Математика пересечение – Нахождение пересечения и объединения числовых множеств, что такое пересечение множеств

Содержание

Нахождение пересечения и объединения числовых множеств, что такое пересечение множеств

Решение некоторых математических задач предполагает нахождение пересечения и объединения числовых множеств. В статье ниже рассмотрим эти действия подробно, в том числе, на конкретных примерах. Полученный навык будет применим для решения неравенств с одной переменной и систем неравенств.

Простейшие случаи

Когда мы говорим о простейших случаях в рассматриваемой теме, то имеем в виду нахождение пересечения и объединения числовых множеств, представляющих из себя набор отдельных чисел. В подобных случаях будет достаточно использования определения пересечения и объединения множеств.

Определение 1

Объединение двух множеств – это множество, в котором каждый элемент является элементом одного из исходных множеств.

Пересечение множеств – это множество, которое состоит из всех общих элементов исходных множеств.

Из указанных определений логически следуют следующие правила:

- чтобы составить объединение двух числовых множеств, имеющих конечное количество элементов, необходимо записать все элементы одного множества и дописать к ним недостающие элементы из второго множества;

- чтобы составить пересечение двух числовых множеств, необходимо элементы первого множества один за другим проверить на принадлежность второму множеству. Те из них, которые окажутся принадлежащими обоим множествам и будут составлять пересечение.

Полученное согласно первому правилу множество будет включать в себя все элементы, принадлежащие хотя бы одному из исходных множеств, т.е. станет объединением этих множеств по определению.

Множество, полученное согласно второму правилу, будет включать в себя все общие элементы исходных множеств, т.е. станет пересечением исходных множеств.

Рассмотрим применение полученных правил на практических примерах.

Пример 1

Исходные данные: числовые множества А = {3, 5, 7, 12} и В = {2, 5, 8, 11, 12, 13}. Необходимо найти объединение и пересечение исходных множеств.

Решение

  1. Определим объединение исходных множеств. Запишем все элементы, к примеру, множества А: 3, 5, 7, 12. Добавим к ним недостающие элементы множества В: 2, 8, 11 и 13. В конечном итоге имеем числовое множество: {3, 5, 7, 12, 2, 8, 11, 13}. Упорядочим элементы полученного множества и получим искомое объединение: А∪B = {2, 3, 5, 7, 8

zaochnik.com

Пересечение множеств

Пусть даны произвольные множества А и В.

Определение: Пересечением множеств А и В называется множество AB, элементы которого одновременно принадлежат и множеству А и множеству В.

AB={x|xA и x

B}

Рассмотрим множества А и В. Покажем на диаграмме пересечение этих множеств. Пусть:

1) множества А и В не вступают в отношение друг с другом.

Очевидно, что в этом случае AB= Ø.

2) множества А и В находятся в отношении равенства.

Тогда AB=A=B.

A=B

3) множества А и В находятся в отношении включения.

Если АВ, то AB=A, если

ВА, то AB.

A

B

B

A

Штриховкой показано множество элементов, принадлежащих AB.

4) множества А и В находятся в отношении пересечения.

B

A

Двойной штриховкой показано множество элементов, принадлежащих AB.

Пример:

Пусть А = {3; а; b}, B = {1; 3; 7}. Найдем A

B.

По определению пересечения двух множеств AB = { 3 }, так как только элемент x = 3 принадлежит и множеству А и множеству В. Изобразим множества А и В и их пересечение на диаграмме:

B

A

Замечание : В речи операции пересечения соответствует союз «И», а операции объединения – союз «ИЛИ».

Таким образом, по определению x AB x

A и xB.

В пересечение множеств А и В не войдут те элементы, которые не входят в А, или в В. Таким образом, x AB xA или xB. Другими словами,

Замечание: Операция отыскания объединения (пересечения) множеств также называется объединением (пересечением).

Вычитание множеств

Пусть даны произвольные множества А и В.

Определение: Разностью двух множеств А и В называется множество А\В, элементы которого принадлежат множеству А, но не принадлежат множеству В.

А\В = {x| xA, xB}

Покажем на диаграмме разность множеств А и В. Пусть:

1) множества А и В не вступают в отношение друг с другом.

Очевидно, что в этом случаеА\В = А, а В\А = В.

A

B

A

B

2) множества А и В находятся в отношении равенства.

Тогда А\В = В\А = Ø.

A=B

3) множества А

и В находятся в отношении включения.

Если АВ, то А\В = Ø. Если ВА, то А\В Ø

A

B

B

A

4) множества А и В находятся в отношении пересечения.

A

B

Штриховкой показано множество элементов, принадлежащих А\В.

Примеры:

1) Пусть А = {3; а; b}, B = {1; 3; 7}. Найдем А\В.

По определению разности двух множеств А\В = {a;b}, так как только эти элементы множеству А принадлежат, а множеству В - нет.

2) A = N, B = Z.

Так как NZ, (т.е. AB), то А\В=N\Z= Ø , а Z\Nэто множество целых отрицательных чисел или нуль.

Замечание: Если множество В является подмножеством множества А, то разность А\В называется дополнением множества В до множества А и обозначается В.

ВА А\В= В

Если

А – это универсальное множество (J), то разность J \В= В. При этом не указывается до какого множества.

Примеры:

1) Пусть А = {3; а; b}, B = {1; 3; 7}. Если возможно, найдите дополнение множества В до А или А до В.

Так как АВ и ВА, то говорить о дополнения одного множества до другого не имеет смысла.

2) A = N, B = Z.

Так как NZ, (т.е. AB), то В\А=Z\N=N

это множество целых отрицательных чисел или нуль.

Замечание: Для задания множества действительных чисел используют специальные обозначения: числовые промежутки. Так, например,

[a; b] = {x|xR, axb}

[a; b) = {x|xR, ax<b}

(a; b] = {x|xR, a<xb}

(a; b) = {x|xR, a<x<b}

Указанные промежутки – это подмножества действительных чисел.

studfiles.net

Урок "Пересечение и объединение множеств"

Разделы: Математика


Цели урока:

  • образовательные: формирование умений выделять множества, подмножества; формирование навыков находить на изображениях область пересечения и объединения множеств и называть элементы из этой области, решать задачи;
  • развивающие: развитие познавательного интереса учащихся; развитие интеллектуальной сферы личности, развитие умений сравнивать и обобщать.
  • воспитательные: воспитывать аккуратность и внимательность при решении.

Ход урока.

1. Организационный момент.

2. Учитель сообщает тему урока, совместно с учащимися формулирует цели и задачи.

3. Учитель совместно с учащимися вспоминает материал, изученный по теме «Множества» в 7 классе, вводит новые понятия и определения, формулы для решения задач.

<Приложение1.ppt>

«Множество есть многое, мыслимое нами как единое» (основатель теории множеств – Георг Кантор). КАНТОР (Cantor) Георг (1845—1918) — немецкий математик, логик, теолог, создатель теории трансфинитных (бесконечных) множеств, оказавшей определяющее влияние на развитие математических наук на рубеже 19— 20 вв.

Множество - одно из основных понятий современной математики, используемое почти во всех её разделах.

К сожалению, основному понятию теории – понятию множества – нельзя дать строгого определения. Разумеется, можно сказать, что множество – это «совокупность», «собрание», «ансамбль», «коллекция», «семейство», «система», «класс» и т. д. однако всё это было бы не математическим определением, а скорее злоупотреблением словарным богатством русского языка.

Для того чтобы определить какое – либо понятие, нужно, прежде всего, указать, частным случаем какого более общего понятия, оно является, для понятия множества сделать это невозможно, потому что более общего понятия, чем множество, в математике нет.

Часто приходится говорить о нескольких вещах, объединенных некоторым признаком. Так, можно говорить о множестве всех стульев в комнате, о множестве всех клеток человеческого тела, о множестве всех картофелин в данном мешке, о множестве всех рыб в океане, о множестве всех квадратов на плоскости, о множестве всех точек на данной окружности т. д.

Предметы, составляющие данное множество, называются его элементами.

Например, множество дней недели состоит из элементов: понедельник, вторник, среда, четверг, пятница, суббота, воскресенье.

Множество месяцев – из элементов: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь.

Множество арифметических действий - из элементов: сложение, вычитание, умножение, деление.

Например, если А означает множество всех натуральных чисел, то 6 принадлежит к А, а 3 не принадлежит к А.

Если А - множество всех месяцев в году, то май принадлежит к А, а среда не принадлежит к А.

Если множество содержит конечное число элементов, то его называют конечным, а если в нем бесконечно много элементов, то бесконечным. Так множество деревьев в лесу конечно, а множество точек на окружности бесконечно.

Парадокс в логике — это противоречие, имеющее статус логически корректного вывода и, вместе с тем, представляющее собой рассуждение, приводящее к взаимно исключающим заключениям.

Как уже упоминалось, понятие множества лежит в основе математики. Используя простейшие множества и различные математические конструкции, можно построить практически любой математический объект. Идею построения всей математики на основе теории множеств активно пропагандировал Г.Кантор. Однако, при всей своей простоте, понятие множества таит в себе опасность появления противоречий или, как ещё говорят, парадоксов. Появление парадоксов связано с тем, что далеко не всякие конструкции и не всякие множества можно рассматривать.

Самый простой из парадоксов - это "парадокс брадобрея".

Одному солдату было приказано брить тех и только тех солдат его взвода, которые сами себя не бреют. Неисполнение приказа в армии, как известно, тягчайшее преступление. Однако возник вопрос, брить ли этому солдату самого себя. Если он побреется, то его следует отнести к множеству солдат, которые сами себя бреют, а таких брить он не имеет права. Если же он себя брить не будет, то попадёт во множество солдат, которые сами себя не бреют, а таких солдат согласно приказу он обязан брить. Парадокс.

Над множествами, как и над многими другими математическими объектами, можно совершать различные операции, которые иногда называют теоретико-множественными операциями или сет-операциями. В результате операций из исходных множеств получаются новые. Множества обозначаются заглавными латинскими буквами, а их элементы – строчными. Запись aR означает, что элемент а принадлежит множеству R , то есть а является элементом множества R . В противном случае, когда а не принадлежит множеству R , пишут aR .

Два множества А и В называются равными ( А = В ), если они состоят из одних и тех же элементов, то есть каждый элемент множества А является элементом множества В и наоборот, каждый элемент множества В является элементом множества А .

Сравнение множеств.

Множество A содержится во множестве B (множество B включает множество A), если каждый элемент A есть элемент В:

Говорят, что множество А содержится в множестве В или множество Аявляется подмножеством множества В ( в этом случае пишут А В ), если каждый элемент множества А одновременно является элементом множества В . Эта зависимость между множествами называется включением. Для любого множества А имеют место включения: ØА и А  А

В этом случае A называется подмножеством B, Bнадмножеством A. Если , то A называется собственным подмножеством В. Заметим, что ,

По определению ,

Два множества называются равными, если они являются подмножествами друг друга

Операции над множествами

Пересечение.

Объединение.

Свойства.

1.Операция объединения множеств коммутативна

2.Операция объединения множеств транзитивна

3. Пустое множество X является нейтральным элементом операции объединения множеств

Примеры:

1. Пусть A = {1,2,3,4},B = {3,4,5,6,7}. Тогда

2. А={2,4,6,8,10}, В = {3,6,9,12}. Найдём объединение и пересечение этих множеств:

{2,4,6,8, 10,3,6,9,12}, = {6}.

3. Множество детей является подмножеством всего населения

4. Пересечением множества целых чисел с множеством положительных чисел является множество натуральных чисел.

5. Объединением множества рациональных чисел с множеством иррациональных чисел является множество положительных чисел.

6.Нуль является дополнением множества натуральных чисел относительно множества неотрицательных целых чисел.

Диаграммы Венна (Venn diagrams) — общее название целого ряда методов визуализации и способов графической иллюстрации, широко используемых в различных областях науки и математики: теория множеств, собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства; разновидностями диаграмм Венна служат: диаграммы Эйлера,

Диаграмма Венна четырёх множеств.

Собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства. Обычная диаграмма Венна имеет три множества. Сам Венн пытался найти изящный способ с симметричными фигурами, представляющий на диаграмме большее число множеств, но он смог это сделать только для четырех множеств (см. рисунок справа), используя эллипсы.

Диаграммы Эйлера

Диаграммы Эйлера аналогичны диаграммам Венна.Диаграммы Эйлера можно использовать, для того, чтобы оценивать правдоподобность теоретико-множественных тождеств.

Задача 1. В классе 30 человек, каждый из которых поёт или танцует. Известно, что поют 17 человек, а танцевать умеют 19 человек. Сколько человек поёт и танцует одновременно?

Решение: Сначала заметим, что из 30 человек не умеют петь 30 - 17 = 13 человек.

Все они умеют танцевать, т.к. по условию каждый ученик класса поёт или танцует. Всего умеют танцевать 19 человек, из них 13 не умеют петь, значит, танцевать и петь одновременно умеют 19-13 = 6 человек.

Задачи на пересечение и объединение множеств.

  1. Даны множества А = {3,5, 0, 11, 12, 19}, В = {2,4, 8, 12, 18,0}.
    Найдите множества AU В,
  2. Составьте не менее семи слов, буквы которых образуют подмножества множества
    А -{к,а,р,у,с,е,л,ь}.
  3. Пусть A - это множество натуральных чисел, делящихся на 2, а В - множество натуральных чисел, делящихся на 4. Какой вывод можно сделать относительно данных множеств?
  4. На фирме работают 67 человек. Из них 47 знают английский язык, 35 - немецкий язык, а 23 - оба языка. Сколько человек фирмы не знают ни английского, ни немецкого языков?
  5. Из 40 учащихся нашего класса 32 любят молоко, 21 - ли­монад, а 15 - и молоко, и лимонад. Сколько ребят в нашем классе не любят ни молоко, ни лимонад?
  6. 12 моих одноклассников любят читать детективы, 18 -фантастику, трое с удовольствием читают и то, и другое, а один вообще ничего не читает. Сколько учеников в нашем классе?
  7. Из тех 18 моих одноклассников, которые любят смотреть триллеры, только 12 не прочь посмотреть и мультфильмы. Сколько моих одноклассников смотрят одни «мультики», если всего в на­шем классе 25 учеников, каждый из которых любит смотреть или триллеры, или мультфильмы, или и то и другое?
  8. Из 29 мальчишек нашего двора только двое не занимают­ся спортом, а остальные посещают футбольную или теннисную секции, а то и обе. Футболом занимается 17 мальчишек, а тенни­сом - 19. Сколько футболистов играет в теннис? Сколько тенниси­стов играет в футбол?
  9. 65 % бабушкиных кроликов любят морковку, 10 % любят и морковку, и капусту. Сколько процентов кроликов не прочь по­лакомиться капустой?
  10. В одном классе 25 учеников. Из них 7 любят груши, 11 -черешню. Двое любят груши и черешню; 6 - груши и яблоки; 5 -яблоки и черешню. Но есть в классе два ученика, которые любят все и четверо таких, что не любят фруктов вообще. Сколько учени­ков этого класса любят яблоки?
  11. В конкурсе красоты участвовали 22 девушки. Из них 10 было красивых, 12 -умных и 9 -добрых. Только 2 девушки были и красивыми, и умными; 6 девушек были умными и одновременно добрыми. Определите, сколько было красивых и в то же время до­брых девушек, если я скажу вам, что среди участниц не оказалось ни одной умной, доброй и вместе с тем красивой девушки?
  12. В нашем классе 35 учеников. За первую четверть пятерки по русскому языку имели 14 учеников; по математике - 12; по ис­тории - 23. По русскому и математике - 4; по математике и исто­рии - 9; по русскому языку и истории - 5. Сколько учеников имеют пятерки по всем трем предметам, если в классе нет ни одного ученика, не имеющего пятерки хотя бы по одному из этих предметов?
  13. Из 100 человек 85 знают английский язык, 80 - испан­ский, 75 - немецкий. Все владеют, по крайней мере, одним ино­странным языком. Среди них нет таких, которые знают два ино­странных языка, но есть владеющие тремя языками. Сколько человек из этих 100 знают три языка?
  14. Из сотрудников фирмы 16 побывали во Франции, 10 -в Италии, 6 - в Англии; в Англии и Италии - 5; в Англии и Фран­ции - 6; во всех трех странах - 5 сотрудников. Сколько человек посетили и Италию, и Францию, если всего в фирме работают 19 человек, и каждый из них побывал хотя бы в одной из названных стран?

5. Подведение итогов урока.

6. Рефлексия.

  • Мне больше всего удалось…
  • Для меня было открытием то, что …
  • За что ты можешь себя похвалить?
  • Что на ваш взгляд не удалось? Почему? Что учесть на будущее?
  • Мои достижения на уроке.

7. Домашнее задание.

  1. Макарычев. Пункт 13. №263, №264, №265, №266, № 271, №272.
  2. Составить задачи на применение теории множеств.
  3. По группам подготовить презентации по теме « Множества».

9.08.2009

xn--i1abbnckbmcl9fb.xn--p1ai

Пересечение множеств - это... Что такое Пересечение множеств?


Пересечение множеств
Категория:
  • Теория множеств

Wikimedia Foundation. 2010.

  • Объединение множеств
  • Пустое множество

Смотреть что такое "Пересечение множеств" в других словарях:

  • ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ — понятие теории множеств; пересечение множеств множество, состоящее из всех тех элементов, которые принадлежат одновременно всем данным множествам. Пересечение множеств А и В обозначают А?В или АВ …   Большой Энциклопедический словарь

  • пересечение множеств — понятие теории множеств; пересечение множеств  множество, состоящее из всех тех элементов, которые принадлежат одновременно всем данным множествам. Пересечение множеств А и В обозначают А∩В или АВ. * * * ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ …   Энциклопедический словарь

  • Пересечение множеств —         множество, состоящее из всех тех элементов, которые принадлежат одновременно всем данным множествам. П. м. A и B обозначают A∩B или AB; П. м. Ak, взятых в конечном или бесконечном числе, обозначают Ak. П. м. может быть пустым, то есть не… …   Большая советская энциклопедия

  • ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ — понятие теории множеств; П. м. множество, состоящее из всех тех элементов, к рые принадлежат одноврем. всем данным множествам. П. м …   Естествознание. Энциклопедический словарь

  • Пересечение (теория множеств) — Пересечение A и B Пересечение множеств в теории множеств  это множество, состоящее из элементов, которые принадлежат одновременно всем данным множествам. Содержание 1 Определение 2 Замечание …   Википедия

  • МНОЖЕСТВ ТЕОРИЯ — раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек …   Большой Энциклопедический словарь

  • множеств теория — раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества  простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество… …   Энциклопедический словарь

  • множеств теория — математическая теория, изучающая точными средствами проблему бесконечности. Предмет М. л. свойства множеств (совокупностей, классов, ансамблей), гл. обр. бесконечных. Множество A есть любое собрание определенных и различимых между собой объектов …   Словарь терминов логики

  • Множеств теория — Теория множеств  раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Содержание 1 Теория… …   Википедия

  • МНОЖЕСТВ ТЕОРИЯ — раздел математики, в к ром изучаются общие свойства множеств, преим. бесконечных. Понятие множества простейшее матем. понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой… …   Естествознание. Энциклопедический словарь

Книги

  • Игры и задачи. 1-4 классы (CD), Пронина К. Б., Данилов Дмитрий Даимович, Самойлов Евгений Алексеевич. Учебное пособие "1 С:Школа. Русский язык, литература, математика, окружающий мир. Игры и задачи, 1-4 классы" позволит ребенку в игровой форме выучить таблицу умножения, узнать, как пишутся… Подробнее  Купить за 220 руб
  • Считаю до 20. Рабочая тетрадь для детей 6 - 7 лет. ФГОС ДО, Шевелев Константин Валерьевич. Рабочая тетрадь предназначена для работы с детьми 6 7 лет. Способствует достижению целей блока Познание путем формирования элементарных математических представлений. Даны методические… Подробнее  Купить за 158 грн (только Украина)

dic.academic.ru

пересечение множеств | математика-повторение

I.  Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5, множество звезд на небе и т.д.).

Для записи множества используют фигурные скобки: «{ »- множество открывается; "}" — множество закрывается. А само множество называют заглавными латинскими буквами: А, В, С и так далее.

Примеры.

1. Записать множество А, состоящее из всех гласных букв в слове «математика».

Решение.  А={а, е, и}.  Вы видите: несмотря на то,что в слове «математика» имеется три буквы «а» — в записи множества повторений не допускается,  и буква «а» записывается только один раз. Множество А состоит из трех элементов.

2. Записать множество всех правильных дробей со знаменателем 5.

Решение. Вспоминаем: правильной называют обыкновенную дробь, у которой числитель меньше знаменателя. Обозначим через В искомое множество. Тогда:

 Множество В состоит из четырех элементов.

II. Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают Ø. 

III. Множество В называют подмножеством множества А, если все элементы множества В являются элементами множества А. 

3. Какое из двух данных множеств В и С является подмножеством множества К,

если В={-1; 3; 4}, C={0; 3; 4; 5), K={0; 2; 3; 4; 5; 6} ?

Решение. Все элементы множества С являются также элементами множества К, поэтому, множество С является подмножеством множества К. Записывают:

IV. Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В.

4. Показать пересечение двух множеств М и F с помощью кругов Эйлера.

Решение. 

V. Объединением множеств А и В называется множество, элементы которого принадлежат хотя бы одному из данных множеств А и В.

5. Показать с помощью кругов Эйлера объединение  множеств Т и Р.

Решение.

 

www.mathematics-repetition.com

Что такое пересечение, объединение и разность множеств? — Науколандия

Пересечением двух множеств, называется третье множество, сформированное из элементов, которые входят в оба первых множества.

Например, если в одно множество входят числа от 1 до 10, а во второе — от 5 до 20, то пересечением этих множеств будут числа от 5 до 10, так как они входят в оба.

Пересечение множеств записывается так:

A ∩ B = {x | x ∈ A и x ∈ B}

На диаграмме Эйлера-Венна пересечение множеств обозначается общей частью кругов.

Множества могут не пересекаться вообще, одно может полностью включать другое.

Пересечение множеств может использоваться тогда, когда надо найти элементы, которые удовлетворяют нескольким условиям.

Объединением двух множеств, называется третье множество, сформированное из всех элементов обоих первых множеств. При этом если элемент входит в оба множества, то в объединенное он входит один раз. Это и понятно, так как множество по определению включает только разные элементы.

Например, объединением множества натуральных чисел от 1 до 10 и множества натуральных от 5 до 15 будет множество натуральных чисел от 1 до 15.

Объединение множеств описывается так:

A ∪ B = {x | x ∈ A или x ∈ B}

На диаграмме Эйлера-Венна объединение множеств обозначается всей областью кругов.

Разностью двух множеств, называют третье множество, в которое входят все элементы одного из двух множеств и не входят элементы принадлежащие обоим множествам.

Если результат пересечения и объединения двух множеств не меняется от перестановки множеств при выполнении операции, то результат разности зависит от того, какое множество из какого «вычитают».

Сравните. Даны множества A = {1,2,3,4,5} и B = {4,5,8,9}. Разность множеств обозначается знаком \.
A \ B = {1,2,3}, т. к. 4 и 5 входят в множество B.
В то время как B \ A = {8,9}.

Понятно, что если у множеств нет общих элементов, то их разность будет равна «уменьшаемому», т. е. первому множеству. Если же множества полностью совпадают, то их разностью будет пустое множество.

Если все элементы «вычитаемого» множества B входят в состав «уменьшаемого» A (A \ B), то B называют дополнением некого множества C до A.

scienceland.info

Пересечение и объединение множеств. Видеоурок. Алгебра 9 Класс

Мы уже знакомы с понятием множеств. Знаем, что каждое множество состоит из элементов. Сегодня мы рассмотрим примеры пересечения и объединения множеств.

Обозначение:           
a∈A

b∉A

∈ – принадлежит, ∉ – не принадлежит.

Число элементов в множестве может быть конечным, бесконечным и пустым.

A={a;b;c} – конечное множество

B={x| 2≤x≤3} – бесконечное множество

∅ – пустое множество  

Пересечение и объединение множеств – операции над множествами.

Пример: В классе 19 учеников: 10 девочек, 9 мальчиков.

10 девочек – это множество .

9 мальчиков – это множество .

Класс из 19 учеников – это множество С, которое объединяет два множества.

Пусть в классе 5 отличников – это множество D.

Из них 2 мальчика – это множество E.

Из какие элементов состоит множество Е?

Мальчики входят в множества В, так как 2 мальчика – отличники, они входят в множество D.

Рис. 1. Пересечение двух множеств

Множество Е есть пересечение двух множеств В и D(рис. 1).

Определение: объединением множеств А и В называется новое множество, состоящее из тех и только тех элементов, которые входят хотя бы в одно из множеств А или В (рис. 3).

                                  

Рис. 2. Множества

Рис. 3. Объединение множеств

 – знак объединения.

Множество  состоит из всех элементов , которые входят или в множество , или в множество . Это можно записать следующим образом:

Дано множество = и .

Найти объединение множеств .

Решение:

Дано множество  и .

Найти объединение множеств .

Решение:

 

 

 

Имеем совокупность неравенств:

   

Решить квадратное неравенство .

Решение:

Рассмотрим функцию .

Найдём корни функции .

По теореме Виета: .

Имеем объединение двух множеств .

Схематически изобразим график функции:

 при  или .

Ответ:.

Пересечение множеств

Пересечением множеств Aи B называется новое множество, содержащее те и только те элементы, которые входят одновременно и в множество А, и в множество В.

 – знак пересечения

Рис. 4а. Пересечение множеств

– пересечение множеств на рис. 4а

Рис. 4б. Пересечения множеств нет

На рис. 4б множества не пересекаются, их пересечение – пустое множество 

Даны множества  и . Найти пересечение множеств .

Решение

По определению пересечения, решением будут те элементы, которые одновременно входят в оба множества:

 – пересечение множеств.

Сравним с объединением:

C= – объединение множеств.

Найти пересечение бесконечных множеств

Решение

Нужно найти такие х, которые принадлежат пересечению :

 

 

 

Нужно решить систему неравенств. На оси изображаем множества и находим их пересечение

 

Ответ:

.

Сравним с объединением множеств:

Решить систему неравенств

 

 

 

Решение:

Рассмотрим ось х:

 

Ответ:

Пересечением множеств будет:

Мы рассмотрели объединение и пересечение множеств; решили типовые задачи.

 

Список литературы

  1. В.А. Ильин, В.А. Садовничий, Бл.Х. Сендов. Глава 2. Вещественные числа // Математический анализ / Под ред. А. Н. Тихонова. – 3-е изд., перераб. и доп. – М.: Проспект, 2006. – Т. 1. – С. 66. – 672 с. 
  2. А.Г. Мордкович, П.В. Семёнов. Алгебра. 9 класс. В 2-х частях. Часть 1. Учебник. (ФГОС) 16-е издание, исправленное. – М.: Мнемозина, 2013.
  3. А.Г. Мордкович, П.В. Семёнов. Алгебра. 9 класс. В 2-х частях. Часть 1. Задачник. 16-е издание, исправленное. – М.: Мнемозина, 2013.
  4. А.Г. Мордкович, П.В. Семёнов. Алгебра. 9 класс. Методическое пособие для учителя. – М.: Мнемозина, 2013.
  5. А.Г. Мордкович, Н.П. Николаев. Алгебра. 9 класс. В 2-х частях. Часть 1 – учебник. (ФГОС) Учебник для классов с углублённым изучением математики. – М.: Мнемозина, 2014.
  6. А.Г. Мордкович. Преподавание алгебры. Методическое пособие для учителя. 8–9 класс. – М.: Мнемозина, 2014.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Raal100.narod.ru (Источник). 
  2. Men-c.com (Источник).
  3. Википедия (

interneturok.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *