Решение системы линейных уравнений в excel – Как решить систему уравнений в Excel

Содержание

Как решить систему уравнений в Excel

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:


14

x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21

  1. Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.
  2. Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.
  3. Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР. Он имеет довольно простой синтаксис:

    =МОБР(массив)

    Аргумент «Массив» — это, собственно, адрес исходной таблицы.

    Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

  4. Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».
  5. Запускается окно аргументов функции МОБР. Оно по числу аргументов имеет всего одно поле – «Массив». Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK», но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter. Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter, а произвести набор сочетания клавиш Ctrl+Shift+Enter. Выполняем эту операцию.
  6. Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.
  7. Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

    =МУМНОЖ(Массив1;Массив2)

    Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

  8. В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».
  9. Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.
  10. После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.

Урок: Обратная матрица в Excel

Способ 2: подбор параметров

Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

3x^2+4x-132=0

  1. Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    =3*x^2+4*x-132

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

  2. Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».
  3. Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».
  4. После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».
  5. Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.

Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

Урок: Подбор параметра в Excel

Способ 3: метод Крамера

Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:


14x1+2x2+8x4=218
7x1-3x2+5x3+12x4=213
5x1+x2-2x3+4x4=83
6x1+2x2+x3-3x4=21

  1. Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».
  2. Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.
  3. Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    =МОПРЕД(массив)

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

  4. Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».
  5. Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.
  6. Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.
  7. Аналогичным образом производим подсчет определителей для остальных трех таблиц.
  8. На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.
  9. Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.

Способ 4: метод Гаусса

Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:


14x1+2x2+8x3=110
7x1-3x2+5x3=32
5x1+x2-2x3=17

  1. Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.
  2. Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    =B8:E8-$B$7:$E$7*(B8/$B$7)

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

  3. После этого копируем полученную строку и вставляем её в строчку ниже.
  4. Выделяем две первые строки после пропущенной строчки. Жмем на кнопку
    «Копировать»
    , которая расположена на ленте во вкладке «Главная».
  5. Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».
  6. В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    =B13:E13-$B$12:$E$12*(C13/$C$12)

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

  7. Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    =B17:E17/D17

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

  8. Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    =(B16:E16-B21:E21*D16)/C16

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

  9. Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    =(B15:E15-B20:E20*C15-B21:E21*D15)/B15

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  10. Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.

Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

Мы рады, что смогли помочь Вам в решении проблемы.
Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

lumpics.ru

Решение системы уравнений в excel

Решение системы уравнений в Microsoft Excel

​Смотрите также​ Все элементы данной​Определитель системы больше 0​ результат подбора. Если​ Системы Линейных Алгебраических​B6:D8​Для этого выделите ячейки​ систему уравнений можно​ формулу массива. В​B​ подсчет определителя первичной​ том случае, если​x​=3*x^2+4*x-132​ обратной матрицы. Для​ мыши и выделяем​

​ порядку с учетом​Умение решать системы уравнений​

Варианты решений

​ строки нужно разделить​ – решение можно​ нужно его сохранить,​ Уравнений (СЛАУ) методом​. Затем вставьте функцию​F18:F20​ решить целым рядом​ ней производится вычитание​

Способ 1: матричный метод

​. Но на этот​ матрицы. Процедура происходит​ все определители будут​.​Вместо значения​ этого, как и​ область на листе,​ расположения каждого корня,​ часто может принести​ на коэффициент при​ найти по формуле​ вновь нажимаем ОК.​


​ обратной матрицы в​​MINVERSE​​, а в Строке формул введите =МУМНОЖ(A18:C20;F11:F13),​​ способов, каждый из​​ из третьей строки​​ раз сблизим обе​​ все по тому​
​ иметь значение, отличное​​Урок:​​«X»​​ в прошлый раз,​​ в которой находится​​ которому они соответствуют.​​ пользу не только​​ с. Введем в​​ Крамера (D​
​ В противном случае​​ MS EXCEL.​​(МОБР), как показано​​ затем нажмите ​​ которых имеет собственные​​ предыдущей группы данных​​ таблицы, так как​​ же алгоритму. Как​​ от нуля. Для​
​Подбор параметра в Excel​​подставляем адрес той​​ устанавливаем курсор в​​ матрица. Как видим,​​ Если в каком-то​​ в учебе, но​​ строку формулу массива:​​x​​ – «Отмена».​

  1. ​Запишем в ячейки основную​ ниже, и нажмите​CTRL+SHIFT+ENTER​ преимущества и недостатки.​ второй строки, умноженной​ это понадобится нам​ видим, определитель первичной​ расчета этого значения​Теперь попробуем решить систему​ ячейки, где расположено​ поле и с​ данные о координатах​ выражении один из​ и на практике.​ {=B12:E12/D12}.​/ |A|).​Для подбора параметра программа​ матрицу системы и​​Ctrl+Shift+Enter​​.​ Но все эти​​ на отношение второго​​ для работы в​

  2. ​ таблицы тоже отличный​ в Экселе опять​ уравнений методом Крамера.​ число​​ зажатой левой кнопкой​​ размещения автоматически заносятся​

  3. ​ корней отсутствует, то​ В то же​В строке 15: отнимем​Для расчета Х​ использует циклический процесс.​ столбец свободных членов. ​.​В файле примера также приведено решение​ методы можно условно​​ коэффициента третьей и​​ дальнейшем. Важным условием​ от нуля, а​

    ​ имеется отдельная функция​

    ​ Для примера возьмем​​0​​ мыши выделяем курсором​ в поле окна.​

    ​ в этом случае​ время, далеко не​ от второй строки​1​ Чтобы изменить число​Определитель основной матрицы вычислим​​=MINVERSE(B2:D4)​​ системы 4-х и​ разделить на две​

  4. ​ второй строки. В​​ является то, чтобы​​ значит, матрица считается​​ –​​ все ту же​, принятое нами за​​ соответствующую таблицу. Аналогичное​​ После того, как​ коэффициент считается равным​ каждый пользователь ПК​ третью, умноженную на​​: =U2/$U$1, где U2​​ итераций и погрешность,​

  5. ​ с помощью формулы =МОПРЕД(A11:C13)​​=МОБР(B2:D4)​​ 5-и уравнений.​ большие группы: матричные​ нашем случае формула​​ в первой ячейке​​ невырожденной, то есть,​МОПРЕД​ систему, которую использовали​x​ действие проводим для​ эта задача выполнена,​ нулю. Если коэффициент​ знает, что в​ коэффициент при с​ – D1. Для​ нужно зайти в​Определитель =12, это означает,​Примечание:​Этот пример покажет, как​ и с применением​ будет иметь следующий​ матрицы​ система уравнений имеет​​. Синтаксис данного оператора​​ в​.​ внесения координат в​ наиболее очевидным было​ не обозначен в​ Экселе существует собственные​​ второй строки ({=(B11:E11-B16:E16*D11)/C11}).​​ расчета Х​ параметры Excel. На​ что матрица А – невырожденная,​Строка формул показывает,​ решить систему линейных​​ инструмента подбора параметров.​​ вид:​A​​ решения.​​ следующий:​

  6. ​Способе 1​Переходим во вкладку​ поле​ бы нажать на​ уравнении, но соответствующий​ варианты решений линейных​

  7. ​ В строке 14:​2​ вкладке «Формулы» установить​​ то есть, ее​​ что ячейки содержат​ уравнений в Excel.​ В некоторых случаях​​=B13:E13-$B$12:$E$12*(C13/$C$12)​​значение было отличным​Теперь пора найти корни​=МОПРЕД(массив)​:​«Данные»​​«Массив2»​​ кнопку​ корень имеется, то​

    ​ уравнений. Давайте узнаем,​

    ​ от первой строки​: =U3/$U$1. И т.д.​ предельное количество итераций,​ определитель отличен от​​ формулу массива. Это​​ К примеру, у​​ не всегда матричные​​После ввода формулы выделяем​

  8. ​ от нуля. В​​ уравнения. Корень уравнения​​Таким образом, как и​​14​​. Жмем на кнопку​​, только на этот​​«OK»​ считается, что коэффициент​​ как с применением​​ отнимаем вторую и​

  9. ​ Получим корни уравнений:​​ относительную погрешность. Поставить​​ нуля. В этом​​ означает, что вы​​ нас есть следующая​ методы подходят для​ весь ряд и​ обратном случае следует​ будет равен отношению​ у функции​x1​«Анализ «что если»»​ раз выделяем значения​, но не стоит​ равен​ инструментария этого табличного​​ третью, умноженные на​​Для примера возьмем простейшую​ галочку «включить итеративные​ случае система линейных​​ не сможет

my-excel.ru

Решение систем линейных уравнений в Excel

Решение систем линейных уравнений в Excel

1. Введение

Многие задачи организации строительного производства сводятся к решению систем линейных уравнений вида:

a11x1a12x2a1nxn b1,

 

 

 

 

 

a2nxn

b2

,

a21x1a22x2

 

 

 

 

 

 

 

 

 

(1)

,

 

 

 

 

 

 

 

 

 

 

 

a

x a

n2

x

a

nn

x

n

b ,

 

n1 1

2

 

 

n

 

называемой системой n линейных алгебраических уравнений(СЛАУ) с n

неизвестными.

При этом произвольные числа aij (i = 1, 2,…,n;j = 1, 2,…,n) называются

коэффициентами при неизвестных, а числа bi (i = 1, 2,…, n) – свободными

членами.

Систему(1) можно записать в матричной форме

A X = B,

где A – матрица коэффициентов при неизвестных:

 

a

a

 

a

 

 

 

11

12

 

1n

 

A

a21

a22

 

a2n

 

 

 

 

 

,

 

 

 

 

 

 

an1

an1

 

 

 

an1

an1

X – вектор-столбецнеизвестных X= (x1, x2, …, xn)T:

 

x

 

 

 

1

 

X

x2

 

 

 

,

 

 

 

 

 

 

 

 

xn

 

B –вектор-столбецсвободных членов:

b1

b2B ,

bn

или B = (b1,b2,…,bn)T.

2.Операции с матрицами в Excel

ВExcel для операций с матрицами служат функции из категории «Математические»:

1) МОПРЕД(матрица) – вычисление определителя матрицы, 2)МОБР(матрица) – вычисление обратной матрицы, 3)МУМНОЖ(матрица1;матрица2) – произведение матриц, 4)ТРАНСП(матрица) – транспонирование матрицы.

Первая из этих функций в качестве результатавозвращает число (определитель матрицы), поэтомувводится как обычная формула (ENTER).

Последние три возвращают блок ячеек, поэтому должны вводиться как формулы массива (CTRL+SHIFT+ENTER).

Рассмотрим задачурешения СЛАУ на следующем примере

8×1 2×2 8×3 24,

2×1 2×2 10×3 48,

2×1 4×2 8×3 18.

Матрица коэффициентов при неизвестных A (3) имеет вид

8

2

8

 

 

 

2

 

 

A 2

10 ,

 

2

4

8

 

 

 

а вектор-столбецсвободных членов (5)B =(–24,–48,18)T.

Решим СЛАУ (7) в среде MS Excel тремя различными способами.

Матричный способ решения (обратной матрицы)

Обе части матричного равенства (2) умножим на обратную матрицу А-1.ПолучимA–1 A X=A–1 B. Так какA–1 A=E, гдеE – единичная матрица (диагональная матрица, у которой по главной диагонали расположены единицы). Тогда решение системы (2) запишется в следующем виде

Для решения необходимо найти для матрицы A (3) обратнуюA-1 и умножить

еена вектор-столбецB (5) свободных членов, последовательно

воспользовавшись

функциями

Excel

МОБР(матрица)

и

2

МУМНОЖ(матрица1;матрица2), завершая в каждом случае ввод комбинацией

CTRL+SHIFT+ENTER.

Метод Крамера

Решение СЛАУ находится по формулам Крамера

 

det A

 

 

 

 

 

 

1

 

 

 

 

 

det A

 

 

 

 

 

 

 

 

det A2

 

 

 

 

X

 

 

 

 

,

(9)

det A

 

 

 

 

 

 

 

 

 

 

 

 

det A

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

det A

 

 

 

 

где det A =A – определитель матрицы (3) системы (главный определитель), detAi =Ai (i = 1, 2, …,n)– определители матрицAi (вспомогательные определители), которые получаются изA заменойi-гостолбца на столбец свободных членовB (5).

Для рассматриваемой СЛАУ (7) вспомогательные матрицы имеют следующий вид

24 2

8

8

24

8

8

2

24

 

 

 

2

10

 

 

 

48

10

 

 

 

2

48

 

(10)

A148

, A2

2

, A3

2

.

 

18

4

8

 

 

2 18

8

 

 

2

4

18

 

 

 

 

 

 

 

 

 

Разместим их на рабочем листе (рис. 1).

Рис. 1

Далее, воспользовавшись функцией МОПРЕД(матрица), вычислим определители всех матриц (рис. 2).

3

Рис. 2

Аналогичная формула (=МОПРЕД(A3:C5)) для вычисления определителя матрицыA записана в ячейкуE8. Осталось найти решение системы. Соответствующие формулы Excel запишем в интервал решенияB7:B9 (рис. 3), в котором и увидим результат (рис. 4).

Обратите внимание на то (рис. 3), что при вычислении xi (i = 1, 2, 3)

анализируется значение определителя матрицы системы A, вычисленное в ячейке E8, и, если оно равно нулю, то в B7 помещается текст«Решения нет», а в ячейки B8 и B9 – пустые строки.

Рис. 3

Рис. 4

3. Решение СЛАУ с использованием инструмента Поиск решения

Широкий класс производственных задач составляют задачи оптимизации. Задачи оптимизации предполагают поиск значений аргументов, доставляющих функции, которую называют целевой, минимальное или максимальное значение при наличиикаких-либодополнительных ограничений. Excel располагает мощным средством для решения оптимизационных задач.

4

Это инструмент-надстройка,который называетсяПоиск решения (Solver)

(доступен через менюСервис  Поиск решения).

Задачу решения СЛАУ можно свести к оптимизационной задаче.

Для чего одно из уравнений (например, первое) взять в качестве целевой функции, а оставшиеся n-1рассматривать в качестве ограничений.

Запишем систему(1) в виде

a11x1a12x2a1nxn b10,

 

 

 

 

a2nxn

b2

0,

a21x1a22x2

 

 

 

 

 

 

 

 

(12)

,

 

 

 

 

 

 

 

 

 

 

a

x a

n2

x

a

nn

x

b 0.

 

n1 1

2

 

n

n

 

Для решения этой задачи необходимо записать выражения (формулы) для вычисления значений функций, стоящих слева в уравнениях системы (12). Отведем для примера под эти формулы интервал C7:C9. В ячейкуC7 введем формулу=A3*$B$7+B3*$B$8+C3*$B$9-D3 и скопируем ее в оставшиесяC8 иC9. В них появятся соответственно=A4*$B$7+B4*$B$8+C4*$B$9-D4 и=A5*$B$7+B5*$B$8+C5*$B$9-D5.

В окне диалога Поиск решения (рис. 5) задать параметры поиска (установить целевую ячейкуC7 равной нулю, решение в изменяемых ячейкахB7:B9, ограничения заданы формулами в ячейкахC8 и С9). После щелчка по кнопкеВыполнить в

интервале B7:B9 получим результат (рис. 6) – решение СЛАУ.

Рис. 5

Рис. 6

5

studfiles.net

Решение уравнений в Excel методом итераций Крамера и Гаусса

В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.

Рассмотрим на примерах некоторые варианты решений.

Решение уравнений методом подбора параметров Excel

Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.

Путь к команде: «Данные» — «Работа с данными» — «Анализ «что-если»» — «Подбор параметра».

Рассмотрим на примере решение квадратного уравнения х2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:

  1. Введем в ячейку В2 формулу для нахождения значения функции. В качестве аргумента применим ссылку на ячейку В1.
  2. Открываем меню инструмента «Подбор параметра». В графе «Установить в ячейку» — ссылка на ячейку В2, где находится формула. В поле «Значение» вводим 0. Это то значение, которое нужно получить. В графе «Изменяя значение ячейки» — В1. Здесь должен отобразиться отобранный параметр.
  3. После нажатия ОК отобразится результат подбора. Если нужно его сохранить, вновь нажимаем ОК. В противном случае – «Отмена».

Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».



Как решить систему уравнений матричным методом в Excel

Дана система уравнений:

  1. Значения элементов введем в ячейки Excel в виде таблицы.
  2. Найдем обратную матрицу. Выделим диапазон, куда впоследствии будут помещены элементы матрицы (ориентируемся на количество строк и столбцов в исходной матрице). Открываем список функций (fx). В категории «Математические» находим МОБР. Аргумент – массив ячеек с элементами исходной матрицы.
  3. Нажимаем ОК – в левом верхнем углу диапазона появляется значение. Последовательно жмем кнопку F2 и сочетание клавиш Ctrl + Shift + Enter.
  4. Умножим обратную матрицу Ах-1х на матрицу В (именно в таком порядке следования множителей!). Выделяем диапазон, где впоследствии появятся элементы результирующей матрицы (ориентируемся на число строк и столбцов матрицы В). Открываем диалоговое окно математической функции МУМНОЖ. Первый диапазон – обратная матрица. Второй – матрица В.
  5. Закрываем окно с аргументами функции нажатием кнопки ОК. Последовательно нажимаем кнопку F2 и комбинацию Ctrl + Shift + Enter.

Получены корни уравнений.

Решение системы уравнений методом Крамера в Excel

Возьмем систему уравнений из предыдущего примера:

Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.

Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.

Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).

Определитель системы больше 0 – решение можно найти по формуле Крамера (Dx / |A|).

Для расчета Х1: =U2/$U$1, где U2 – D1. Для расчета Х2: =U3/$U$1. И т.д. Получим корни уравнений:

Решение систем уравнений методом Гаусса в Excel

Для примера возьмем простейшую систему уравнений:

3а + 2в – 5с = -1
2а – в – 3с = 13
а + 2в – с = 9

Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.

Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.

  1. Приведем все коэффициенты при а к 0. Кроме первого уравнения. Скопируем значения в первой строке двух матриц в ячейки В6:Е6. В ячейку В7 введем формулу: =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон В7:Е7. Нажмем F2 и сочетание клавиш Ctrl + Shift + Enter. Мы отняли от второй строки первую, умноженную на отношение первых элементов второго и первого уравнения.
  2. Копируем введенную формулу на 8 и 9 строки. Так мы избавились от коэффициентов перед а. Сохранили только первое уравнение.
  3. Приведем к 0 коэффициенты перед в в третьем и четвертом уравнении. Копируем строки 6 и 7 (только значения). Переносим их ниже, в строки 10 и 11. Эти данные должны остаться неизменными. В ячейку В12 вводим формулу массива.
  4. Прямую прогонку по методу Гаусса сделали. В обратном порядке начнем прогонять с последней строки полученной матрицы. Все элементы данной строки нужно разделить на коэффициент при с. Введем в строку формулу массива: {=B12:E12/D12}.
  5. В строке 15: отнимем от второй строки третью, умноженную на коэффициент при с второй строки ({=(B11:E11-B16:E16*D11)/C11}). В строке 14: от первой строки отнимаем вторую и третью, умноженные на соответствующие коэффициенты ({=(B10:E10-B15:E15*C10-B16:E16*D10)/B10}). В последнем столбце новой матрицы получаем корни уравнения.

Примеры решения уравнений методом итераций в Excel

Вычисления в книге должны быть настроены следующим образом:

Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:

Хn+1 = Xn– F (Xn) / M, n = 0, 1, 2, … .

M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:

f’ (1) = -2 * f’ (2) = -11.

Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х3 – 1. М = 11.

В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).

В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.

Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:

Скачать решения уравнений в Excel

Корень на заданном промежутке один.

exceltable.com

Решение систем уравнений в среде Microsoft Excel

Разделы: Информатика


Цели урока:

обучающие:

  • повторение и закрепление знаний учащихся правил записи арифметических выражений и формул в электронных таблицах;
  • повторение алгоритма решения систем уравнений;
  • формирование знаний и умений в решении систем уравнений, используя возможности электронных таблиц;

развивающие:

  • формирование умений анализировать, выделять главное, сравнивать, строить аналогии;

воспитывающие:

  • осуществление эстетического воспитания;
  • воспитание аккуратности, добросовестности.

Тип урока: урок закрепления изученного материала и объяснения нового.

ХОД УРОКА

I. Организационная часть.

Здравствуйте! Все мы знаем, что одну и ту же информацию можно закодировать любым способом. Перед вами набор чисел. Известно, что каждому числу ставится в соответствие буква в русском алфавите. Расшифруйте эту информацию, кто быстрее!

9

15

1

15

10

6

19

10

13

1

!

!

Ответ: “Знание – сила!”

Молодцы! А знаете, кому принадлежит это выражение? (Если нет, то один ученик ищет ответ в Интернете. Остальные отвечают на вопросы: Для чего предназначена программа Excel? (Программа Excel предназначена для хранения и обработки данных, представленных в табличном виде) Что собой представляет документ в Excel? (Каждый документ в Excel представляет собой набор таблиц – рабочую книгу, которая состоит из одного или многих рабочих листов) Какая функция используется для подсчета суммы чисел? (Функция СУММ). Как определить адрес ячейки? (Excel вводит номера ячеек автоматически. Адрес ячейки составляется как объединение номеров столбца и строки без пробела между ними)

Выражение английского философа Френсиса Бэкона “Знание – сила!” и будет эпиграфом к нашему уроку. («Нравственные и политические очерки», 1597).

II. Повторение пройденного материала.

Мы уже знакомы с программой Microsoft Excel, умеем записывать арифметические выражения и различные формулы, находить значения арифметических выражений и построить графики функций. Чтобы проверить выполнение домашнего задания, предлагаю каждому пройти тестирование. (Приложение 1)

Хорошо, все справились и каждому поставим соответствующие оценки в журнал. А давайте устроим путешествие в математику и вспомним, что мы понимаем под понятием: “Решить систему уравнений”? (Найти такие значения х и у, которые будут удовлетворять и первое уравнение и второе). Какие способы существуют для решения систем уравнений (метод подстановки, метод сложения и графический способ). Сегодня мы с вами научимся решать системы уравнений, используя возможности электронных таблиц.

III. Объяснение нового.

А. Решим систему графическим способом. Преобразуем данную систему

xn--i1abbnckbmcl9fb.xn--p1ai

Как в Excel решить систему линейных уравнений — Трюки и приемы в Microsoft Excel

В этой статье мы расскажем, как использовать формулы для решения систем линейных уравнений.

Вот пример системы линейных уравнений:
3x + 4y = 8
4x + 8y = 1

Решение состоит в нахождении таких значений х и у, которые удовлетворяют обоим уравнениям. Эта система уравнений имеет одно решение:
x = 7,5
y = -3,625

Количество переменных в системе уравнений должно быть равно количеству уравнений. Предыдущий пример использует два уравнения с двумя переменными. Три уравнения требуются для того, чтобы найти значения трех переменных (х,у и z). Общие действия по решению систем уравнений следующие (рис. 128.1).

Рис. 128.1. Использование формулы для решения системы из двух уравнений

  1. Выразите уравнения в стандартной форме. Если это необходимо, используйте основы алгебры и перепишите уравнение так, чтобы все переменные отображались по левую сторону от знака равенства. Следующие два уравнения идентичны, но второе приведено в стандартном виде:
    3x - 8 = -4y
    3x + 4y = 8
    .
  2. Разместите коэффициенты в диапазоне ячеек размером n x n, где n представляет собой количество уравнений. На рис. 128.1 коэффициенты находятся в диапазоне I2:J3.
  3. Разместите константы (числа с правой стороны от знака равенства) в вертикальном диапазоне ячеек. На рис. 128.1 константы находятся в диапазоне L2:L3.
  4. Используйте массив формул для расчета обратной матрицы коэффициентов. На рис. 128.1 следующая формула массива введена в диапазон I6:J7 (не забудьте нажать Ctrl+Shift+Enter, чтобы ввести формулу массива): =МОБР(I2:J3).
  5. Используйте формулу массива для умножения обратной матрицы коэффициентов на матрицу констант. На рис. 128.1 следующая формула массива введена в диапазон J10:JJ11, который содержит решение (x = 7,5 и у = -3,625): =МУМНОЖ(I6:J7;L2:L3). На рис. 128.2 показан лист, настроенный для решения системы из трех уравнений.

Рис. 128.2. В Excel можно решить систему из трех уравнений, применив нужные формулы

Пример решения системы уравнений

Навигация по записям

По теме

Новые публикации

excelexpert.ru

12. Решение систем линейных уравнений в excel

Сначала рассмотрим решение системы линейных уравнений методом Крамера. Для этого используем уже решенный пример 11.

В EXCEL реализована функция вычисления определителей (см. п.7). Запишем матрицу коэффициентов и матрицы, полученные из нее заменой по очереди всех столбцов на столбец свободных членов. Листинг вычислений представлен на рис. 8:

Рис. 8

Матрицы записаны в диапазонах

, а значения определителей – в ячейках . Столбец свободных членов – вG2:G6. Решение системы – в I2:I6.

Тот же пример решим с помощью обратной матрицы. В EXCEL реализованы функции для нахождения обратных матриц и перемножения матриц (см. п.7). Листинг решения представлен на рис. 9. В диапазоне записана матрица коэффициентов, в ячейках– вектор свободных членов, в диапазонеобратная матрица, в ячейках– решение системы, полеченное как результат умножения матрицына матрицу.

Рис. 9

Предложим еще один способ решения линейных систем в EXCELL. Возможно, для систем он не покажется эффективным, однако знакомство с ним полезно для решения задач оптимизации, в частности задач линейного программирования. Инструментом для этого метода служит процедура Поиск решения, которая находится в Надстройках. После вызова процедуры появляется окно, представленное на рис. 11.

Покажем решение системы на примере.

Пример 18. Решить систему

Рис. 10

В ячейки введена матрица коэффициентовуравнений системы, в– коэффициенты последнего уравнения, в ячейкиG3:G6 — столбец свободных членов. Ячейки B1:E1 отведем для значений неизвестных. В ячейках F3:F6 сосчитаем сумму произведений коэффициентов каждого уравнения на неизвестные (для этого воспользуемся встроенной функцией СУММПРОИЗВ). Выберем ячейку F6 в качестве целевой и вызовем процедуру Поиск решения. В окошке установим, что целевая ячейка должна быть равной свободному члену последнего уравнения, и заполним поля. В поле «изменяя ячейки» введем B1:E1. В поле «ограничения» будем вводить первые уравнения. А именно, значение в ячейкеF3 должно равняться заданному значению в ячейке G3 (1-е уравнение). Аналогично добавляем два других уравнения. После заполнения всех полей нажимаем .

Решение системы находится в ячейках B1:E1.

Рис. 11

Индивидуальное задание

Каждый студент выполняет задание при конкретных значениях и, которые определяются по номеру в журнале группы:−первая цифра номера по списку,− вторая. Если номер по списку однозначный.

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0

0

0

0

0

1

1

2

3

4

5

6

7

8

9

0

11

12

13

14

15

16

17

18

19

20

1

1

1

1

1

1

1

1

2

1

2

3

4

5

6

7

8

9

0

21

22

23

24

25

26

27

28

29

30

2

2

2

2

2

2

2

2

2

3

1

2

3

4

5

6

7

8

9

0

1. Вычислить определители:

, ,.

2. Даны матрицы:

,,,.

Вычислить:

  1. , где — единичная матрица;

  2. (вычисления проводить, сохраняя три знака после запятой).

3. Решить матричное уравнение (найти матрицу ).

.

4. Решить системы уравнений двумя способами: по формулам Крамера и с помощью обратной матрицы:

а) б)

5. Исследовать системы уравнений и найти решение, если оно существует:

а)

б)

в)

6. Исследовать и решить системы уравнений:

а)

б)

в)

Приложение

Здесь приведены примеры работы с матрицами и примеры решения систем с использованием математического пакета MATHEMATICA. Первоначально студент должен ознакомиться с работой интерфейса. Для любой работы необходимо знать операции ввода, вывода результатов; команды для выполнения операций.

Ввод данных осуществляется через знак «=». Программа подтверждает ввод строкой «In[1]:=…». Результат выполнения операции находится в строке, начинающейся словом «Out[1]=». Номера в квадратных скобках ввода и вывода совпадают.

Выполнение любой операции происходит по команде со строгим выполнением заданного формата.

Найти эти форматы можно в справке VIRTUALBOOK. Там же приведены примеры выполнения операций. Ниже приведен ряд команд для выполнения заданий по теме.

Ввод матрицы.

In[4]:= m1 = {{2, -5, 4}, {3, -1, 8}, {2, 6, 1}, {-1, 3, 4}} Out[4]= {{2, -5, 4}, {3, -1, 8}, {2, 6, 1}, {-1, 3, 4}}

Имя матрицы m1. Сама матрица вводится построчно с использование фигурных скобок.

Умножение матриц.In[1]:= m2 = {{1, 6, 4}, {-4, -2, 4}, {3, 1, 8}} In[1]:= m3 = {{2, -1, 2, 6}, {-5, 5, -2, 3} Out[1]= {{1, 6, 4}, {-4, -2, 4}, {3, 1, 8}} Out[2]= {{2, -1, 2, 6}, {-5, 5, -2, 3}} In[7]:= m1.m2 Out[7]= {{34, 26, 20}, {31, 28, 72}, {-19, 1, 40}, {-1, -8, 40}}

Команда для умножении «.».

Вычисление определителя.

In[10]:=Det[m2]Out[10]= 252

Матрица m2 введена выше.

Нахождение обратной матрицы.In[8]:=Inverse[m2]Out[8]= {{-(5/63), -(11/63), 8/63}, {11/63, -(1/63), -(5/63)}, {1/126, 17/252, 11/ 126}}

Вычисление собственных чисел и собственных векторов.In[14]:=Eigenvalues[{{1, 2}, {2, 1}}]Out[14]= {3, -1}In[16]:=Eigenvectors[{{1, 2}, {2, 1}}]Out[16]= {{1, 1}, {-1, 1}}

m4 = {{2, 1}, {8, 7}, {3, -5}, {-4, 6}}

Определение ранга матрицы.

In[18]:=MatrixRank[m1]Out[18]= 3

Решение систем линейных уравнений.In[17]:=Solve[{2x+y-z+ 2t== 12, -x+ 2y+ 4z+ 3t== 4, 2x+y+ 4z- 2t== -10,x+ 3y+ 5z+ 2t== 3}, {x,y,z,t}]Out[17]= {{x-> 1,y-> 2,z-> -2,t-> 3}}.

В этом примере система имеет единственное решение. Вместо знака равенства в ответе используется « ->». Ниже система, имеющая множество решений и система, не имеющая решений.

In[20]:= Solve[{x + y + z == 4, 2 x + y + z == 5, 3 x + 2 y + 2 z == 9}, {x, y, z}] Equations may not give solutions for all»solve», In[21]:= Solve[{x + y + z == 4, 2 x + y + z == 5, 3 x + 2 y + 2 z == 10}, {x, y, z}] Out[20]= {{x -> 1, y -> 3 — z}} Out[21]= {}

Наряду со строчной записью ввода вывода использоваться записью матриц и других математических объектов в привычном виде. Для этого можно использовать команду TraditionalForm

Использование традиционной символики.

In[23]:=m= {{1, 2, 3}, {2, 3, 7}, {-8, 6, 4}}

In[24]:= TraditionalForm[m]

Out[23]= {{1, 2, 3}, {2, 3, 7}, {-8, 6, 4}}

Out[24]//TraditionalForm

=

1Элементами матрицы могут быть и другие математические объекты, при этом свойства, рассмотренные для числовых матриц, в основном сохраняются.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *