Модуль вектора равен – Модуль вектора, формула и примеры

4.2. Разложение вектора по ортам. Модуль вектора

10.Разложение вектора по ортам. Из прямоугольного параллелепипеда (рис. 4.1) следует:

.

Но ,,,, Следовательно,

(4.3)

Равенство (4.3) и есть формула разложения вектора по ортам координатных осей.

Таким образом, координатная запись вектора может быть осуществлена двумя способами:

20.Модуль вектора. Вектор

является диагональю прямоугольного параллелепипеда (рис. 4.1). Квадрат длины диагонали равен сумме квадратов трех его измерений:

,

отсюда следует: , и наконец, получаем искомую формулу:

(4.4)

Модуль вектора равен корню квадратному из суммы квадратов его координат.

4.3. Линейные операции над векторами.

Сформулируем правила действийнад векторами в координатной форме.

.Координаты суммы (разности) векторов равны суммам (разностям) соответствующих координат этих векторов.

Пусть тогда

(4.5)

При умножении вектора на скаляр его координаты умножаются на этот скаляр.

Если и– скалярная величина, то

(4.6)

Покажем применение рассмотренного в этой главе материала к решению практической задачи.

Задача 4.1. Даны векторы:

Найти: координаты и модуль вектора

Решение.Используем координатную запись векторов и правила линейных операций над ними:

Модуль вектора вычислим по формуле (4.4):

Ответ.

4.4. Направляющие косинусы вектора

Определение 4.2. Направляющими косинусами ненулевого вектора называются косинусы углов, которые этот вектор образуют с осями координат

(рис. 4.2).

Выразим координаты вектора через его модуль и углы:

С помощью данных равенств найдем выражения направляющих косинусов через координаты вектора и его модуль:

(4.7)

Вычислим сумму квадратов направляющих косинусов вектора :

Полученный результат в векторной алгебре сформулирован в виде следующего утверждения:

Сумма квадратов направляющих косинусов ненулевого вектора равна единице

:

(4.8)

Задача 4.2.Определить направляющие косинусы вектора а также убедиться в справедливости тождества(4.8).

Решение.10. Определим координаты и модуль вектора:

20. Вычислим направляющие косинусы вектора

30. Проверим справедливость тождества (4.8):

Ответ.

4.5. Координаты точки в пространстве. Вычисление координат вектора и его модуля по координатам его начала и конца.

Введем понятие координат точки в пространстве через понятие радиус-вектора.

Определение 4.3. Радиус-вектором точки М называется вектор

с началом в начале координат и концом в точке М, то есть вектор (рис. 4.3).

В качестве координат точки М примем координаты радиус-вектора.

Определение 4.4. Координатами точки в пространстве называются координаты ее радиус-вектора.

Координаты точки М (рис. 4.3) обозначаются символом:, или. Таким образом,

Поставим задачу:найти координаты и модуль вектора , если известны координаты его начала и конца: (рис. 4.4).

Решение.Проведем в точкиАиВ радиус-векторыи, выразим координаты векторачерез координаты векторови(см. определение 4.4), получим:

(4.9)

Координаты вектора равны соответствующим разностям координат конца и начала этого вектора.

Задача 4.3.Даны две точки: Найти координаты, разложение по ортам координатных осей, модуль и направляющие косинусы вектора

Решение.Для определения координат векторавоспользуемся формулой (4.9):

По формуле (4.4) вычислим модуль вектора :

Найдем направляющие косинусы вектора :

Вычислим сумму квадратов направляющих косинусов:

Ответ.

studfiles.net

Модуль вектора — это… Что такое Модуль вектора?


Модуль вектора

Модулем (длиной) вектора называется длина(норма) соответствующего вектора AB и обозначается как .

В евклидовом n-мерном пространстве длина вектора рассчитывается как корень из скалярного произведения этого вектора на себя, в том случае если это произведение задано как (x,y)=x1 * y1 + x2 * y2,…,xn * yn),где (x1,x2,…,xn) (y1,y2,…,y

n) координаты векторов x,y в каком-то базисе — то оно: .

Вектор, модуль которого равен 1, называется единичным вектором или ортом.

Wikimedia Foundation. 2010.

  • Мусульманские страны
  • Ракетный подводный крейсер стратегического назначения

Смотреть что такое «Модуль вектора» в других словарях:

  • модуль вектора — величина вектора — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы величина вектора EN absolute value of a vector …   Справочник технического переводчика

  • модуль вектора — vektoriaus modulis statusas T sritis fizika atitikmenys: angl. absolute value of vector vok. Vektorbetrag, m rus. длина вектора, f; модуль вектора, m pranc. module d’un vecteur, m …   Fizikos terminų žodynas

  • Модуль — (от лат. modulus  «маленькая мера»): В Викисловаре есть статья «модуль» Мо …   Википедия

  • Модуль (значения) — Модуль (от лат. modulus  «маленькая мера»)  составная часть, отделимая или хотя бы мысленно выделяемая из общего. Модульной обычно называют вещь, состоящую из чётко выраженных частей, которые нередко можно убирать или добавлять, не разрушая вещь… …   Википедия

  • Модуль числа — Абсолютная величина или модуль вещественного или комплексного числа x есть расстояние от x до начала координат. Более точно: Абсолютная величина вещественного числа x есть неотрицательное число, обозначаемое |x| и определяемое следующим образом:… …   Википедия

  • модуль волнового вектора — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN magnitude of propagation vector …   Справочник технического переводчика

  • модуль конвольвера кодового вектора огибающей — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN shape codevector convolution module …   Справочник технического переводчика

  • Модуль комплексного числа — Модулем комплексного числа называется длина вектора, соответствующего этому числу: . Модуль комплексного числа z обычно обозначается | z | или r. Пусть и вещественные числа такие, что комплексное число (обычные обозначения). Тогда Числа …   Википедия

  • Модуль (в математике) — Модуль в математике, 1) М. (или абсолютная величина) комплексного числа z = х + iy есть число ═(корень берётся со знаком плюс). При представлении комплексного числа z в тригонометрической форме z = r(cos j + i sin j) действительное число r равно… …   Большая советская энциклопедия

  • МОДУЛЬ — абелева группа с кольцом операторов. М. является обобщением (линейного) векторного пространства над полем Кдля случая, когда Кзаменяется нек рым кольцом. Пусть задано кольцо А. Аддитивная абелева группа Мназ. левым А модулем, если определено… …   Математическая энциклопедия

dic.academic.ru

5.6.3 Вектор, модуль вектора, равенство векторов; сложение векторов и умножение вектора на число

Видеоурок 1: Понятие вектора


Видеоурок 2: Равенство векторов

Видеоурок 3: Сложение и вычитание векторов

Видеоурок 4: Умножение вектора на число

Лекция: Вектор, модуль вектора, равенство векторов; сложение векторов и умножение вектора на число

Вектор

Вектор – это тело, которое изучается в математике, но используется в большом количестве наук. Например, в физике существуют скалярные величины (те, что характеризуются значением – масса, температура и т.д.), а также векторные величины (сила, работа и другие).


Вектор – это величина, которая характеризуется не только значением, но и направлением. Иными словами, это направленный отрезок. 

Но кроме его длины, нам также важно, где находится его начало, а где конец.

Если вектор имеет свое начало в некоторой точке А, а заканчивается в точке В, то его обозначают следующим образом:

Кроме двух букв, вектор можно обозначить одной буквой со значком вектора сверху.


Длиной вектора (его модулем) называют расстояние между концом вектора и его началом. 

Для определения модуля вектора следует воспользоваться следующей формулой:

Кроме этого, модуль вектора может обозначаться следующим образом:

Если некоторый вектор имеет начало и конец в одной и той же точке, то такой вектор называют нулевым. Нулевой вектор обозначают, как

Если длина некоторого вектора равна единичному отрезку, то его называют единичным.


Если некоторые векторы расположены на одной прямой или же параллельны друг другу, то такие векторы называются коллинеарными.

Если некоторые векторы можно назвать коллинеарными, но кроме этого они направлены в одну сторону, то их можно назвать сонаправленными.

Если же наоборот два коллинеарных вектора смотрят в разные стороны, то их называют противоположно направленными.

Если же некоторые векторы являются коллинеарными, сонаправленными, а также имеют одинаковую длину (модуль), то их можно назвать равными.

Координаты вектора

Для нахождения координаты вектора следует вычесть соответствующие координаты его конца и начала.

Например, если начало вектора А (3; 6), а конец В (5;9), то этот вектор будет иметь следующие координаты: {2;3}.

Сложение и вычитание векторов

Чтобы сложить два вектора для получения нового, необходимо сложить соответствующие координаты.


Например, сложим вектор {2;3} с вектором {5;7}. В результате получим новый вектор с координатами {7;10}. С вычитанием все аналогично.

Умножение вектора на некоторое число

Чтобы умножить вектор на некоторое число, следует умножить каждую его координату на данное число.

Свойства:


  • Первоначальный вектор и вектор умноженный на некоторое число, который равный ему, являются параллельными.
  • Если число, на которое умножался вектор, больше нуля, то новый вектор будет сонаправлен первоначальному. Если же число меньше нуля, то векторы будут противоположно направленны.

 

cknow.ru

Модуль вектора. Длина вектора. — Студопедия.Нет

Длина направленного отрезка определяет числовое значение вектора и называется длиной вектора или модулем вектора. Для обозначения модуля вектора используются две вертикальные линии слева и справа |AB|.

Модуль вектора (длина вектора) |a| в прямоугольных декартовых координатах равен квадратному корню из суммы квадратов его координат.

Так в случае плоской задачи модуль вектора можно найти по следующей формуле
|{a}| = sqrt{x_1^2+y_1^2}.

Пример вычисления модуля вектора (длины вектора)
Найти длину вектора {a} = {2;4}.
Решение: |{a}| = sqrt{2^2+4^2}=sqrt{4+16}=sqrt{20}=2sqrt{5}.

 

Так в случае пространственной задачи модуль вектора {a} = {x_1;y_1;z_1} можно найти по следующей формуле |{a}| = sqrt{x_1^2+y_1^2+z_1^2}.

Пример вычисления модуля вектора (длины вектора)
Найти длину вектора {a} = {2; 4; 4}.
Решение: |{a}| = sqrt{2^2+4^2+4^2}=sqrt{4+16+16}=sqrt{36}=6.

 

Ортогональные векторы. Ортонормированный базис.

Определение. Два вектора называются ортогональными, если угол между ними равен прямому углу, т.е. .

Обозначение: – векторы и ортогональны.

Определение. Тройка векторов называется ортогональной, если эти векторы попарно ортогональны друг другу, т.е. , .

Определение. Тройка векторов называется ортонормированной, если она ортогональная и длины всех векторов равны единице: .

Замечание. Из определения следует, что ортогональная и, следовательно, ортонормированная тройка векторов является некомпланарной.

Определение. Упорядоченная некомпланарная тройка векторов , отложенных от одной точки, называется правой (правоориентированной), если при наблюдении с конца третьего вектора на плоскость, в которой лежат первые два вектора и , кратчайший поворот первого вектора ко второму происходит против часовой стрелки. В противном случае тройка векторов называется левой (левоориентированной).

рис.6.

Здесь, на рис.6 изображена правая тройка векторов . На следующем рис.7 изображена левая тройка векторов :

рис.7.

Определение. Базис векторного пространства называется ортонормированным, если ортонормированная тройка векторов.

Обозначение. В дальнейшем мы будем пользоваться правым ортонормированным базисом , см. следующий рисунок:

рис.9.

Любой вектор можно разложить по этому базису:

.

10

Определение скалярного произведения

Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению длин этих векторов на косинус угла междуними.

Обозначается ab,а* b(или( а, b)).Итак, по определению,



Формуле (6.1) можно придать иной вид. Так как | a| cosg=пр ba, (см. рис.14), a |b| cosg = пр ab, то получаем:

т. е. скалярное произведение двух векторов равно модулю одного из них, умноженному на проекцию другого на ось, сонаправленную с первым вектором.

studopedia.net

1. Определение вектора. Длина вектора. Коллинеарность, компланарность векторов.

Вектором называется направленный отрезок.    Длиной или модулем вектора называется длина соответствующего направленного отрезка.        

Модуль вектора a обозначается . Векторa называется единичным, если . Векторы называются коллинеарными, если они параллельны одной прямой. Векторы называются компланарными, если они параллельны одной плоскости.

2. Умножение вектора на число. Свойства операции.

Умножение вектора на число, даёт противоположно направленный вектор в длиной враз больше. Умножение вектора на число в координатной форме производится умножением всех координат на это число:

Исходя из определения получается выражение для модуля вектора, умноженного на число:

Аналогично как и числами, операции сложение вектора с самим с собой можно записать через умножение на число:

А вычитание векторов можно переписать через сложение и умножение:

Исходя из того, что умножение на не меняет длины вектора, а меняет только направление и учитывая определение вектора, получаем:

3. Сложение векторов, вычитание векторов.

В координатном представлении вектор суммы получается суммированием соответствующих координат слагаемых:

Для геометрического построения вектора суммы используют различные правила (методы), однако они все дают одинаковый результат. Использование того или иного правила обосновывается решаемой задачей.

Правило треугольника

Правило треугольника наиболее естественно следует из понимания вектора как переноса. Ясно, что результат последовательного применения двух переносов инекоторой точки будет тем же, что применение сразу одного переноса, соответствующего этому правилу. Для сложения двух векторовипо правилутреугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

Это правило прямо и естественно обобщается для сложения любого количества векторов, переходя в правило ломаной:

Правило многоугольника

Начало второго вектора совмещается с концом первого, начало третьего — с концом второго и так далее, сумма же векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом-го (то есть изображается направленным отрезком, замыкающим ломаную). Так же называется правилом ломаной.

Правило параллелограмма

Для сложения двух векторов ипо правилупараллелограмма оба эти векторы переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала. (Легко видеть, что эта диагональ совпадает с третьей стороной треугольника при использовании правила треугольника).

Правило параллелограмма особенно удобно, когда есть потребность изобразить вектор суммы сразу же приложенным к той же точке, к которой приложены оба слагаемых — то есть изобразить все три вектора имеющими общее начало.

Модуль суммы векторов

Модуль суммы двух векторов можно вычислить, использую теорему косинусов:

, где — косинус угла между векторамии.

Если векторы изображены в соответствии с правилом треугольника и берется угол по рисунку — между сторонами треугольника — что не совпадает с обычным определением угла между векторами, а значит и с углом в приведенной формуле, то последний член приобретает знак минус, что соответствует теореме косинусов в ее прямой формулировке.

Для суммы произвольного количества векторов применима аналогичная формула, в которой членов с косинусом больше: по одному такому члену существует для каждой пары векторов из суммируемого набора. Например, для трех векторов формула выглядит так:

Вычитание векторов

Два вектора и вектор их разности

Для получения разности в координатной форме надо вычесть соответствующие координаты векторов:

Для получения вектора разности начала векторов соединяются и началом векторабудет конец, а концом — конец. Если записать, используя точки векторов, то.

Модуль разности векторов

Три вектора , как и при сложении, образуют треугольник, и выражение для модуля разности получается аналогичным:

где — косинус угла между векторамии

Отличие от формулы модуля суммы в знаке перед косинусом, при этом надо хорошо следить, какой именно угол берется (вариант формулы модуля суммы с углом между сторонами треугольника при суммировании по правилу треугольника по виду не отличается от данной формулы для модуля разности, но надо иметь в виду, что для тут берутся разные углы: в случае суммы берётся угол, когда вектор переносится к концу вектора, когда же ищется модель разности, берётся угол между векторами, приложенными к одной точке; выражение для модуля суммы с использованием того же угла, что в данном выражении для модуля разности, отличается знаком перед косинусом).

studfiles.net

модуль вектора — это… Что такое модуль вектора?


модуль вектора
мат. scalar of vector

Большой англо-русский и русско-английский словарь. 2001.

  • модуль ванны
  • модуль вогнутости

Смотреть что такое «модуль вектора» в других словарях:

  • модуль вектора — величина вектора — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы величина вектора EN absolute value of a vector …   Справочник технического переводчика

  • модуль вектора — vektoriaus modulis statusas T sritis fizika atitikmenys: angl. absolute value of vector vok. Vektorbetrag, m rus. длина вектора, f; модуль вектора, m pranc. module d’un vecteur, m …   Fizikos terminų žodynas

  • Модуль вектора — Модулем (длиной) вектора называется длина(норма) соответствующего вектора AB и обозначается как . В евклидовом n мерном пространстве длина вектора рассчитывается как корень из скалярного произведения этого вектора на себя, в том случае если это… …   Википедия

  • Модуль — (от лат. modulus  «маленькая мера»): В Викисловаре есть статья «модуль» Мо …   Википедия

  • Модуль (значения) — Модуль (от лат. modulus  «маленькая мера»)  составная часть, отделимая или хотя бы мысленно выделяемая из общего. Модульной обычно называют вещь, состоящую из чётко выраженных частей, которые нередко можно убирать или добавлять, не разрушая вещь… …   Википедия

  • Модуль числа — Абсолютная величина или модуль вещественного или комплексного числа x есть расстояние от x до начала координат. Более точно: Абсолютная величина вещественного числа x есть неотрицательное число, обозначаемое |x| и определяемое следующим образом:… …   Википедия

  • модуль волнового вектора — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN magnitude of propagation vector …   Справочник технического переводчика

  • модуль конвольвера кодового вектора огибающей — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN shape codevector convolution module …   Справочник технического переводчика

  • Модуль комплексного числа — Модулем комплексного числа называется длина вектора, соответствующего этому числу: . Модуль комплексного числа z обычно обозначается | z | или r. Пусть и вещественные числа такие, что комплексное число (обычные обозначения). Тогда Числа …   Википедия

  • Модуль (в математике) — Модуль в математике, 1) М. (или абсолютная величина) комплексного числа z = х + iy есть число ═(корень берётся со знаком плюс). При представлении комплексного числа z в тригонометрической форме z = r(cos j + i sin j) действительное число r равно… …   Большая советская энциклопедия

  • МОДУЛЬ — абелева группа с кольцом операторов. М. является обобщением (линейного) векторного пространства над полем Кдля случая, когда Кзаменяется нек рым кольцом. Пусть задано кольцо А. Аддитивная абелева группа Мназ. левым А модулем, если определено… …   Математическая энциклопедия

dic.academic.ru

Модуль вектора

ВЕКТОРЫ НА ПЛОСКОСТИ


ОСНОВНЫЕ ПОНЯТИЯ И СВОЙСТВА
ОПРЕДЕЛЕНИЕ ВЕКТОРА

Вектором называется направленный отрезок, то есть отрезок, у которого указаны начало (наз. также точкой приложения вектора) и ко­нец.

МОДУЛЬ ВЕКТОРА

Длина направленного отрезка, изо­бражающего вектор, называется длиной, или модулем, вектора. Длина вектора обозначается .
НУЛЬ-ВЕКТОР

Нуль-вектор () — вектор, начало и конец которого совпадают; его модуль равен 0, а направление неопределенное.

КООРДИНАТНОЕ ПРЕДСТАВЛЕНИЕ

Пусть на плоскости задана декартова система координат XOY.

Тогда вектор может быть задан двумя числами:

и

Эти числа и в геометрии называют координатами вектора, а в физике – проекциями вектора на соответствующие оси координат.


При таком определении вектора его модуль , а направление задается углом , который однозначно определяется соотношениями:

и

Нуль-вектор: и

ПРЕДСТАВЛЕНИЕ В СИСТЕМЕ КООРДИНАТ, ЗАДАННОЙ ЕДИНИЧНЫМИ ВЕКТОРАМИ (ОРТАМИ)

Пусть на плоскости задана декартова система координат при помощи единичных векторов и :

Тогда вектор может быть задан следующим образом:

Очевидно, что:

и

При таком определении вектора его модуль , а направление задается углом , который однозначно определяется соотношениями:

и

Нуль-вектор:

КОЛЛИНЕАРНЫЕ ВЕКТОРЫ

Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых.

РАВЕНСТВО ВЕКТОРОВ

Два вектора называются равными, если они коллинеарны, имеют одинако­вую длину и одинаково направлены.

Все нуль-векторы считаются равными.


СУММА ВЕКТОРОВ

Суммой векторов и называют вектор , идущий из начала вектора в конец век­тора при условии, что начало вектора приложено к концу вектора . Происхождение этого правила связано с правилом параллелограмма сложения векторов, источником которого яв­ляется экспериментальный факт сложе­ния сил (векторных величин) по этому правилу.

Правило треугольника Правило параллелограмма


Координаты коллинеарных векторов удовлетворяют соотношению:

Координаты равных векторов удовлетворяют соотношениям:

и

Координаты вектора суммы двух векторов удовлетворяют соотношениям:

и

Координаты коллинеарных векторов удовлетворяют соотношению:

Координаты равных векторов удовлетворяют соотношениям:

и

Вектор суммы двух векторов:


Построение суммы нескольких векторов ясно из рисунка.

ПРОИЗВЕДЕНИЕ ВЕКТОРА НА ЧИСЛО

Произве­дением вектора на число  называют вектор, коллинеарный вектору , имею­щий длину, равную , и направле­ние, совпадающее с направлением при > 0 и противоположное при ПРОТИВОПОЛОЖНЫЕ ВЕКТОРЫ

Век­тор называется противоположным вектору и обозначается .


СВОЙСТВА ДЕЙСТВИЙ НАД ВЕКТОРАМИ

Операции сложения векторов и умножения вектора на число обладают след. свойствами:

1) ,

2) ,

3) ,

4),

5) ,

6) ,

7) ,

8).

Координаты вектора суммы нескольких векторов удовлетворяют соотношениям:

Координаты вектора произведения вектора на число удовлетворяют соотношениям:


Координаты противоположных векторов удовлетворяют соотношениям:

Сумма нескольких векторов:


Произведение вектора на число:


Вектор, противоположный :

Скалярное произведение векторов и (обозначается ) — скаляр, определяемый равенством , где — угол между векторами и , приведенными к общему началу:

Скалярное произведение векторов:

Скалярное произведение векторов:


ДОПОЛНЕНИЕ: ТИПЫ ВЕКТОРНЫХ ВЕЛИЧИН В ФИЗИКЕ.

Векторами называются такие геометрические и физические величины, которые однозначно определяются отрезками с заданным положением, направлением и длиной независимо от системы отсчета и подчиняются правилам I – IV (см. далее).
Вектор называется полярным в том случае, когда положение и направление изображающего его отрезка непосредственно дает положение и направление представляемой величины (радиус-вектор, скорость, ускорение, сила, импульс).

Вектор называется осевым (аксиальным) в том случае, если соотношение между представляемой величиной и изображающим ее отрезком устанавливается посредством задания некоторой оси и определенного направления вращения вокруг этой оси. Принято, чтобы направление выбранного на оси отрезка составляло с осью вращения правый винт (угловая скорость, момент сил, вращательные импульсы).


Длина отрезка – модуль вектора в определенном масштабе.
Различают свободные, скользящие и связанные векторы:

Свободные векторы можно произвольно переносить в любое другое параллельное положение, сохраняя при этом их направление и длину (напр., вектор скорости при поступательном движении тела).

Скользящие векторы неотделимы от несущей их прямой, от так называемой линии действия, но вдоль этой прямой они могут перемещаться произвольным образом (напр., угловая скорость; сила, приложенная к твердому телу).

Связанные векторы неотделимы от определенной точки, от так называемой точки приложения вектора (напр., скорость точки тела, движущегося произвольным образом).
Правила выполнения операций над векторами:

I. Два вектора, и равны друг другу, если они имеют одинаковое направление и одинаковую длину; равные скользящие векторы должны иметь, кроме этого, общую линию действия, а равные связанные векторы – общую точку приложения.

II. Вектор получается из вектора следующим образом: из точки приложения вектора откладывается в противоположном направлении отрезок с такой же длиной, как у вектора .

III. Вектор : при m  0 – модуль в m раз больше, при m  0 – по правилу II/

IV. Два вектора, и , имеющие общую точку приложения, складываются по правилу параллелограмма. Разность векторов: .
Правила сложения применимы без ограничения к свободным векторам, к скользящим – только в случае наличия у линий действия векторов общей точки. Во всех остальных случаях действуют другие правила сложения (см., например, условие равновесия твердого тела).
Физическая величина считается векторной, если она подчиняется правилам I – IV. В частности, такому требованию удовлетворяют две скорости, которым одновременно обладает одна и та же материальная точка, или угловые скорости твердого тела, одновременно вращающееся вокруг двух пересекающихся осей.

www.dereksiz.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *