Дайте определение параллелограмма и выполнить рисунок. Свойство диагоналей параллелограмма
1. Определение параллелограмма.
Если пару параллельных прямых пересечём другой парой параллельных прямых, то получим четырёхугольник, у которого противоположные стороны попарно параллельны.
В четырёхугольниках ABDС и ЕFNМ (рис. 224) ВD || АС и AB || СD;
ЕF || МN и ЕМ || FN.
Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
2. Свойства параллелограмма.
Теорема . Диагональ параллелограмма делит его на два равных треугольника.
Пусть имеется параллелограмм ABDС (рис. 225), в котором AB || СD и АС || ВD.
Требуется доказать, что диагональ делит его на два равных треугольника.
Проведём в параллелограмме ABDС диагональ СВ. Докажем, что \(\Delta\)CAB = \(\Delta\)СDВ.
Сторона СВ общая для этих треугольников; ∠ABC = ∠BCD, как внутренние накрест лежащие углы при параллельных AB и СD и секущей СВ; ∠ACB = ∠СВD, тоже как внутренние накрест лежащие углы при параллельных АС и ВD и секущей CB.
Отсюда \(\Delta\)CAB = \(\Delta\)СDВ.
Таким же путём можно доказать, что диагональ AD разделит параллелограмм на два равных треугольника АСD и ABD.
Следствия:
1 . Противоположные углы параллелограмма равны между собой.
∠А = ∠D, это следует из равенства треугольников CAB и СDВ.
Аналогично и ∠С = ∠В.
2. Противоположные стороны параллелограмма равны между собой.
AB = СD и АС = ВD, так как это стороны равных треугольников и лежат против равных углов.
Теорема 2. Диагонали параллелограмма в точке их пересечения делятся пополам.
Пусть BC и AD — диагонали параллелограмма AВDС (рис. 226). Докажем, что АО = OD и СО = OB.
Для этого сравним какую-нибудь пару противоположно расположенных треугольников, например \(\Delta\)AOB и \(\Delta\)СОD.
В этих треугольниках AB = СD, как противоположные стороны параллелограмма;
∠1 = ∠2, как углы внутренние накрест лежащие при параллельных AB и СD и секущей AD;
∠3 = ∠4 по той же причине, так как AB || СD и СВ — их секущая.
Отсюда следует, что \(\Delta\)AOB = \(\Delta\)СОD. А в равных треугольниках против равных углов лежат равные стороны. Следовательно, АО = OD и СО = OB.
Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма, равна 180° .
В параллелограмме ABCD проведем диагональ АС и получим два треугольника ABC и ADC.
Треугольники равны, так как ∠1 = ∠4, ∠2 = ∠3 (накрест лежащие углы при параллельных прямых), а сторона АС общая.
Из равенства \(\Delta\)ABC = \(\Delta\)ADC следует, что AB = CD, BC = AD, ∠B = ∠D.
Сумма углов, прилежащих к одной стороне, например углов А и D, равна 180° как односторонних при параллельных прямых.
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!
Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.
Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.
Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.
Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.
Муниципальное бюджетное общеобразовательное учреждение
Савинская средняя общеобразовательная школа
Исследовательская работа
Параллелограмм и его новые свойства
Выполнила: ученица 8Б класса
МБОУ Савинская СОШ
Кузнецова Светлана,14 лет
Руководитель: учитель математики
Тульчевская Н. А.
п. Савино
Ивановская область, Россия
2016г.
I . Введение __________________________________________________стр 3
II . Из истории параллелограмма ___________________________________стр 4
III Дополнительные свойства параллелограмма ______________________стр 4
IV . Доказательство свойств _____________________________________ стр 5
V . Решение задач с использованием дополнительных свойств __________стр 8
VI . Применение свойств параллелограмма в жизни ___________________стр 11
VII . Заключение _________________________________________________стр 12
VIII . Литература _________________________________________________стр 13
Введение
«Среди равных умов
при одинаковости прочих условий
превосходит тот, кто знает геометрию»
(Блез Паскаль).
Во время изучения темы «Параллелограмм» на уроках геометрии мы рассмотрели два свойства параллелограмма и три признака, но когда мы начали решать задачи, то оказалось, что этого недостаточно.
У меня возник вопрос, а есть ли у параллелограмма еще свойства, и как они помогут при решении задач.
И я решила изучить дополнительные свойства параллелограмма и показать, как их можно применить для решения задач.
Предмет исследования : параллелограмм
Объект исследования : свойства параллелограмма
Цель работы:
формулировка и доказательство дополнительных свойств параллелограмма, которые не изучаются в школе;
применение этих свойств для решения задач.
Задачи:
Найти дополнительную литературу по исследуемому вопросу;
Изучить дополнительные свойства параллелограмма и доказать их;
Показать применение этих свойств для решения задач;
Рассмотреть применение свойств параллелограмма в жизни.
Методы исследования:
Работа с учебной и научно – популярной литературой, ресурсами сети Интернет;
Изучение теоретического материала;
Выделение круга задач, которые можно решать с использованием дополнительных свойств параллелограмма;
Наблюдение, сравнение, анализ, аналогия.
Продолжительность исследования : 3 месяца: январь-март 2016г
Из истории параллелограмма
В учебнике геометрии мы читаем следующее определение параллелограмма: параллелограмм – это такой четырехугольник, у которого противоположные стороны попарно параллельны
Слово «параллелограмм» переводится как «параллельные линии» (от греческих слов Parallelos — параллельный и gramme — линия), этот термин был введен Евклидом. В своей книге «Начала» Евклид доказал следующие свойства параллелограмма: противоположные стороны и углы параллелограмма равны, а диагональ делит его пополам. О точке пересечения параллелограмма Евклид не упоминает. Только к концу средних веков была разработана полная теория параллелограммов И лишь в XVII веке в учебниках появились теоремы о параллелограммах, которые доказываются с помощью теоремы Евклида о свойствах параллелограмма.
III Дополнительные свойства параллелограмма
В учебнике по геометрии даны только 2 свойства параллелограмма:
Противоположные углы и стороны равны
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
В различных источниках по геометрии можно встретить следующие дополнительные свойства:
Сумма соседних углов параллелограмма равна 180 0
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник;
Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых;
Биссектрисы соседних углов параллелограмма пересекаются под прямым углом;
Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник;
Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.
Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.
Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.
IV Доказательство свойств параллелограмма
Сумма соседних углов параллелограмма равна 180 0
Дано :
ABCD – параллелограмм
Доказать:
A
+
B
=
Доказательство:
А и
B
–внутренние односторонние углы при параллельных прямых ВС АD
и секущей АВ, значит,
A
+
B
=
2
Дано: АBCD — параллелограмм,
АК -биссектриса
А.
Доказать: АВК – равнобедренный
Доказательство:
1)
1=
3 (накрест лежащие при ВСAD
и секущей AK
),
2)
2=
3 т. к. АК – биссектриса,
значит 1=
2.
3) АВК – равнобедренный т. к. 2 угла треугольника равны
. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник
3
Дано: АВСD – параллелограмм,
АК – биссектриса A,
СР — биссектриса C.
Доказать: АК ║ СР
Доказательство:
1) 1=2 т. к. АК-биссектриса
2) 4=5 т.к. СР – биссектриса
3) 3=1 (накрест лежащие углы при
ВС ║ АD и АК-секущей),
4) A =C (по свойству параллелограмма), значит2=3=4=5.
4) Из п. 3 и 4 следует, что 1=4, а эти углы соответственные при прямых АК и СР и секущей ВС,
значит, АК ║ СР (по признаку параллельности прямых)
. Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых
Биссектрисы соседних углов параллелограмма пересекаются под прямым углом
Дано: АВСD — параллелограмм,
АК-биссектриса A,
DР-биссектриса D
Доказать: DР АК.
Доказательство:
1) 1=2, т.к. АК — биссектриса
Пусть, 1=2=x, тогда А=2x,
2) 3=4, т.к. D Р – биссектриса
Пусть, 3=4= у, тогда D =2y
3) A +D =180 0 , т.к. сумма соседних углов параллелограмма равна 180
2) Рассмотрим A ОD
1+3=90 0 , тогда
5. Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник
Дано: АВСD — параллелограмм, АК-биссектриса A,
DР-биссектриса D,
CM -биссектриса C ,
BF -биссектриса B .
Доказать : KRNS -прямоугольник
Доказательство:
Исходя из предыдущего свойства 8=7=6=5=90 0 ,
значит KRNS -прямоугольник.
Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.
Дано: ABCD-параллелограмм, АС-диагональ.
ВК АС, DPAC
Доказать: BК=DР
Доказательство: 1)DCР=КAB, как внутренние накрест лежащие при АВ ║ СD и секущей АС.
2) AКB=CDР (по стороне и двум прилежащим к ней углам АВ=СD CD Р=AB К).
А в равных треугольниках соответственные стороны равны, значит DР=BК.
Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.
Дано: ABCD-параллелограмм.
Доказать: ВКDР – параллелограмм.
Доказательство:
1) BР=КD (AD=BC, точки К и Р
делят эти стороны пополам)
2) ВР ║ КD (лежат на АD BC)
Если в четырехугольнике противоположные стороны равны и параллельны, значит, этот четырехугольник -параллелограмм.
Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.
Дано: ABCD – параллелограмм. BD и AC — диагонали.
Доказать: АС 2 +ВD 2 =2(AB 2 + AD 2 )
Доказательство: 1)АСК: AC ²=
+
2)B Р D : BD 2 = B Р 2 + Р D 2 (по теореме Пифагора)
3) AC ²+ BD ²=СК²+ A К²+ B Р²+Р D ²
4) СК = ВР = Н (высота)
5) АС 2 +В D 2 = H 2 + A К 2 + H 2 +Р D 2
6) Пусть D К= A Р=х , тогда C К D : H 2 = CD 2 – х 2 по теореме Пифагора)
7) АС²+В D ² = С D 2 — х²+ АК 1 ²+ CD 2 -х 2 +Р D 2 ,
АС²+В D ²=2С D 2 -2х 2 + A К 2 +Р D 2
8) A К =AD+ х , Р D=AD- х ,
АС²+В D ² =2 CD 2 -2х 2 +(AD +х) 2 +(AD -х) 2 ,
АС ²+ В D²=2 С D²-2 х ² +AD 2 +2AD х + х 2 +AD 2 -2AD х + х 2 ,
АС ²+ В D²=2CD 2 +2AD 2 =2(CD 2 +AD 2 ).
V . Решение задач с использованием этих свойств
Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5 . Найдите его большую сторону.
Дано: ABCD – параллелограмм,
АК – биссектриса
А,
D
К – биссектриса
D
, АВ=5
Найти : ВС
ешение
Решение
Т.к. АК — биссектриса
А, то АВК – равнобедренный.
Т.к. D
К – биссектриса
D
, то DCK
— равнобедренный
DC =C К= 5
Тогда, ВС=ВК+СК=5+5 = 10
Ответ: 10
2. Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см.
1 случай
Дано:
А,
ВК=14 см, КС=7 см
Найти: Р параллелограмма
Решение
ВС=ВК+КС=14+7=21 (см)
Т. к. АК – биссектриса
А, то АВК – равнобедренный.
АВ=ВК= 14 см
Тогда Р=2 (14+21) =70 (см)
случай
Дано: ABCD – параллелограмм,
D
К – биссектриса
D
,
ВК=14 см, КС=7 см
Найти : Р параллелограмма
Решение
ВС=ВК+КС=14+7=21 (см)
Т.к. D
К – биссектриса
D
, то DCK
— равнобедренный
DC =C К= 7
Тогда, Р= 2 (21+7) = 56 (см)
Ответ: 70см или 56 см
3.Стороны параллелограмма равны 10 см и 3 см. Биссектрисы двух углов, прилежащих к большей стороне, делят противоположную сторону на три отрезка. Найдите эти отрезки.
1 случай: биссектрисы пересекаются вне параллелограмма
Дано: ABCD
– параллелограмм, АК – биссектриса
А,
D
К – биссектриса
D
, АВ=3 см, ВС=10 см
Найти : ВМ, МN , NC
Решение
Т.к. АМ — биссектриса
А, то АВМ – равнобедренный.
Т.к. DN
– биссектриса
D
, то DCN
— равнобедренный
DC =CN = 3
Тогда, МN = 10 – (BM +NC ) = 10 – (3+3)=4 см
2 случай: биссектрисы пересекаются внутри параллелограмма
Т. к. АN
— биссектриса
А, то АВN
– равнобедренный.
АВ=В N = 3 D
А раздвижную решетку – отодвигать на необходимое расстояние в дверном проеме
Параллелограммный механизм — четырёхзвенный механизм, звенья которого составляют параллелограмм. Применяется для реализации поступательного движения шарнирными механизмами.
Параллелограмм с неподвижным звеном — одно звено неподвижно, противоположное совершает качательное движение, оставаясь параллельным неподвижному. Два параллелограмма, соединённых друг за другом, дают конечному звену две степени свободы, оставляя его параллельным неподвижному.
Примеры: стеклоочистители автобусов, погрузчики, штативы, подвесы, автомобильные подвески.
Параллелограмм с неподвижным шарниром — используется свойство параллелограмма сохранять постоянное соотношение расстояний между тремя точками. Пример: чертёжный пантограф — прибор для масштабирования чертежей.
Ромб — все звенья одинаковой длины, приближение (стягивание) пары противоположных шарниров приводит к раздвиганию двух других шарниров. Все звенья работают на сжатие.
Примеры — автомобильный ромбовидный домкрат, трамвайный пантограф.
Ножничный или X-образный механизм , также известный как Нюрнбергские ножницы — вариант ромба — два звена, соединённые посередине шарниром. Достоинства механизма — компактность и простота, недостаток — наличие двух пар скольжения. Два (и более) таких механизма, соединённые последовательно, образуют в середине ромб(ы). Применяется в подъёмниках, детских игрушках.
VII Заключение
Кто с детских лет занимается математикой,
тот развивает внимание, тренирует свой мозг,
свою волю, воспитывает в себе настойчивость
и упорство в достижении цели
А. Маркушевич
В ходе работы я доказала дополнительные свойства параллелограмма.
Я убедилась, что применяя эти свойства, можно решать задачи быстрее.
Я показала, как применяются эти свойства на примерах решения конкретных задач.
Я узнала много нового о параллелограмме, чего нет в нашем учебнике геометрии
Я убедилась в том, что знания геометрии очень важны в жизни на примерах применения свойств параллелограмма.
Цель моей исследовательской работы выполнена.
О том, насколько важны математические знания, говорит тот факт, что была учреждена премия тому, кто издаст книгу о человеке, который всю жизнь прожил без помощи математики. Эту премию до сих пор не получил ни один человек.
VIII Литература
ПогореловА.В. Геометрия 7-9: учебник для общеобразоват. учреждений-М.: Просвещение, 2014г
Л.С.Атанасян и др. Геометрия. Доп. Главы к учебнику 8 кл.: учеб. пособие для учащихся школ и классов с углубл. изуч.математики. – М.: Вита-пресс, 2003
Ресурсы сети Интернет
материалы Википедии
Доказательство
Первым делом проведем диагональ AC . Получаются два треугольника: ABC и ADC .
Так как ABCD — параллелограмм, то справедливо следующее:
AD || BC \Rightarrow \angle 1 = \angle 2 как лежащие накрест.
AB || CD \Rightarrow \angle3 = \angle 4 как лежащие накрест.
Следовательно, \triangle ABC = \triangle ADC (по второму признаку: и AC — общая).
И, значит, \triangle ABC = \triangle ADC , то AB = CD и AD = BC .
Доказано!
2. Противоположные углы тождественны.
Доказательство
Согласно доказательству свойства 1 мы знаем, что \angle 1 = \angle 2, \angle 3 = \angle 4 . Таким образом сумма противоположных углов равна: \angle 1 + \angle 3 = \angle 2 + \angle 4 . Учитывая, что \triangle ABC = \triangle ADC получаем \angle A = \angle C , \angle B = \angle D .
Доказано!
3. Диагонали разделены пополам точкой пересечения.
Доказательство
Проведем еще одну диагональ.
По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD . Еще раз отметим накрест лежащие равные углы.
Таким образом видно, что \triangle AOB = \triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов \angle 2 и \angle 1 ) и AO = OC (напротив углов \angle 3 и \angle 4 соответственно).
Доказано!
Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.
Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.
1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.
AB = CD ; AB || CD \Rightarrow ABCD — параллелограмм.
Доказательство
Рассмотрим подробнее. Почему AD || BC ?
\triangle ABC = \triangle ADC по свойству 1 : AB = CD , AC — общая и \angle 1 = \angle 2 как накрест лежащие при параллельных AB и CD и секущей AC .
Но если \triangle ABC = \triangle ADC , то \angle 3 = \angle 4 (лежат напротив AB и CD соответственно). {\circ} говорит и о том, что AD || BC .
При этом \alpha и \beta — внутренние односторонние при секущей AD . И это значит AB || CD .
Третий признак верен.
4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.
AO = OC ; BO = OD \Rightarrow параллелограмм.
Доказательство
BO = OD ; AO = OC , \angle 1 = \angle 2 как вертикальные \Rightarrow \triangle AOB = \triangle COD , \Rightarrow \angle 3 = \angle 4 , и \Rightarrow AB || CD .
Аналогично BO = OD ; AO = OC , \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8 , и \Rightarrow AD || BC .
Четвертый признак верен.
Равны ли стороны параллелограмма. Что такое параллелограмм
Для того, чтобы определить является ли данная фигура параллелограммом существует ряд признаков. Рассмотрим три основных признака параллелограмма.
1 признак параллелограмма
Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
Доказательство:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти треугольники равны между собой по двум сторонам и углу между ними (BD — общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.
А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
2 признак параллелограмма
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
Доказательство:
Рассмотрим четырехугольник ABCD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти два треугольника буду равны между собой по трем сторонам (BD — общая сторона, AB = CD и BC = AD по условию). Из этого можно сделать вывод, что угол1 = угол2. Отсюда следует, что AB параллельна CD. А так как AB = CD и AB параллельна CD, то по первому признаку параллелограмма, четырехугольник ABCD будет являться параллелограммом.
3 признак параллелограмма
Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.
Треугольники AOB и COD будут равны между собой, по первому признаку равенства треугольников. (AO = OC, BO = OD по условию, угол AOB = угол COD как вертикальные углы.) Следовательно, AB = CD и угол1 = угол 2. Из равенства углов 1 и 2 имеем, что AB параллельна CD. Тогда имеем, что в четырехугольнике ABCD стороны AB равны CD и параллельны, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.
Параллелограмм представляет собой четырехугольник, у которого противоположные стороны попарно параллельны. Это определение уже достаточно, так как остальные свойства параллелограмма следуют из него и доказываются в виде теорем.
Основными свойствами параллелограмма являются:
- параллелограмм — это выпуклый четырехугольник;
- у параллелограмма противоположные стороны попарно равны;
- у параллелограмма противоположные углы попарно равны;
- диагонали параллелограмма точкой пересечения делятся пополам.
Параллелограмм — выпуклый четырехугольник
Докажем сначала теорему о том, что параллелограмм является выпуклым четырехугольником . Многоугольник является выпуклым тогда, когда какая бы его сторона не была продлена до прямой, все остальные стороны многоугольника окажутся по одну сторону от этой прямой.
Пусть дан параллелограмм ABCD, у которого AB противоположная сторона для CD, а BC — противоположная для AD. Тогда из определения параллелограмма следует, что AB || CD, BC || AD.
У параллельных отрезков нет общих точек, они не пересекаются. Это значит, что CD лежит по одну сторону от AB. Поскольку отрезок BC соединяет точку B отрезка AB с точкой C отрезка CD, а отрезок AD соединяет другие точки AB и CD, то отрезки BC и AD также лежат по ту же сторону от прямой AB, где лежит CD. Таким образом, все три стороны — CD, BC, AD — лежат по одну сторону от AB.
Аналогично доказывается, что по отношению к другим сторонам параллелограмма три остальные стороны лежат с одной стороны.
Противоположные стороны и углы равны
Одним из свойств параллелограмма является то, что в параллелограмме противоположные стороны и противоположные углы попарно равны . Например, если дан параллелограмм ABCD, то у него AB = CD, AD = BC, ∠A = ∠C, ∠B = ∠D. Доказывается эта теорема следующим образом.
Параллелограмм является четырехугольником. Значит, у него две диагонали. Так как параллелограмм — это выпуклый четырехугольник, то любая из них делит его на два треугольника. Рассмотрим в параллелограмме ABCD треугольники ABC и ADC, полученные в результате проведения диагонали AC.
У этих треугольников одна сторона общая — AC. Угол BCA равен углу CAD, как вертикальные при параллельных BC и AD. Углы BAC и ACD также равны как вертикальные при параллельных AB и CD. Следовательно, ∆ABC = ∆ADC по двум углам и стороне между ними.
В этих треугольниках стороне AB соответствует сторона CD, а стороне BC соответствует AD. Следовательно, AB = CD и BC = AD.
Углу B соответствует угол D, т. е. ∠B = ∠D. Угол A параллелограмма представляет собой сумму двух углов — ∠BAC и ∠CAD. Угол же C равен состоит из ∠BCA и ∠ACD. Так как пары углов равны друг другу, то ∠A = ∠C.
Таким образом, доказано, что в параллелограмме противоположные стороны и углы равны.
Диагонали делятся пополам
Так как параллелограмм — это выпуклый четырехугольник, то у него две две диагонали, и они пересекаются. Пусть дан параллелограмм ABCD, его диагонали AC и BD пересекаются в точке E. Рассмотрим образованные ими треугольники ABE и CDE.
У этих треугольников стороны AB и CD равны как противоположные стороны параллелограмма. Угол ABE равен углу CDE как накрест лежащие при параллельных прямых AB и CD. По этой же причине ∠BAE = ∠DCE. Значит, ∆ABE = ∆CDE по двум углам и стороне между ними.
Также можно заметить, что углы AEB и CED вертикальные, а следовательно, тоже равны друг другу.
Так как треугольники ABE и CDE равны друг другу, то равны и все их соответствующие элементы. Стороне AE первого треугольника соответствует сторона CE второго, значит, AE = CE. Аналогично BE = DE. Каждая пара равных отрезков составляет диагональ параллелограмма. Таким образом доказано, что диагонали параллелограмма делятся точкой пересечения пополам .
При решении задач по данной теме кроме основных свойств параллелограмма и соответственных формул можно запомнить и применять следующее:
- Биссектриса внутреннего угла параллелограмма отсекает от него равнобедренный треугольник
- Биссектрисы внутренних углов прилежащие к одной из сторон параллелограмма взаимно перпендикулярные
- Биссектрисы, выходящие из противоположных внутренних углов параллелограмма, параллельные между собой либо лежат на одной прямой
- Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
- Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними
Рассмотрим задачи, при решении которых используются данные свойства.
Задача 1.
Биссектриса угла С параллелограмма АВСD пересекает сторону АD в точке М и продолжение стороны АВ за точку А в точке Е. Найдите периметр параллелограмма, если АЕ = 4, DМ = 3.
Решение.
1. Треугольник СМD равнобедренный. (Свойство 1). Следовательно, СD = МD = 3 см.
2. Треугольник ЕАМ равнобедренный.
Следовательно, АЕ = АМ = 4 см.
3. АD = АМ + МD = 7 см.
4. Периметр АВСD = 20 см.
Ответ. 20 см.
Задача 2.
В выпуклом четырёхугольнике АВСD проведены диагонали. Известно, что площади треугольников АВD, АСD, ВСD равны. Докажите, что данный четырёхугольник является параллелограммом.
Решение.
1. Пусть ВЕ – высота треугольника АВD, СF – высота треугольника АCD. Так как по условию задачи площади треугольников равны и у них общее основание АD, то высоты этих треугольников равны. ВЕ = СF.
2. ВЕ, СF перпендикулярны АD. Точки В и С расположены по одну сторону относительно прямой АD. ВЕ = СF. Следовательно, прямая ВС || AD. (*)
3. Пусть АL – высота треугольника АСD, BK – высота треугольника BCD. Так как по условию задачи площади треугольников равны и у них общее основание СD, то высоты этих треугольников равны. АL = BK.
4. АL и BK перпендикулярны СD. Точки В и А расположены по одну сторону относительно прямой СD. АL = BK. Следовательно, прямая АВ || СD (**)
5. Из условий (*), (**) вытекает – АВСD параллелограмм.
Ответ. Доказано. АВСD – параллелограмм.
Задача 3.
На сторонах ВС и СD параллелограмма АВСD отмечены точки М и Н соответственно так, что отрезки ВМ и НD пересекаются в точке О;
Решение.
1. В треугольнике DОМ
2. В прямоугольном треугольнике DНС
(
Тогда (Так как в прямоугольном треугольнике катет, который лежит против угла в 30 о, равен половине гипотенузы).
Но СD = АВ. Тогда АВ: НD = 2: 1.
3.
4.
Ответ: АВ: НD = 2: 1,
Задача 4.
Одна из диагоналей параллелограмма длиною 4√6, составляет с основанием угол 60 о, а вторая диагональ составляет с тем же основанием угол 45 о. Найти вторую диагональ.
Решение.
1. АО = 2√6.
2. К треугольнику АОD применим теорему синусов.
АО/sin D = OD/sin А.
2√6/sin 45 о = OD/sin 60 о.
ОD = (2√6sin 60 о) / sin 45 о = (2√6 · √3/2) / (√2/2) = 2√18/√2 = 6.
Ответ: 12.
Задача 5.
У параллелограмма со сторонами 5√2 и 7√2 меньший угол между диагоналями равен меньшему углу параллелограмма. Найдите сумму длин диагоналей.
Решение.
Пусть d 1 , d 2 – диагонали параллелограмма, а угол между диагоналями и меньший угол параллелограмма равен ф.
1. Посчитаем двумя разными
способами его площадь.
S ABCD = AB · AD · sin A = 5√2 · 7√2 · sin ф,
S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin ф.
Получим равенство 5√2 · 7√2 · sin ф = 1/2d 1 d 2 sin ф или
2 · 5√2 · 7√2 = d 1 d 2 ;
2. Используя соотношение между сторонами и диагоналями параллелограмма запишем равенство
(АВ 2 + АD 2) · 2 = АС 2 + ВD 2 .
((5√2) 2 + (7√2) 2) · 2 = d 1 2 + d 2 2 .
d 1 2 + d 2 2 = 296.
3. Составим систему:
{d 1 2 + d 2 2 = 296,
{d 1 + d 2 = 140.
Умножим второе уравнение системы на 2 и сложим с первым.
Получим (d 1 + d 2) 2 = 576. Отсюда Id 1 + d 2 I = 24.
Так как d 1 , d 2 – длины диагоналей параллелограмма, то d 1 + d 2 = 24.
Ответ: 24.
Задача 6.
Стороны параллелограмма 4 и 6. Острый угол между диагоналями равен 45 о. Найдите площадь параллелограмма.
Решение.
1. Из треугольника АОВ, используя теорему косинусов, запишем соотношение между стороной параллелограмма и диагоналями.
АВ 2 = АО 2 + ВО 2 2 · АО · ВО · cos АОВ.
4 2 = (d 1 /2) 2 + (d 2 /2) 2 – 2 · (d 1 /2) · (d 2 /2)cos 45 о;
d 1 2 /4 + d 2 2 /4 – 2 · (d 1 /2) · (d 2 /2)√2/2 = 16.
d 1 2 + d 2 2 – d 1 · d 2 √2 = 64.
2. Аналогично запишем соотношение для треугольника АОD.
Учтем, что
Получим уравнение d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.
3. Имеем систему
{d 1 2 + d 2 2 – d 1 · d 2 √2 = 64,
{d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.
Вычитая из второго уравнения первое, получим 2d 1 · d 2 √2 = 80 или
d 1 · d 2 = 80/(2√2) = 20√2
4. S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin α = 1/2 · 20√2 · √2/2 = 10.
Примечание: В этой и в предыдущей задаче нет надобности, решать полностью систему, предвидя то, что в данной задаче для вычисления площади нам нужно произведение диагоналей.
Ответ: 10.
Задача 7.
Площадь параллелограмма равна 96, а его стороны равны 8 и 15. Найдите квадрат меньшей диагонали.
Решение.
1. S ABCD = AВ · АD · sin ВAD. Сделаем подстановку в формулу.
Получим 96 = 8 · 15 · sin ВAD. Отсюда sin ВAD = 4 / 5 .
2. Найдём cos ВАD. sin 2 ВAD + cos 2 ВАD = 1.
(4 / 5) 2 + cos 2 ВАD = 1. cos 2 ВАD = 9 / 25 .
По условию задачи мы находим длину меньшей диагонали. Диагональ ВD будет меньшей, если угол ВАD острый. Тогда cos ВАD = 3 / 5.
3. Из треугольника АВD по теореме косинусов найдём квадрат диагонали ВD.
ВD 2 = АВ 2 + АD 2 – 2 · АВ · ВD · cos ВАD.
ВD 2 = 8 2 + 15 2 – 2 · 8 · 15 · 3 / 5 = 145.
Ответ: 145.
Остались вопросы? Не знаете, как решить геометрическую задачу?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Понятие параллелограмма
Определение 1
Параллелограмм — это четырехугольник, в котором противоположные стороны параллельны между собой (рис. 1).
Рисунок 1.
Параллелограмм имеет два основных свойства. Рассмотрим их без доказательства.
Свойство 1: Противоположные стороны и углы параллелограмма равны, соответственно, между собой.
Свойство 2: Диагонали, проведенные в параллелограмме, делятся пополам их точкой пересечения.
Признаки параллелограмма
Рассмотрим три признака параллелограмма и представим их в виде теорем.
Теорема 1
Если две стороны четырехугольника равны между собой, а также параллельны, то этот четырехугольник будет параллелограммом.
Доказательство.
Пусть нам дан четырехугольник $ABCD$. В котором $AB||CD$ и $AB=CD$ Проведем в нем диагональ $AC$ (рис. 2).
Рисунок 2.
Рассмотрим параллельные прямые $AB$ и $CD$ и их секущую $AC$. Тогда
\[\angle CAB=\angle DCA\]
как накрест лежащие углы.
По $I$ признаку равенства треугольников,
так как $AC$ — их общая сторона, а $AB=CD$ по условию. Значит
\[\angle DAC=\angle ACB\]
Рассмотрим прямые $AD$ и $CB$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AD||CB$. }Следовательно, по определению $1$, данный четырехугольник является параллелограммом.
Теорема доказана.
Теорема 2
Если противоположные стороны четырехугольника равны между собой, то он является параллелограммом.
Доказательство.
Пусть нам дан четырехугольник $ABCD$. В котором $AD=BC$ и $AB=CD$. Проведем в нем диагональ $AC$ (рис. 3).
Рисунок 3.
Так как $AD=BC$, $AB=CD$, а $AC$ — общая сторона, то по $III$ признаку равенства треугольников,
\[\triangle DAC=\triangle ACB\]
\[\angle DAC=\angle ACB\]
Рассмотрим прямые $AD$ и $CB$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AD||CB$. Следовательно, по определению $1$, данный четырехугольник является параллелограммом.
\[\angle DCA=\angle CAB\]
Рассмотрим прямые $AB$ и $CD$ и их секущую $AC$, по последнему равенству накрест лежащих углов получим, что $AB||CD$. Следовательно, по определению 1, данный четырехугольник является параллелограммом.
Теорема доказана.
Теорема 3
Если диагонали, проведенные в четырехугольнике, своей точкой пересечения делятся на две равные части, то этот четырехугольник является параллелограммом.
Доказательство.
Пусть нам дан четырехугольник $ABCD$. Проведем в нем диагонали $AC$ и $BD$. Пусть они пересекаются в точке $O$ (рис. 4).
Рисунок 4.
Так как, по условию $BO=OD,\ AO=OC$, а углы $\angle COB=\angle DOA$ как вертикальные, то, по $I$ признаку равенства треугольников,
\[\triangle BOC=\triangle AOD\]
\[\angle DBC=\angle BDA\]
Рассмотрим прямые $BC$ и $AD$ и их секущую $BD$, по последнему равенству накрест лежащих углов получим, что $BC||AD$. Также $BC=AD$. Следовательно, по теореме $1$, данный четырехугольник является параллелограммом.
Доказательство
Первым делом проведем диагональ AC . Получаются два треугольника: ABC и ADC .
Так как ABCD — параллелограмм, то справедливо следующее:
AD || BC \Rightarrow \angle 1 = \angle 2 как лежащие накрест.
AB || CD \Rightarrow \angle3 = \angle 4 как лежащие накрест.
Следовательно, \triangle ABC = \triangle ADC (по второму признаку: и AC — общая).
И, значит, \triangle ABC = \triangle ADC , то AB = CD и AD = BC .
Доказано!
2. Противоположные углы тождественны.
Доказательство
Согласно доказательству свойства 1 мы знаем, что \angle 1 = \angle 2, \angle 3 = \angle 4 . Таким образом сумма противоположных углов равна: \angle 1 + \angle 3 = \angle 2 + \angle 4 . Учитывая, что \triangle ABC = \triangle ADC получаем \angle A = \angle C , \angle B = \angle D .
Доказано!
3. Диагонали разделены пополам точкой пересечения.
Доказательство
Проведем еще одну диагональ.
По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD . Еще раз отметим накрест лежащие равные углы.
Таким образом видно, что \triangle AOB = \triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов \angle 2 и \angle 1 ) и AO = OC (напротив углов \angle 3 и \angle 4 соответственно).
Доказано!
Признаки параллелограмма
Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.
Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.
1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.
AB = CD ; AB || CD \Rightarrow ABCD — параллелограмм.
Доказательство
Рассмотрим подробнее. Почему AD || BC ?
\triangle ABC = \triangle ADC по свойству 1 : AB = CD , AC — общая и \angle 1 = \angle 2 как накрест лежащие при параллельных AB и CD и секущей AC .
Но если \triangle ABC = \triangle ADC , то \angle 3 = \angle 4 (лежат напротив AB и CD соответственно). {\circ} говорит и о том, что AD || BC .
При этом \alpha и \beta — внутренние односторонние при секущей AD . И это значит AB || CD .
Третий признак верен.
4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.
AO = OC ; BO = OD \Rightarrow параллелограмм.
Доказательство
BO = OD ; AO = OC , \angle 1 = \angle 2 как вертикальные \Rightarrow \triangle AOB = \triangle COD , \Rightarrow \angle 3 = \angle 4 , и \Rightarrow AB || CD .
Аналогично BO = OD ; AO = OC , \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8 , и \Rightarrow AD || BC .
Четвертый признак верен.
Диагонали параллелограмма: формула, примеры
Что такое диагонали параллелограмма?
Отрезки, соединяющие две несмежные вершины параллелограмма, называются диагоналями параллелограмма.
Четырехугольник с параллельными и равными противоположными сторонами называется параллелограммом. Его противоположные углы также равны.
Параллелограмм имеет две диагонали. Диагонали параллелограмма соединяют противоположные вершины.
Квадрат, прямоугольник, ромб являются примерами параллелограмма.
Родственные игры
Свойства диагоналей параллелограмма
- Диагонали параллелограмма делят друг друга пополам.
- Диагонали квадрата делятся пополам под прямым углом.
- Диагонали прямоугольника делят друг друга пополам, но не под прямым углом.
- Диагонали ромба перпендикулярны друг другу.
- Каждая диагональ делит параллелограмм на два равных треугольника.
Диагонали формулы параллелограмма
Давайте обсудим две важные формулы.
Нахождение длин диагоналей параллелограмма
На приведенном выше рисунке показан параллелограмм и две его диагонали.
p и q — диагонали.
x и y две смежные стороны параллелограмма.
$\angle \text{A}$ & $\angle\text{B}$ — внутренние углы данного параллелограмма.
Как вычислить длину диагоналей параллелограмма? 9{2})$
Здесь, Здесь p и q — диагонали параллелограмма
x и y — смежные стороны параллелограмма
Если заданы размеры двух смежных сторон и одной диагонали, то приведенная выше формула может можно использовать для нахождения длины другой диагонали параллелограмма.
Интересные факты!
- Диагонали параллелограмма делятся пополам в точке пересечения.
- Длины диагоналей параллелограмма не равны. 9{\circ})}$
$= 4,95$ ft
5. Определите длину диагонали параллелограмма со сторонами 5 ft и 8 ft, если длина другой диагонали равна 10 ft.
Решение:
Дано: x $= 5$ фут, y $= 8$ фут & p $= 10$ фут
Как мы знаем, длина двух сторон и одной диагонали даны для нахождения длины другая диагональ. Воспользуемся формулой отношения сторон и диагоналей параллелограмма. 9{2} = 78$
Извлекая квадратный корень,
$\Rightarrow q = 8,83$ ft
Практические задачи на диагонали параллелограмма
1
Параллелограмм имеет _________ диагоналей.
4
3
2
1
Правильный ответ: 2
Из 4 вершин параллелограмма можно провести две диагонали, соединяющие два противоположных угла.2
Какое из следующих утверждений неверно для параллелограмма?
Противоположные стороны параллельны.
Противоположные углы равны.
Имеет четыре вершины.
Длина диагонали равна.
Правильный ответ: длина диагонали равна.
Диагонали параллелограмма не равны. У ромба, квадрата и прямоугольника диагонали равны.3
Что из следующего не является примером параллелограмма?
Квадрат
Прямоугольник
9{2} = 121,5$
$q=11,02$ ftinЧасто задаваемые вопросы о диагоналях параллелограмма
Равны ли диагонали параллелограмма?
Диагонали параллелограмма делят друг друга пополам, но не равны.
Какой параллелограмм имеет равные диагонали?
Прямоугольник имеет равные диагонали, которые делят друг друга пополам и перпендикулярны.
Диагонали параллелограмма перпендикулярны?
Нет, диагонали параллелограмма делят друг друга пополам, но не обязательно по 9 долларов.{\circ}$.
Что такое закон параллелограмма?
Закон параллелограмма гласит, что сумма квадратов длин четырех сторон параллелограмма равна сумме квадратов длин двух диагоналей.
По какой формуле вычисляется количество диагоналей четырехугольника?
Количество диагоналей любого четырехугольника можно рассчитать по формуле $\frac{n(n-3)}{2}$, где n — количество сторон данного многоугольника.
Что из следующего не верно для параллелограмма?A) Противоположные стороны равныB) Противоположные углы равныC) Противоположные углы делятся диагоналями пополамD) Диагонали делятся пополам
Дата последнего обновления: 27 марта 2023
•
Всего просмотров: 165 тыс.
•
Просмотров сегодня: 3,41 тыс.
Ответ
Подтверждено
165 тыс. + просмотров
Подсказка: с парой простых четырехугольников параллелограмма евклидовой геометрии параллельные стороны. Противоположные или обращенные стороны параллелограмма имеют одинаковую длину, а противоположные углы параллелограмма равны.
Полный ответ:
Нам даны четыре свойства параллелограмма , и нам нужно определить, какое из заданных свойств неверно.
Рассмотрим первый вариант, который гласит, что у параллелограмма противоположные стороны равны.
Согласно определению параллелограмма евклидовой геометрией, он образован пересечением пары параллельных прямых, а пара параллельных прямых всегда имеет одинаковое расстояние между собой в любой момент времени. Если параллельные прямые пересекают другую пару параллельных прямых, то образованный четырехугольник всегда будет иметь равные противоположные стороны. Следовательно, утверждение, что противоположные стороны равны, верно.
Теперь рассмотрим второй вариант, который гласит, что у параллелограмма противоположные углы равны.
Так как, уже показано, что параллелограмм имеет равные противоположные стороны, и мы также знаем, что для любого четырехугольника, у которых равные противоположные стороны, есть равные противоположные углы. Следовательно, это утверждение верно.
Рассмотрим третий вариант, который гласит, что у параллелограмма противоположные углы делятся диагоналями пополам.
Мы знаем, что параллелограммы имеют равные противоположные стороны и равные противоположные углы. Если провести диагонали, соединив противоположные вершины в параллелограмме, то нельзя сказать, что диагонали делят противоположные углы пополам. Диагонали делят друг друга пополам, но не делят углы пополам. Следовательно, это утверждение неверно.
Теперь рассмотрим четвертый вариант, который гласит, что в параллелограмме диагонали делят друг друга пополам.
Для параллелограмма свойство параллелограмма состоит в том, что диагонали делят друг друга пополам. Значит, данное утверждение верно.
Таким образом, получаем, что неверно только третье утверждение, следовательно, решение — вариант (С) Противоположные углы делятся диагоналями пополам.