Уравнения линейные методом гаусса – Решение систем линейных уравнений методом Гаусса

Решение систем линейных алгебраических уравнений методом Гаусса — ПриМат

Метод Гаусса

Метод Гаусса — метод последовательного исключения неизвестных, он состоит в приведении данной системы, применяя элементарные преобразования, к ступенчатому виду.

Удобнее всего это делать путем приведения (с помощью элементарных преобразований строк) расширенной матрицы $B$ данной системы к ступенчатой
матрице $B_1$.

Конечная система будет равносильна исходной, так как между элементарными преобразованиями системы и элементарными преобразованиями строк ее расширенной матрицы имеет место быть взаимно однозначное соответствие, а при элементарных преобразованиях системы она переходит в равносильную.

Пример:

Пусть дана система уравнений

$\begin{equation*}
\begin{cases}
2x_1 + x_2 + x_3 = 2\\
x_1 — x_2 = -2\\
3x_1 — x_2 + 2x_3 = 2
\end{cases}
\end{equation*}$

Решение:

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем эту матрицу к ступенчатому виду, а затем далее выполним обратный ход метода Гаусса (сделаем нули выше главной диагонали). Первым делом поменяем первую и вторую строку, чтобы элемент $a_{11}$ равнялся $1$ (это делается для упрощения вычислений):

$A = \left(\begin{matrix}
2 & 1 & 1 \\
1 & -1 & 0 \\
3 & -1 & 2
\end{matrix}\left|
\begin{matrix}
2 \\ -2 \\ 2
\end{matrix}\right)\right.\
\sim~\
\left(\begin{matrix}
1 & -1 & 0 \\
2 & 1 & 1 \\
3 & -1 & 2
\end{matrix}\left|
\begin{matrix}
-2 \\ 2 \\ 2
\end{matrix}\right)\right.\
$

Затем получаем нули под главной диагональю в первом столбце. Для этого от второй строки отнимаем две первых, от третьей — три первых:
$A = \left(\begin{matrix}
1 & -1 & 0 \\
0 & 3 & 1 \\
0 & 2 & 2
\end{matrix}\left|
\begin{matrix}
-2 \\ 6 \\ 8
\end{matrix}\right)\right.\ $

Все элементы третьей строки делим на два (или, что тоже самое, умножаем на $1/2$):

$A = \left(\begin{matrix}
1 & -1 & 0 \\
0 & 3 & 1 \\
0 & 1 & 1
\end{matrix}\left|
\begin{matrix}
-2 \\ 6 \\ 4
\end{matrix}\right)\right.\ $

Затем получаем нули во втором столбце под главной диагональю, для удобства вычислений меняем местами вторую и третью строки, чтобы диагональный элемент равнялся $1$:

$A = \left(\begin{matrix}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 3 & 1
\end{matrix}\left|
\begin{matrix}
-2 \\ 4 \\ 6
\end{matrix}\right)\right.\ $

От третьей строки отнимем вторую, умноженную на $3$:

$A = \left(\begin{matrix}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{matrix}\left|
\begin{matrix}
-2 \\ 4 \\ -6
\end{matrix}\right)\right.\ $

После умножения третей строки на $(-1/2)$ , получаем:

$A = \left(\begin{matrix}
1 & -1 & 0 \\
0 & 1 & 1 \\

0 & 0 & 1
\end{matrix}\left|
\begin{matrix}
-2 \\ 4 \\ 3
\end{matrix}\right)\right.\ $

Выполним теперь обратный ход метода Гаусса, то есть сделаем нули над главной диагональю. Начнем с элементов третьего столбца. Обнуляем элемент $a_{23}$, для этого от второй строки отнимем третью:

$A = \left(\begin{matrix}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{matrix}\left|
\begin{matrix}
-2 \\ 1 \\ 3
\end{matrix}\right)\right.\ $

Следующим действием обнулим недиагональные элементы второго столбца, прибавив к первой строке вторую:

$A = \left(\begin{matrix}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{matrix}\left|
\begin{matrix}
-2 \\ 1 \\ 3
\end{matrix}\right)\right.\ $

Полученной матрице соответствует система

$\begin{equation*}
\begin{cases}
x_1 = -1\\
x_2 = 1\\
x_3 = 2
\end{cases}
\end{equation*}$

Литература:

  • Конспект лекций Г.С. Белозерова
  • Линейная алгебра. Воеводин В.В. М.: Наука. Главная редакция физико-математической литературы, 1980, с.9-13
  • Лекции по общей алгебре (издание второе). Курош А.Г. М.: Наука. Главная редакция физико-математической литературы, 1973, с.14-17

Тест

Лимит времени: 0

Информация

Решите систему уравнений методом Гаусса

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается…

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Правильных ответов: 0 из 1

Ваше время:

Время вышло

Вы набрали 0 из 0 баллов (0)

Средний результат

 

 
Ваш результат

 

 
Ваш результат был записан в таблицу лидеров
  1. С ответом
  2. С отметкой о просмотре

Поделиться ссылкой:

Похожее

ib.mazurok.com

Методы решения нелинейных уравнений и задач линейной алгебры

Одним из самых распространенных итерационных методов, отличающийся простотой и легкостью программирования, является метод ГауссаЗейделя.

Проиллюстрируем сначала этот метод па примере решения системы

(2.27)

Предположим, что диагональные элементы а11, а22, а33отличны от нуля (в противном случае можно переставить уравнения). Выразим неизвестные х1, хх3 соответственно из первого, второго и третьего уравнений системы (2.27):

(2.28)

(2.29)

(2.30)

Зададим некоторые начальные (нулевые) приближения значений неизвестных: Подставляя эти значения в правую часть выражения (2.28), получаем новое (первое) приближение для х1:

Используя это значение для x1 и приближение для х3, находим из (2.29) первое приближение для х2:

И наконец, используя вычисленные значения находим с помощью выражения (2.30) первое приближение для х3:

На этом заканчивается первая итерация решения системы (2.28) — (2.30). Теперь с помощью значений х1(1), х2(1)и х3(1)можно таким же способом провести вторую итерацию, в результате которой будут найдены вторые приближения к решению: х1 = х1 (2), х2 = х2(2)и х3 = х3(2)и т.д.

Приближение с номером kможно вычислить, зная приближение с номером

k– 1, как

Итерационный процесс продолжается до тех пор, пока значения х1(k), х2(k)и х3(k)не станут близкими с заданной погрешностью к значениям х1(k-1), х2(k-1)и х3(k-1).

Пример. Решить с помощью метода Гаусса – Зейделя следующую систему уравнений:

Легко проверить, что решение данной системы следующее: х1 = х2 = х3 = 1.

Решение. Выразим неизвестные х1, хх3соответственно из первого, второго и третьего уравнений:

В качестве начального приближения (как это обычно делается) примем х1= 0, х2 = 0, х3 = 0. Найдем новые приближения неизвестных:

Аналогично вычислим следующие приближения:

Итерационный процесс можно продолжать до получения малой разности между значениями неизвестных в двух последовательных итерациях.

Рассмотрим теперь систему

п линейных уравнений с п неизвестными. Запишем ее в виде

Здесь также будем предполагать, что все диагональные элементы отличны от нуля. Тогда в соответствии с методом Гаусса – Зейделя k-e приближение к решению можно представить в виде

(2.31)

Итерационный процесс продолжается до тех пор, пока все значения не станут близкими к , т.е. критерием завершения итераций является одно из условий (2.21) – (2.24).

Для сходимости итерационного процесса (2.31) достаточно, чтобы модули диагональных коэффициентов для каждого уравнения системы были не меньше сумм модулей всех остальных коэффициентов (преобладание диагональных элементов):

(2.32)

При этом хотя бы для одного уравнения неравенство должно выполняться строго. Эти условия являются достаточными для сходимости метода, но они не являются необходимыми, т.е. для некоторых систем итерации сходятся и при нарушении условий (2.32).

Алгоритм решения системы п линейных уравнений методом Гаусса – Зейделя представлен на рис.2.6. В качестве исходных данных вводят п, коэффициенты и правые части уравнений системы, погрешность ε, максимально допустимое число итераций М, а также начальные приближения переменных xi(i=1,2,…,n).Отметим, что начальные приближения можно не вводить в компьютер, а полагать их равными некоторым значениям (например, нулю). Критерием завершения итераций выбрано условие (2.22), в котором через δобозначена максимальная абсолютная величина разности и :

Для удобства чтения структурограммы объясним другие обозначения: k— порядковый номер итерации; i– номер уравнения, а также переменного, которое вычисляется в соответствующем цикле; j– номер члена вида или в правой части соотношения (2.31). Итерационный процесс прекращается либо при δ < ε, либо при k= М. В последнем случае итерации не сходятся, о чем выдается сообщение. Для завершения цикла, реализующего итерационный процесс, используется переменная l, которая принимает значения 0, 1 и 2, соответственно, при продолжении итераций, при выполнении условия δ < ε и при выполнении условия k = М.

Рис. 2.6. Алгоритм решения системы n линейных уравнений методом Гаусса–Зейделя

3ys.ru

Решение систем линейных уравнений методом Гаусса

Теория

Классическим методом решения систем линейных алгебраических уравнений является метод Гаусса (метод исключений Гаусса). Суть метода — это последовательное исключение неизвестных, т.е. когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находятся все остальные переменные.

Матрица, составленная из все ai,j, называется основной матрицей системы. Если к этой матрице добавить вектор столбец, составленный из bi, то такая матрица называется расширенной матрицей системы.

Теорема Кронекера-Капелли (условие совместности системы): системат совместна тогда и только тогда, ранг ее основной матрицы равен рангу ее расширенной матрицы.

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа:

  • На первом этапе (прямой ход) система приводится ступенчатой или треугольной форме. Вычтем из второго уравнения системы первое, умноженное на такое число, чтобы обнулился коэффициент при x1. Затем таким же образом вычтем первое уравнение из третьего, четвертого и т.д. Тогда исключаются все коэффициенты первого столбца, лежащие ниже главной диагонали. Затем при помощи второго уравнения исключим из третьего, четвертого и т.д. уравнений коэффициенты второго столбца. Последовательно продолжая этот процесс, исключим из матрицы все коэффициенты, лежащие ниже главной даигонали.
  • На втором этапе (обратный ход) выражаем все получившиеся базисные переменные через небазисные и построим фундаментальную систему решений. Если все переменные являются базисными, то получим единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

www.math.by

Системы линейных уравнений. Метод Гаусса

Рассмотрим систему линейных уравнений:

   

С этой системой связываются две матрицы: матрица коэффициентов

   

и расширенная матрица — с присоединенными свободными членами:

   

Элементарными преобразованиями системы линейных уравнений называются:

1. умножение уравнения на отличное от нуля число;

2. прибавление к одному уравнению любого другого, умноженного на любое число;

3. перестановка уравнений местами.

Теорема. Любая система линейных уравнений с помощью элементарных преобразований и, может быть, изменением нумерации неизвестных, может быть приведена к системе с трапециевидной матрицей.

Доказательство. Проводим элементарные преобразования только над строками матрицы , как в доказательстве теоремы о ранге матрицы. Возможно, при этом придется изменить нумерацию неизвестных. Приводим систему уравнений к виду

   

Если хотя бы одно из чисел отлично от нуля, то данная система уравнений решений не имеет (несовместна). Если же все они равны нулю, то последние равенств не несут никакой информации и могут быть отброшены. Тогда, если , то неизвестным можно придавать произвольные значения, а неизвестные находим из решения системы с треугольной матрицей

   

Эту систему удобно решать, определив из -го уравнения , затем из -го и т.д. Таким образом, можно выразить переменные через и получить общее решение системы. Если , то система (в случае совместности) имеет единственное решение.

Преобразование системы уравнений к системе с трапециевидной матрицей называется прямым ходом метода Гаусса. Последовательное вычисление неизвестных в порядке называется обратным ходом.

Пример. Решить систему линейных уравнений

   

Решение. Составим расширенную матрицу системы:

   

Первую строку умножим на 3 и вычтем из второй. Затем первую строку умножим на 2 и вычтем из третьей. Получим

   

Далее вторую строку прибавим к третьей и отбросим нулевую строку, получим

   

Запишем полученные уравнения:

   

Из второго уравнения выразим :

   

Полученное выражение подставляем в первое уравнение и выражаем из него :

   

Ответ. Общее решение данной системы:

   

Задачи.

1. Решите систему линейных уравнений

   

2. Решите систему линейных уравнений

   

3. Решите систему линейных уравнений

   

hijos.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *