Онлайн решение дифференциальных уравнений с разделяющимися переменными – Решение дифференциальных уравнений | Онлайн калькулятор

Дифференциальные уравнения с разделяющимися переменными [wiki.eduVdom.com]

subjects:diffury:уравнения_с_разделяющимися_переменными

Уравнения вида $\varphi_1(x)\Psi_1(y)dx=\varphi_2(x)\Psi_2(y)dy$ , в котором коэффициенты при дифференциалах распадаются на множители, зависящие только от X и только от Y называется уравнением с разделяющими переменными. Путём деления на произведение $\varphi_1(y)\varphi_2(x)$ оно приводится к уравнению с разделёнными переменными:

$$ \frac{\varphi_1(x)}{\varphi_2(x)}dx = \frac{\Psi_2(y)}{\Psi_1(y)}dy $$

Общий интеграл этого уравнения имеет вид:

$$ \int \frac{\varphi_1(x)}{\varphi_2(x)}dx = \int \frac{\Psi_2(y)}{\Psi_1(y)}dy = C $$

Примеры

Пример 1. Найти общее решение дифференциального уравнения: ${xy}'-y=1$

Решение дифференциального уравнения:


Пример 2. Найти частное решение уравнения $(1+e^{x})y{y}'=e^{x}$, удовлетворяющее начальному условию $y|_{x=0}=1$ (задача Коши)

Решение. Имеем $(1+e^{x})y\frac{dy}{dx}=e^{x}$

Разделяя переменные, получаем: $$ y\;dy = \frac{e^{x}}{1+e^{x}}dx $$

Интегрируя, найдём общий интеграл: $$ \int y\;dy = \int \frac{e^{x}}{1+e^{x}}dx \\ \frac{y^{2}}{2}=\ln{(1+e^{x})} +C \qquad (1) $$

(1) – общее решение дифференциального уравнения

Полагая X=0 и Y=1, будем иметь $\frac{1}{2}=\ln{2}+C$ , откуда $C=\frac{1}{2} -\ln{2}$

Подставляя в (1) найденное значение C, получаем частное (решение задачи Коши) $$ y^{2} = 1 +\ln{\left ( \frac{1+e^{x}}{2} \right )^{2}} \;; \\ y= \pm\sqrt{ 1 +\ln{\left ( \frac{1+e^{x}}{2} \right )^{2}} } $$

Из начального $u=\frac{y}{x}$ условия следует, что $y>0 ( y|_{x=0}=1 >0)$ поэтому перед корнем берём знак плюс. Итак, искомое частное решение $$ y=\sqrt{ 1 +\ln{\left ( \frac{1+e^{x}}{2} \right )^{2}} } $$


Пример 3.

Решение дифференциального уравнения:


Пример 4. Найти общее решение дифференциального уравнения: $$ \frac{dy}{dx}=x^{3} $$

Решение дифференциального уравнения:


Пример 5. Найти общее решение дифференциального уравнения: $$ \frac{dy}{dx}=2\frac{y}{x} $$

Решение дифференциального уравнения:


Пример 6. Найти общее решение дифференциального уравнения: $$ \frac{dy}{dx}=-xy $$

Решение дифференциального уравнения:


Пример 7. $$ {y}'={\rm tg}\,x\cdot{\rm tg}\,y $$

Решение:


Пример 8.

Решение дифференциального уравнения:


subjects/diffury/уравнения_с_разделяющимися_переменными.txt · Последние изменения: 2014/12/15 20:25 —

www.wiki.eduvdom.com

Дифференциальные уравнения с разделенными переменными

Многие студенты спрашивают "Как найти решение дифференциального уравнения?" Ответ возможно неординарен, но что Вы знаете о дифференциальных уравнениях (ДУ), их типах, какие распространенные схемы вычислений ДУ? С этого нужно начинать.
Сферы применения дифференциальных уравнений были в общем очерчены на предыдущем уроке. Здесь речь пойдет об одном из самых простых (в плане вычислений) типов ДУ первого порядка среди всех возможных уравнений что Вас ждут. Начнем с базовых понятий теории которые Вы должны знать и мы будем использовать в терминологии. Для одних это не нужно, потому что они ищут готовые ответы по дифференциальным уравнениям и думают, что таким образом решат все проблемы. Но это ошибка, потому что не знание элементарных понятий по теории ДУ сравнимо с тем, что Вы пытаетесь говорить, предварительно не изучив звуки и алфавит.
Дифференциальное уравнение первого порядка, которое можно записать формулой
N(х)dx+М(у)dy=0 (1)
называют уравнением с разделенными переменными.
Их не трудно обнаружить среди других уравнений, основной признак - множители при dx и dy являются функциями (константами), которые зависят только от х при множителе dx и у при dy.

Чтобы найти общее решение (общий интеграл) уравнения с разделенными переменными необходимо проинтегрировать уравнение (1)
Int(N(x), x) + Int(M(y),y) = С,

Для понимания дифференциальное уравнение (1) можно принимать, как условие равенства нулю полного дифференциала некоторой функции двух переменных U(x,y)

Отсюда следует что функция U(x,y)=С=const равна постоянной.
Дифференциальное уравнение вида
f1(x)*g1(y)dx+f2(x)*g2(y)dy=0 (2)
называют дифференциальным уравнением с разделяющимися переменными в симметричной форме.
В уравнении (2) коэффициенты при дифференциалах dx и dy является произведениями двух функций: одна зависит только от x, а вторая - от y. В области, где g1(y), f2(x) принимают отличные от нуля значения в уравнение с разделяющимися переменными (2) сводится к уравнению с разделенными переменными

Звучит как игра слов: разделенными, разделяющимися, однако между ними как видите есть маленькая разница, и теперь Вы ее знаете.
Рассмотрим типичные для практики задания на диф. уравнения первого порядка, которые в достаточно простой способ можно свести к уравнениям с разделенными переменными.

Пример 1 Решить дифференциальное уравнение
Решение:Имеем дифференциальное уравнение первого порядка, по теории его можно назвать уравнением с разделяющимися переменными или уравнением в дифференциалах. Для его упрощения сгруппируем слагаемые, содержащие dx, dy по разные стороны знака равенства

Далее выделим общие множители для каждой суммы и перепишем уравнение в дифференциалах в форме

После этого все, что содержит y переносим к dy, то же самое проделываем с множителями которые содержат переменную x.
В результате придем к дифференциальному уравнению с разделенными переменными

Теперь посмотрите почему данное уравнение называется уравнением с разделенными переменными? - Возле dx имеем функцию зависимую только от "икс", у dy - только от y.
Проинтегрируем дифференциальное уравнение

Выносим множители, чтобы при переменной в знаменателе стояли единицы. Также, чтобы в числителе получить дифференциалы знаменателя умножаем обе части на 2


Это позволяет упростить вычисления интеграла ДУ (после интегрирования получить логарифмы)

Константу рекомендуем внести в логарифм, для этого записывайте всегда ее в виде C1=ln(C)

Чтобы раскрыть логарифмическое уравнение экспонируем (находим экспоненту) правую и левую сторону зависимости
(3)
Также выделяем значение функции

Конечная запись имеет двойной корень и является общим решением уравнения с разделяющимися переменными. Это не совсем хороший тон подавать ответ, лучше решение оставить в виде формулы (3), только тройку перенести в правую сторону.

 

Пример 2 Найти общий интеграл дифференциального уравнения
Решение:Имеем уравнение в дифференциалах первого порядка. Разделим в уравнении переменные, содержащиеся при dx, dy и перенесем их по разные стороны знака равенства

С первых скобок выносим общий для двух слагаемых множитель y за скобки

Далее разделим множители так, чтобы при dy получить функцию только от y, а при dx - функцию аргумента x. В результате получим дифференциальное уравнение с разделенными переменными



После интегрирования

получим корневую зависимость для y и арктангенс в результате вычисления интеграла по аргументу (правая сторона).

Общий интеграл можем оставить в такой форме или перенести артангенс в левую часть зависимости.
Так же можем записать решение дифференциального уравнения в виде зависимости y(x) (явном виде). Для этого возведем обе части к квадрату

и перенеся сталую в правую сторону, вычислим корень квадратный

Это и есть искомое решение дифференциального уравнения.

 

Пример 3 Решить дифференциальное уравнение
Решение:Данное ДУ первого порядка необходимо свести под правило решения уравнений с разделенными переменными. Для этого второе слагаемое, что со знаком минус, переносим в правую сторону от знака равенства

и разделяем переменные

Проинтегрируем левую и правую сторону зависимости

В результате придем к логарифмическому уравнению вида

И снова обращаем Ваше внимание на то что в таком виде как правило не записывают.
Целесообразно, для компактности конечного решения, постоянную вносить под логарифм, то есть в форме


Взяв экспоненту от правой и левой части формулы придем к конечному виду решения дифференциального уравнения

Как Вы могли убедиться примеры достаточно просты, методика вычислений ДУ з разделенными переменными легкая для изучения.


Пример 4 Решить дифференциальное уравнениеРешение: Одно из слагаемых (не содержит производной) переносим за знак равенства

и записываем уравнение в дифференциалах..

Следующим шагом сводим зависимость к дифференциальному уравнению с разделенными переменными.
Для заданного уравнения всего лишь перекрестным делением записываем корни в знаменатели

В таком виде можем интегрировать уравнения

Левая сторона содержит функцию которая при иртегрировании даст корневую зависимость, для правой стороны по формулам получим арксинус.

Выполняем манипуляции с корнем, чтобы получить зависимость вида y=y(x)

Решение дифференциального уравнения будет иметь вид

На этом вводный урок закончен и основные выводы Вы должны сделать самостоятельно.
Для закрепления темы рекомендуем самостоятельно решить несколько из следующих примеров.

Хотите верьте, а хотите - нет, но это самый простой тип дифференциальных уравнений, с которым Вам придетсяиметь дело на контрольной, экзаменах, практических занятиях, модулях. Это можно сказать важнейшая часть, поскольку сложные дифференциальные уравнения придется упрощать и сводить к уравнениям с разделенными переменными.
Схему вычислений должны заучить и знать на зубок - это один из основных методов решения сложных примеров на диф. уравнения.

yukhym.com

Дифференциальные уравнения с разделяющимися переменными

Дифференциальное уравнение с разделенными переменными записывается в виде: (1).В этом уравнении одно слагаемое зависит только от x, а другое – от y. Проинтегрировав почленно это уравнение, получаем: – его общий интеграл.

Пример: найти общий интеграл уравнения: .

Решение: данное уравнение – дифференциальное уравнение с разделенными переменными. Поэтому илиОбозначим. Тогда– общий интеграл дифференциального уравнения.

Уравнение с разделяющимися переменными имеет вид (2).Уравнение (2) легко сводиться к уравнению (1) путем почленного деления его на . Получаем:– общий интеграл.

Пример: Решить уравнение .

Решение: преобразуем левую часть уравнения: . Делим обе части уравнения наРешением является выражение:т.е.

Однородные дифференциальные уравнения. Уравнения Бернулли. Линейные дифференциальные уравнения первого порядка.

Уравнение вида называетсяоднородным, если

и– однородные функции одного порядка (измерения). Функцияназывается однородной функцией первого порядка (измерения), если при умножении каждого ее аргумента на произвольный множительвся функция умножиться на, т.е.=.

Однородное уравнение может быть приведено к виду . С помощью подстановки

()однородное уравнение приводится к уравнению с разделяющимися переменными по отношению к новой функции.

Дифференциальное уравнение первого порядка называется линейным, если его можно записать в виде.

Метод Бернулли

Решение уравнения ищется в виде произведения двух других функций, т.е. с помощью подстановки().

Пример: проинтегрировать уравнение .

Полагаем . Тогда , т.е. . Сначала решаем уравнение=0:.

Теперь решаем уравнение т.е.

. Итак, общее решение данного уравнения естьт.е.

Уравнение Я. Бернулли

Уравнение вида , гденазываетсяуравнением Бернулли.Данное уравнение решается с помощью метода Бернулли.

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородным линейным дифференциальным уравнением второго порядка называется уравнение вида (1), гдеипостоянны.

Частные решения уравнения (1) будем искать в виде , гдек – некоторое число. Дифференцируя эту функцию два раза и подставляя выражения дляв уравнение (1), получимт.е.или(2)().

Уравнение 2 называется характеристическим уравнением дифференциального уравнения.

При решении характеристического уравнения (2) возможны три случая.

Случай 1.Корнииуравнения (2) действительные и различные:. В этом случае частными решениями уравнения (1) являются функциии. Следовательно, общее решение уравнения (1) имеет вид.

Случай 2.Корнииуравнения (2) действительные и равные:. В этом случае частными решениями уравнения (1) являются функциии. Следовательно, общее решение уравнения (1) имеет вид.

Случай 3.Корнииуравнения (2) комплексные:,. В этом случае частными решениями уравнения (1) являются функциии. Следовательно, общее решение уравнения (1) имеет вид

Пример. Решить уравнение .

Решение: составим характеристическое уравнение:. Тогда. Общее решение данного уравнения.

Экстремум функции нескольких переменных. Условный экстремум.

Экстремум функции нескольких переменных

Определение. Точка М (хоо) называется точкой максимума (минимума) функции z=f(x, у), если существует окрестность точки М, такая, что для всех точек {х, у) из этой окрестности выполня­ется неравенство ()

На рис. 1 точка А— есть точка минимума, а точка Вточка максимума.

Необходи­мое условие экстремума — многомерный аналог теоре­мы Ферма.

Теорема. Пусть точка – есть точка экстре­мума дифференцируемой функ­цииz=f(x, у). Тогда частные производные и в этой точке равны нулю.

Точки, в которых выполнены необходимые условия экстрему­ма функции z=f(x, у), т.е. частные производные z'x и z'y равны нулю, называются критическими или стационарными.

Равенство частных производных нулю выражает лишь необходи­мое, но недостаточное условие экстремума функции нескольких переменных.

На рис. изображена так называемая седловая точка М (хоо). Частные производные и равны ну­лю, но, очевидно, никакого экс­тремума в точке М(хоо) нет.

Такие седловые точки явля­ются двумерными аналогами точек перегиба функций одной переменной. Задача заключается в том, чтобы отделить их от то­чек экстремума. Иными слова­ми, требуется знать достаточное условие экстремума.

Теорема (достаточное условие экстремума функции двух пере­менных). Пусть функция z=f(x, у): а) определена в некоторой окре­стности критической точки (хоо), в которой =0 и =0;

б) имеет в этой точке непрерывные частные производные вто­рого порядка;;Тогда, если ∆=АС— В2 >0, то в точке (хоо) функ­ция z=f(x, у) имеет экстремум, причем если А<0 — максимум, если А>0 — минимум. В случае ∆=АС— В2<0, функция z=f(x, у) экстре­мума не имеет. Если ∆=АС— В2=0, то вопрос о наличии экстрему­ма остается открытым.

Исследование функции двух переменных на экстремум реко­мендуется проводить по следующей схеме:

  1. Найти частные производные функции z'x и z'y.

  2. Решить систему уравнений z'x =0, z'y =0 и найти критические точки функции.

  3. Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточ­ного условия сделать вывод о наличии экстремумов.

  4. Найти экстремумы (экстремальные значения) функции.

Пример. Найти экстремумы функции

Решение. 1. Находим частные производные

2. Критические точки функции находим из системы уравнений:

имеющей четыре решения (1; 1), (1; —1), (—1; 1) и (—1; -1).

3. Находим частные производные второго порядка:

;;, вычисляем их значения в каждой критической точке и проверяем в ней выпол­нение достаточного условия экстремума.

Например, в точке (1; 1) A=z"(1; 1)= -1; В=0; С= -1. Так как = АС— В2 = (-1)2-0=1 >0 и А=-1<0, то точка (1; 1) есть точка максимума.

Аналогично устанавливаем, что (-1; -1) — точка минимума, а в точках (1; —1) и (—1; 1), в которых =АС— В2 <0, — экстремума нет. Эти точки являются седловыми.

4. Находим экстремумы функции zmax = z(l; 1) = 2, zmin = z(-l; -1) = -2,

Условный экстремум. Метод множителей Лагранжа.

Рассмотрим задачу, специфическую для функций нескольких переменных, когда ее экстремум ищется не на всей области опреде­ления, а на множестве, удовлетворяющем некоторому условию.

Пусть рассматривается функция z = f(x,y), аргументы х и у которой удовлетворяют условию g (х,у) = С, называемому уравне­нием связи.

Определение. Точка называется точкойусловного мак­симума (минимума), если существует такая окрестность этой точки, что для всех точек (х,у) из этой окрестности удовлетворя­ющих условию g (x,y) = С, выполняется неравенство

().

На рис. изображена точка условного максимума .Очевидно, что она не является точкой безусловного экстремума функции z = f(x,y) (на рис. это точка ).

Наиболее простым способом нахождения условного экстре­мума функции двух переменных является сведение задачи к оты­сканию экстремума функции одной переменной. Допустим уравнение связи g (x,y) = С удалось разрешить относи­тельно одной из перемен­ных, например, выразить у через х: .Подста­вив полученное выражение в функцию двух перемен­ных, получим z = f(x,y) =, т.е. функцию одной переменной. Ее экстремум и будет услов­ным экстремумом функ­ции z = f(x,y).

Пример. Найти точки максимума и мини­мума функции z = х2 + y2 при условии 3х +2у = 11.

Решение. Выразим из уравнения 3х +2у = 11 переменную y через переменную x и подставим полученное в функциюz. Получим z=x2+2илиz =.Эта функция имеет единственный минимум при = 3. Соответствующее значение функции Таким образом, (3; 1) — точка условного экстремума (минимума).

В рассмотренном примере уравнение связи g(x, у) = С оказа­лось линейным, поэтому его легко удалось разрешить относи­тельно одной из переменных. Однако в более сложных случаях сделать это не удается.

Для отыскания условного экстремума в общем случае исполь­зуется метод множителей Лагранжа.

Рассмотрим функцию трех переменных

Эта функция называется функцией Лагранжа, а — множите­лем Лагранжа. Верна следующая теорема.

Теорема. Если точка является точкой условного экс­тремума функцииz = f(x,y) при условии g (x,y) = С, то существует значение такое, что точкаявляется точкой экстре­мума функцииL{x,y, ).

Таким образом, для нахождения условного экстремума функ­ции z = f(х,у) при условии g(x,y) = С требуется найти решение системы

На рис. показан геометрический смысл условий Ла­гранжа. Линия g (х,у) = С пунктирная, линия уровня g(x,y) = Q функции z = f(x,y) сплошные.

Из рис. следует, что в точке условного экстремума линия уровня функции z = f(x,y) касает­ся линии g(x,y) = С.

Пример. Найти точки максимума и мини­мума функции z = х2 + y2 при условии 3х +2у = 11, ис­пользуя метод множителей Ла­гранжа.

Решение. Составляем функцию Лагранжа L = х2 + 2у2 +

Приравнивая к нулю ее частные производные, получим систему уравнений

Ее единственное решение (х=3, у=1, =—2). Таким образом, точкой условного экстремума может быть только точка (3;1). Не­трудно убедиться в том, что в этой точке функция z=f(x,y) имеет условный минимум.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *