эконометрика делает упор на количественные аспекты, а не на качественные. Например, микро- и макроэкономики утверждают, что с ростом цены спрос на товар падает; при этом неисследованным остаётся вопрос как быстро и по какому закону происходит убывание. Эконометрика отвечает на этот вопрос для каждого конкретного случая.

Изучение экономических явлений и взаимосвязей в эконометрике осуществляется через математические модели; но в отличие от математики, которая строит эти модели без использования реальных числовых значений, эконометрика концентрируется на изучении моделей на базе реальных эмпирических данных.

ru.essays.club

Курс лекций по дисциплине «Эконометрика»1 Введение

В последнее время специалисты, обладающие знаниями и навыками проведения прикладного экономического анализа с использованием доступных математических и программных средств, пользуются спросом на рынке труда. Одной из центральных дисциплин в подготовке таких специалистов является дисциплина "Эконометрика".

Эконометрика является областью знаний, которая охватывает вопросы применения статистических методов к теоретическим моделям, описывающим реальные экономические процессы.

Очевидно, что с помощью моделей можно получить много информации об экономических процессах, объяснить те или иные явления или процессы, но никогда не удастся получить всю информацию и однозначно определить истинный механизм экономического процесса или явления.

И даже в тех случаях, когда достаточно адекватная исходным данным эконометрическая модель построена и вопрос только в использовании ее для объяснения экономической ситуации или принятия решения, следует весьма осторожно подходить к выводам и рекомендациям, следующим из модельных оценок.

Эконометрический анализ, как правило, проводят с помощью ПЭВМ. В последние несколько лет сформировался обширный набор из пакетов прикладных программ, позволяющих автоматизировать процессы такого анализа. К наиболее распространенным относятся пакеты SAS, SPSS, Stata, Eviews и др. Имеются простейшие опции для проведения эконометрического анализа в Excel.

В настоящем пособии даются основные понятия, модели и методы эконометрики, рассматриваются примеры.

Содержание пособия полностью соответствует требованиям государственного стандарта высшего профессионального образования за исключением темы "Системы одновременных уравнений".

Для работы с предлагаемым изданием необходимы базовые знания некоторых разделов следующих учебных дисциплин: высшая математика, теория вероятностей, математическая статистика, общая теория статистики.

Эффективным является использование данной книги в сочетании с самостоятельным разбором примеров с использованием доступного статистического программного обеспечения.

1. Предмет и задачи дисциплины "Эконометрика"

1.1. Определение эконометрики

Сложность экономических процессов и необходимость их количественного измерения не позволяют современному экономисту ограничиваться в своей работе применением инструментов отдельных экономических дисциплин. Так, например, невозможно сделать прогноз о том, будет ли пользоваться спросом новый продукт (сорт кофе), если рассматривать этот процесс только с точки зрения экономической теории, то есть закона спроса и предложения. На практике для осуществления прогноза экономисту необходимо применить целый комплекс экономических наук, синтез которых и является сутью научной дисциплины - эконометрики.

Основной целью эконометрики является модельное описание конкретных количественных взаимосвязей, обусловленных общими качественными закономерностями, изученными в экономической теории.

Эконометрика – относительно молодая научная дисциплина, сформировавшаяся во второй половине ХХ века и развивающаяся на стыке экономической теории, статистики и математики (см. рис. 1.1).

Рис. 1.1. Эконометрика и ее место в ряду других экономических

и статистических дисциплин

Впервые термин эконометрика был введен норвежским ученым Рагнаром Фришем в 1926 году и в буквальном переводе означает «измерение в экономике». Однако на сегодняшний день эта трактовка чересчур широка. Более четко определение эконометрики предложено известным российским ученым, профессором С.А. Айвазяном.

Эконометрика - это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе

- экономической теории,

- экономической статистики,

- математико-статистического инструментария

придавать конкретное количественное выражение общим качественным закономерностям, обусловленным экономической теорией.

Таким образом, суть эконометрики состоит в синтезе экономической теории, экономической статистики и математико-статистического инструментария.

studfiles.net

Лекции по эконометрике

АННОТАЦИЯ

Содержит краткий курс лекций по дисциплине «Эконометрика», включая описа-
ние основных задач эконометрики и методов, применяемых для их решения. Предназначено для студентов экономических и информационных специальностей.

Учебное пособие является электронной версией книги:
Шанченко, Н. И. Лекции по эконометрике : учебное пособие / Ульяновск : УлГТУ, 2008. – 139 с.

ОГЛАВЛЕНИЕ

СОДЕРЖАНИЕ
Введение
1. Предмет и методы эконометрики
1.1. Предмет и методы эконометрики
1.2. Характеристика взаимосвязей
1.3. Основные этапы построения эконометрической модели
1.4. Выбор вида эконометрической модели
1.5. Методы отбора факторов
1.6. Оценка параметров моделей
1.7. Примеры эконометрических моделей
Контрольные вопросы .
2. Парный регрессионный анализ
2.1. Понятие парной регрессии
2.2. Построение уравнения регрессии
2.2.1. Постановка задачи
2.2.2. Спецификация модели
2.3. Оценка параметров линейной парной регрессии
2.4. Оценка параметров нелинейных моделей
2.5. Качество оценок МНК линейной регрессии. Теорема Гаусса-Маркова
2.6. Проверка качества уравнения регрессии. F-критерий Фишера
2.7. Коэффициенты корреляции. Оценка тесноты связи
2.8. Точность коэффициентов регрессии. Проверка значимости
2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
2.10. Коэффициент эластичности
Контрольные вопросы
3. Множественный регрессионный анализ
3.1. Понятие множественной регрессии
3.2. Отбор факторов при построении множественной регрессии
3.2.1. Требования к факторам
3.2.2. Мультиколлинеарность
3.3. Выбор формы уравнения регрессии
3.4. Оценка параметров уравнения линейной множественной регрессии
3.5. Качество оценок МНК линейной множественной регрессии. Теорема Гаусса-Маркова
3.6. Проверка качества уравнения регрессии. F-критерий Фишера
3.7. Точность коэффициентов регрессии. Доверительные интервалы
3.8. Частные уравнения регрессии. Частная корреляция
3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
3.9.1. Обобщенный метод наименьших квадратов
3.9.2. Обобщенный метод наименьших квадратов в случае
гетероскедастичности остатков
3.10. Проверка остатков регрессии на гетероскедастичность
3.11. Построение регрессионных моделей при наличии автокорреляции остатков
3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
3.12.1. Фиктивные переменные
3.12.2. Тест Чоу
3.11. Проблемы построения регрессионных моделей
Контрольные вопросы
4. Системы эконометрических уравнений
4.1. Структурная и приведенная формы модели
4.2. Оценка параметров структурной формы модели
4.3. Косвенный метод наименьших квадратов
4.4. Двухшаговый метод наименьших квадратов
4.5. Трехшаговый метод наименьших квадратов
Контрольные вопросы
5. Моделирование одномерных временных рядов и прогнозирование
5.1. Составляющие временного ряда
5.2. Автокорреляция уровней временного ряда
5.3. Моделирование тенденции временного ряда
5.3.1. Методы определения наличия тенденции
5.3.2. Сглаживание временного ряда по методу скользящей средней
5.3.3. Метод аналитического выравнивания
5.3.4. Выбор вида тенденции
5.3.5. Оценка адекватности и точности модели тенденции
5.4. Моделирование периодических колебаний
5.4.1. Выделение периодической компоненты по методу
скользящей средней
5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
5.5. Прогнозирование уровней временного ряда на основе кривых роста
5.5.1. Метод аналитического выравнивания
5.6. Адаптивные модели прогнозирования
5.6.1. Понятие адаптивных методов прогнозирования
5.6.2. Экспоненциальное сглаживание
5.6.3. Использование экспоненциальной средней
для краткосрочного прогнозирования
5.6.4. Адаптивные полиномиальные модели
5.7. Исследование взаимосвязи двух временных рядов
5.8. Коинтеграция временных рядов
Контрольные вопросы
6. Линейные модели стохастических процессов
6.1. Стационарные стохастические процессы
6.1.1. Основные понятия
6.1.2. Параметрические тесты стационарности
6.1.3. Непараметрические тесты стационарности
6.2. Линейные модели стационарных временных рядов. Процессы ARMA
6.2.1. Модели авторегрессии (AR)
6.2.2. Модели скользящего среднего (MA)
6.2.3. Модели авторегрессии-скользящего среднего (ARMA)
6.3. Автокорреляционные функции
6.3.1. Автокорреляционная функция
6.3.2. Частная автокорреляционная функция
6.4. Прогнозирование ARMA-процессов
6.4.1. AR-процессы
6.4.2. MA-процессы
6.4.3. ARMA-процессы
6.5. Нестационарные интегрируемые процессы
6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
6.5.2. Тесты Дики-Фуллера
6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
6.5.4. Метод разностей и интегрируемость
6.6. Модели ARIMA
6.6.1. Определение и идентификация модели
6.6.2. Прогнозирование ARIMA-процессов
Контрольные вопросы
7. Динамические эконометрические модели
7.1. Общая характеристика динамических моделей
7.2. Модели с распределенным лагом
7.2.1. Оценка параметров модели с распределенным лагом методом Койка
7.2.2. Оценка параметров модели с распределенным лагом методом Алмон
7.2.3. Интерпретация параметров
7.3. Модели авторегрессии
7.3.1. Интерпретация параметров
7.3.2. Оценка параметров моделей авторегрессии
7.4. Модель частичной корректировки
7.5. Модель адаптивных ожиданий
Контрольные вопросы
8. Информационные технологии эконометрических исследований
8.1. Электронные таблицы Excel
8.2. Статистический пакет общего назначения STATISTICA
8.3. Эконометрические программные пакеты. Matrixer 5.1
8.4. Анализ временных рядов в системе ЭВРИСТА
Контрольные вопросы
Глоссарий
Приложения

1. Нормированная функция Лапласа
2. Значения критических уровней t?,k для распределения Стьюдента
3. Значения F-критерия Фишера на уровне значимости ? = 0,05
4. Значения F-критерия Фишера на уровне значимости ? = 0,01
5. Значения X2a ;k критерия Пирсона
6. Значения статистик Дарбина-Уотсона dL dU
7. Критические значения f-критерия для DF-, ADF- и РР-тестов, рассчитанные по Маккиннону
8. Критические значения коинтеграционного ADF-критерия
Библиографический список
Интернет-ресурсы

Введение
Развитие экономики, усложнение экономических процессов и повышение
требований к принимаемым управленческим решениям в области макро и мик-
роэкономики потребовало более тщательного и объективного анализа реально
протекающих процессов на основе привлечения современных математических
и статистических методов.
С другой стороны, проблема нарушения предпосылок классических статистических методов при решении реальных экономических задач привели к необходимости развития и совершенствования классических методов математической статистики и уточнения постановок соответствующих задач.
В результате этих процессов осуществилось выделение и формирование новой отрасли знания под названием Эконометрика, связанной с разработкой и применением методов количественной оценки экономических явлений и процессов и их взаимосвязей.
Основным методом исследования в эконометрике является экономико-математическое моделирование. Правильно построенная модель должна давать
ответ на вопрос о количественной оценке величины изменения изучаемого явления или процесса в зависимости от изменений внешней среды. Например, как скажется увеличение или уменьшение уровня инвестиций на совокупном валовом продукте, какие дополнительные ресурсы понадобятся для запланированного увеличения выпуска продукции и т. п.
Практическая значимость эконометрики определяется тем, что применение ее методов позволяет выявить реально существующие связи между явлениями,
дать обоснованный прогноз развития явления в заданных условиях, проверить и
численно оценить экономические последствия принимаемых управленческих
решений.
Построение эконометрических моделей приходится осуществлять в условиях, когда нарушаются предпосылки классических статистических методов, и учитывать наличие таких явлений, как:
– мультиколлинеарность объясняющих переменных;
– закрытость механизма связи между переменными в изолированной регрессии;
– эффект гетероскедастичности, т. е. отсутствия нормального распределения остатков для регрессионной функции;
– автокорреляция остатков;
– ложная корреляция.
Разработка методов, преодолевающих эти трудности, составляет теоретическую основу эконометрики.
Наряду с логически правильным формальным применением имеющегося
математического и статистического инструментария важными составляющими
успеха эконометрического исследования являются экономически адекватная
постановка задачи и последующая экономическая интерпретация полученных
результатов.
Огромный толчок развитию эконометрических методов и их широкому
внедрению в практику дало развитие средств вычислительной техники и особенно появление персональных и портативных компьютеров. Разработка программных пакетов, реализующих методы построения и исследования эконометрических моделей привело к тому, что выполнение эконометрических процедур становится доступным самому широкому кругу аналитиков, экономистов и ме-
неджеров. В настоящее время основные усилия прикладного исследователя
сводятся к подготовке качественных исходных данных, к правильной постанов-
ке проблемы и экономически обоснованной интерпретации результатов иссле-
дования. Вместе с тем, от исследователя требуется четкое понимание областей
применимости используемых методов и сложности и неочевидности процесса
перенесения полученных теоретических результатов на реальную действительность.
Настоящее пособие отражает содержание односеместрового курса лекций, читаемых на факультете информационных систем и технологий УлГТУ студентам специальности «Прикладная информатика (в экономике)» и соответствует Государственному образовательному стандарту по дисциплине «Эконометрика». Пособие состоит из восьми глав и приложения.
В первой главе дается характеристика предмету эконометрики и применяемым ме-
тодам, освещаются основные аспекты эконометрического моделирования, применяемые методики и виды используемых переменных.
Во второй главе рассмотрены вопросы построения парных регрессионных
моделей: постановка задачи, спецификация и оценка параметров моделей,
оценка качества полученных моделей, получение точечного и интервального
прогнозных значений, экономическая интерпретация модели.
Третья глава посвящена построению множественных регрессионных моделей. Подробно рассмотрены вопросы спецификации и оценки параметров модели, оценки качества полученной модели и ее статистической значимости.
Приведены условия, обеспечивающие эффективность метода наименьших квадратов (теорема Гаусса-Маркова). Описан обобщенный метод наименьших
квадратов, позволяющий получать эффективные оценки параметров в условиях
мультиколлинеарности факторов и автокорреляции остатков. Рассмотрены рег-
рессионные модели с переменной структурой.
Четвертая глава посвящена построению моделей в виде системы эконометрических уравнений. Изложены особенности моделей, возникающие трудности применения классических методов и описаны наиболее широко применяемые методы оценки параметров, такие как косвенный, двухшаговый и трехшаговый методы наименьших квадратов.
В пятой главе рассмотрены вопросы моделирования одномерных временных рядов и прогнозирования: структура временного ряда, явление автокорреляции, моделирование тенденции и периодической составляющей ряда, прогнозирование уровней ряда. Отдельное внимание уделено адаптивным методам прогнозирования и моделированию коинтегрируемых временных рядов.
В шестой главе освещены вопросы построения линейных моделей стохастических процессов: AR, MA и ARMA-моделей стационарных процессов, ARIMA-моделей нестационарных процессов. Описаны методы проверки временных рядов на стационарность.
В седьмой главе излагаются модели и методы, применяемые для исследования эконометрических моделей, описывающих динамику развития экономических процессов. Рассмотрены модели авторегрессии и модели с распределенным лагом. Описаны применяемые для оценки параметров моделей, такие как методы инструментальных переменных, методы Койка и Алмон.
Восьмая глава посвящена информационным технологиям эконометрических
исследований. Изложены общие требования к программному обеспечению и возможности программных пакетов Excel, STATISTICA, ЭВРИСТА, Matrixer 5.1.
В приложении даны часто используемые статистические таблицы.
Пособие предназначено студентам экономических и информационных специальностей. Изложение материала ориентировано на читателя, обладающе-
го знаниями в пределах курсов высшей математики и математической статистики, читаемых студентам экономических и информационных специальностей. Пособие будет также полезно всем желающим познакомиться с основными задачами, моделями и методами эконометрики.

Электронная версия книги: [Скачать, PDF, 1.07 МБ].

Для просмотра книги в формате PDF требуется программа Adobe Acrobat Reader, новую версию которой можно бесплатно скачать с сайта компании Adobe.

Если книга которая размещена на сайте нарушает Ваши авторские права, свяжитесь с нами. [email protected]

online-books.net.ua

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *