Построение таблицы истинности для вектора значений A+B+C
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: A∨B:
(A∨B)∨C:
A | B | C | A∨B | (A∨B)∨C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Общая таблица истинности:A | B | C | A∨B | A∨B∨C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции A | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1 F ж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1 Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: Fж = A ⊕ B ⊕ C ⊕ A∧B ⊕ A∧C ⊕ B∧C ⊕ A∧B∧C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений (A@B)*(C+A)
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: A→B:
C∨A:
(A→B)∧(C∨A):
A | B | C | A→B | C∨A | (A→B)∧(C∨A) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Общая таблица истинности:A | B | C | A→B | C∨A | (A→B)∧(C∨A) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧C ∨ ¬A∧B∧C ∨ A∧B∧¬C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨C) ∧ (A∨¬B∨C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0 Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0 Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 0Таким образом, полином Жегалкина будет равен: Fж = C ⊕ A∧B ⊕ A∧C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений B*C+A
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: B∧C:
(B∧C)∨A:
B | C | A | B∧C | (B∧C)∨A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Общая таблица истинности:B | C | A | B∧C | B∧C∨A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
B | C | A | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fсднф = ¬B∧¬C∧A ∨ ¬B∧C∧A ∨ B∧¬C∧A ∨ B∧C∧¬A ∨ B∧C∧A Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
B | C | A | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fскнф = (B∨C∨A) ∧ (B∨¬C∨A) ∧ (¬B∨C∨A) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииB | C | A | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧B ⊕ C010∧C ⊕ C001∧A ⊕ C110∧B∧C ⊕ C101∧B∧A ⊕ C011∧C∧A ⊕ C111∧B∧C∧AТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0 Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0 Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ B∧C ⊕ B∧C∧A Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений A^B^C
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: A⊕B:
(A⊕B)⊕C:
A | B | C | A⊕B | (A⊕B)⊕C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
Общая таблица истинности:A | B | C | A⊕B | A⊕B⊕C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ A∧¬B∧¬C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1 Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1 Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0 Таким образом, полином Жегалкина будет равен: Fж = A ⊕ B ⊕ C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений (!A*B)+C
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: ¬A:
(¬A)∧B:
A | B | ¬A | (¬A)∧B | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
((¬A)∧B)∨C:
A | B | C | ¬A | (¬A)∧B | ((¬A)∧B)∨C | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
Общая таблица истинности:A | B | C | ¬A | (¬A)∧B | (¬A∧B)∨C | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨C) ∧ (¬A∨B∨C) ∧ (¬A∨¬B∨C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0 Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1 Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: Fж = B ⊕ C ⊕ A∧B ⊕ B∧C ⊕ A∧B∧C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений ¬(¬a∨b∧¬c)
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: ¬A:
¬C:
B∧(¬C):
B | C | ¬C | B∧(¬C) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
(¬A)∨(B∧(¬C)):
A | B | C | ¬A | ¬C | B∧(¬C) | (¬A)∨(B∧(¬C)) | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
¬((¬A)∨(B∧(¬C))):
A | B | C | ¬A | ¬C | B∧(¬C) | (¬A)∨(B∧(¬C)) | ¬((¬A)∨(B∧(¬C))) | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
Общая таблица истинности:A | B | C | ¬A | ¬C | B∧(¬C) | (¬A)∨(B∧(¬C)) | ¬(¬A∨B∧¬C) | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fсднф = A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨¬B∨C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1 Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0 Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: Fж = A ⊕ A∧B ⊕ A∧B∧C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений !(A*B*C)*!(A+B)
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы |
Общая таблица истинности:A | B | C | A∧B | (A∧B)∧C | A∨B | ¬((A∧B)∧C) | ¬(A∨B) | ¬(A∧B∧C)∧¬(A∨B) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | Fскнф = (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨C) ∧ (¬A∨¬B∨¬C) Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru