Al alo3: Система Ni-Al в шинопроводах METAENERGY

Таблица менделеева — Электронный учебник K-tree

Электронный учебник

Периодический закон, открытый Д. И. Менделеевым был выражен в таблице. Периодическая таблица химических элементов, или таблица менделеева.

1

H

1.008

2

He

4.003

3

Li

6.938

4

Be

9.012

5

B

10.806

6

C

12.01

7

N

14.006

8

O

15.999

9

F

18.998

10

Ne

20.18

11

Na

22.99

12

Mg

24.304

13

Al

26.982

14

Si

28.084

15

P

30.974

16

S

32.059

17

Cl

35.446

18

Ar

39.948

19

K

39.098

20

Ca

40.078

21

Sc

44.956

22

Ti

47.867

23

V

50.942

24

Cr

51. 996

25

Mn

54.938

26

Fe

55.845

27

Co

58.933

28

Ni

58.693

29

Cu

63.546

30

Zn

65.38

31

Ga

69.723

32

Ge

72.63

33

As

74.922

34

Se

78.971

35

Br

79.901

36

Kr

83.798

37

Rb

85.468

38

Sr

87.62

39

Y

88.906

40

Zr

91.224

41

Nb

92.906

42

Mo

95.95

44

Ru

101.07

45

Rh

102.906

46

Pd

106.42

47

Ag

107.868

48

Cd

112.414

49

In

114.818

50

Sn

118.71

51

Sb

121.76

52

Te

127.6

53

I

126.904

54

Xe

131.293

55

Cs

132.905

56

Ba

137.327

57

La

138.905

72

Hf

178. 49

73

Ta

180.948

74

W

183.84

75

Re

186.207

76

Os

190.23

77

Ir

192.217

78

Pt

195.084

79

Au

196.967

80

Hg

200.592

81

Tl

204.382

82

Pb

207.2

83

Bi

208.98

58

Ce

140.116

59

Pr

140.908

60

Nd

144.242

62

Sm

150.36

63

Eu

151.964

64

Gd

157.25

65

Tb

158.925

66

Dy

162.5

67

Ho

164.93

68

Er

167.259

69

Tm

168.934

70

Yb

173.045

71

Lu

174.967

90

Th

232.038

91

Pa

231.036

92

U

238.029

В таблице менделеева колонки называются группами, строки называются периодами. Элементы в группах как правило имеют одинаковые электронные конфигурации внешних оболочек, например, благородные газы — последняя группа, имеют законченную электронную конфигурацию.

Как заполняется электронная конфигурация элементов подробно описано в статье

Скачать таблицу менделеева в хорошем качестве

© 2015-2022 — K-Tree.ru • Электронный учебник
По любым вопросам Вы можете связаться по почте [email protected]

Копия материалов, размещённых на данном сайте, допускается только по письменному разрешению владельцев сайта.

AL-AL2O3-ALCL3-AL (OH)3-AL2O3-AL (NO3)3ПОМОГИТЕ ПОЖАЛУЙСТА!!! — Знания.site

Последние вопросы

  • Русский язык

    1 минута назад

    Прочитайте предложения. Найдите вводные слова и вводныепредложения, обозначьте их. Спишите, расставляя знаки препинания.1) Эта фраза пожалуй была сказана между прочим хотя её содержаниенапомнило мне между прочим одну двусмысле. .ую шутку.2) У Татьяны Андреевны к сож..лению замёрзли ресницы и (по)этомуей к..залось что от звезды падают на дорогу ломкие полосысвета. (К.Г.Паустовский)3) Письмо должно быть срочно доставле..о адресату потому чтокажется мы и так опаздываем с доставкой.4) А впрочем судьба наша кажет..ся одинакова и родились мы(по)вид..мому под еди..ым созвездием. (А. Пушкин)5) Почти (на)против его подвала прост..рался огромный пустырьгородской земли словом те..итория была внушительной. 6) После (не)состоявш..йся встречи с дядей к сожалениюпр..мешивалось ещё и чувство разоч..рования и это к сожалению мешалососредоточит..ся на серьёзных размышлениях.7) Книги брош..ры газеты словом все виды журнальной продукции во-первых валялись на полу во-вторых были (по)вид..мому в таком состоянииуже давно о чём свидетельствовал (в)час..ности слой пыли на них но этооднако не помешало нашему ра..ледованию.8) Потом (в)прочем он говорил что наверное (не)стоило горячит..ся(не)много поостыть и действовать уже (на)верняка (по)тому(что) по егомнению ситуация (до)конца (не)была проясне. .а и у пр..сутствующих всё(же)ост..вались наверное вопросы.9) Увы он счастия не ищ..т и не от счастия бежит. (М.Ю. Лермонтов)10) Вронский к ужасу своему почувствовал что сделал скверноенепростительное движение. (Л.Н. Толстой)ПОМОГИТЕ ПОЖАЛУЙСТА, ОЧЕНЬ СРОЧНО ​
  • Українська мова

    1 минута назад

    Згрупуйте спільнокореневі слова і запишіть. Яке явище відбувасться в поланих словах? — газ, газета, газівник, газетяр, газетка, газосховище, газетний; — хороший, хор, хорошенький, хорист, хоровод, хоровий; — вода, водити, водіння, підводнии, водичка, переводити, воджу.будь ласочка
  • География

    1 минута назад

    Розгляньте задачу з поясненням розв’язку. Оберіть правильну відповідь. На яку висоту піднявся літак, якщо за бортом температура повітря становить –30оС, в той час, як біля поверхні землі +24оС? Розв’язок: 1) +24oC-(-30oC )= 54 oC 2) 54oC : 6оС = Виберіть одну відповідь: 7 км 9 км 10 км 8 км
  • География

    1 минута назад

    доповіді про заповідники та національні парки України. Написати про один.​
  • Українська мова

    1 минута назад

    За допомогою суфіксів -к-, -иц-. -ин-, -ес- від іменників чоловічого роду утворіть іменники на означення осто жіночо статі фемінтиви): Агент. автор. архітектор, кравець, філолог, диякон, депутат. виконавець. директор. доцент. етнограф, кравець, математик, шмець, педагог, президент продавець. полтик, служоовець, творець. філолог. фотограф.будь ласочка
  • Українська мова

    1 минута назад

    виправте речення Я рахую, що до інтерв’ю треба готуватися дуже старательно. Правий журналіст, який задає самі важливі питання. До слідуючого запитання можна переходити, почувши відповідь на попереднє. Велике спасибі телебаченню за гарні взірці інтерв’ю. Упевнений, що подавляючі оцінки нашої праці будуть положительні.
  • Биология

    1 минута назад

    Вкажіть рослину на нижній поверхні листка якої розиіщуються спори​
  • Математика

    6 минут назад

    Теория вероятностей. Помогите пожалуйста
  • Другие предметы

    6 минут назад

    Что означает местоимение «оно»? По отношению к кому его используют?
  • Алгебра

    6 минут назад

    Помогите пожалуйста с алгеброй
  • Литература

    6 минут назад

    Напишете пожалуйста сочинение по плану: «. ..что это было: любовь или сумасшествие?» (По рассказу А. Куприна «Гранатовый браслет») План І. Тема любви в творчестве писателей и поэтов. ІІ. Что это было: любовь или сумасшествие? Глубина чувств Желткова. Последнее письмо Желткова. Отношение мужа Веры к чувствам и письмам Желткова. ІІІ. Почему и в наши дни история Желткова волнует читателя? Какие чувства эта история пробудила во мне?
  • История

    6 минут назад

    1. Який хрестовий похід(1-8) показав справжню суть хрестових походів? Чому? 2. Доведіть, що Франція, Англія та Іспанія були станово — представницькими монархіями. 3. Чому Генуя, Флоренція та Венеція були республіками? Помогите очень срочно
  • Математика

    6 минут назад

    2.Петя идет от дома до школы 40 минут, а его сестра – 60 минут. Через сколько минут Петя догонит сестру, если он вышел из дома через 10 минут после её ухода?​
  • Алгебра

    6 минут назад

    Проведите полное исследование функции y = 12x — x³ и постройте её график​
  • Физика

    11 минут назад

    Пуля массой 10 г выпущенная под углом 60 к горизонту в верхней точке имеет кинетическую энергию равную 800 дж

Все предметы

Выберите язык и регион

English

United States

Polski

Polska

Português

Brasil

English

India

Türkçe

Türkiye

English

Philippines

Español

España

Bahasa Indonesia

Indonesia

Русский

Россия

How much to ban the user?

1 hour 1 day 100 years

Оксид алюминия | Свойства материала Al2O3

Глинозем является одним из самый экономичный и широко используемый материал в семействе машиностроения керамика. Сырье, из которого изготовлен этот высокоэффективный технический сорт Керамика легкодоступна и доступна по разумной цене, что приводит к хорошему значение стоимости изготовленных форм из оксида алюминия. С отличным сочетанием свойств и привлекательной цене, неудивительно, что мелкое зерно Технический глинозем имеет очень широкую область применения.

. Ключ Свойства
Твердый, износостойкий
Отличные диэлектрические свойства в диапазоне частот от постоянного тока до ГГц
Устойчив к воздействию сильных кислот и щелочей при повышенных температурах
Хорошая теплопроводность
Отличные размеры и форма
Высокая прочность и жесткость
Доступен в диапазоне чистоты от 94%, легко металлизуемый состав, до 99,8% для самых требовательных высокотемпературных применений.
.

Типичное использование
Газовые лазерные трубки
Изнашиваемые накладки
Уплотнительные кольца
Изоляторы электрические высокотемпературные
Изоляторы высокого напряжения
Трубы футеровки печи
Направляющие нити и проволоки
Электронные подложки
Баллистическая броня
Абразивостойкие вкладыши для труб и колен
Датчики термометрии
Лабораторные пробирки и держатели образцов
Детали приборов для машин для испытания тепловых свойств
Мелющие тела

Общая информация

Оксид алюминия, обычно называемый глиноземом, обладает сильным ионным межатомные связи, приводящие к желаемым характеристикам материала. Это может существовать в нескольких кристаллических фазах, которые все возвращаются к наиболее стабильной гексагональная альфа-фаза при повышенных температурах. Это фаза особого интерес к структурным применениям и материалу, доступному от Accuratus.

Альфа-фаза глинозема самая прочная и жесткая из оксидной керамики. Его высокая твердость, превосходная диэлектрические свойства, огнеупорность и хорошие тепловые свойства делают его Материал выбора для широкого спектра применений.

Глинозем высокой чистоты может использоваться как в окислительной, так и в восстановительной атмосфере до 1925°C. Потеря веса в диапазон вакуума от 10 до 7 до 10 –6 г/см 2 мкс в диапазоне температур от 1700° до 2000°С. Он устойчив к воздействию всех газов, кроме влажного фтора, и устойчив к все обычные реагенты, кроме плавиковой кислоты и фосфорной кислоты. Повышенный температурная коррозия происходит в присутствии паров щелочных металлов, особенно при более низкий уровень чистоты.

Состав керамическое тело может быть изменено, чтобы улучшить конкретный желаемый материал характеристики. Примером могут служить добавки оксида хрома или марганца. оксид для улучшения твердости и изменения цвета. Другие дополнения могут быть сделаны в улучшить легкость и консистенцию металлических пленок, обожженных на керамику для последующая сборка пайкой и пайкой.

 

Скачать техпаспорт 94% глинозема

Технические характеристики*

94% Оксид алюминия

Механический

Единицы Мера

СИ/Метрика

(Империал)

Плотность

г/куб. см (фунт/фут 3 )

3,69

(230,4)

Пористость

% (%)

0

(0)

Цвет

белый

Прочность на изгиб

МПа (фунт/дюйм 2 x10 3 )

330

(47)

Модуль упругости

ГПа (фунт/дюйм 2 x10 6 )

300

(43,5)

Модуль сдвига

ГПа (фунт/дюйм 2 x10 6 )

124

(18)

Объемный модуль

ГПа (фунт/дюйм 2 x10 6 )

165

(24)

Коэффициент Пуассона

0,21

(0,21)

Прочность на сжатие

МПа (фунт/дюйм 2 x10 3 )

2100

(304,5)

Твердость

кг/мм 2

1175

Прочность на излом K IC

МПа•м 1/2

3,5

Максимальная рабочая температура
(без нагрузки)

°С (°Ф)

1700

(3090)

Термический




Теплопроводность

Вт/м•°К (БТЕ•дюйм/фут 2 •час•°F)

18

(125)

Коэффициент теплового расширения

10 –6 /°С (10 –6 /°F)

8. 1

(4,5)

Удельная теплоемкость

Дж/кг•°К (БТЕ/фунт•°F)

880

(0,21)

Электрика




Диэлектрическая прочность

ак-кв/мм (вольт/мил)

16,7

(418)

Диэлектрическая проницаемость

@ 1 МГц

9. 1

(9.1)

Коэффициент рассеяния

при 1 кГц

0,0007

(0,0007)

Тангенс потерь

при 1 кГц

Объемное удельное сопротивление

Ом•см

>10 14

 

Скачать техпаспорт 96% глинозема

96% Оксид алюминия

Механический

Единицы Мера

СИ/Метрика

(Империал)

Плотность

г/куб. см (фунт/фут 3 )

3,72

(232,2)

Пористость

% (%)

0

(0)

Цвет

белый

Прочность на изгиб

МПа (фунт/дюйм 2 x10 3 )

345

(50)

Модуль упругости

ГПа (фунт/дюйм 2 x10 6 )

300

(43,5)

Модуль сдвига

ГПа (фунт/дюйм 2 x10 6 )

124

(18)

Объемный модуль

ГПа (фунт/дюйм 2 x10 6 )

172

(25)

Коэффициент Пуассона

0,21

(0,21)

Прочность на сжатие

МПа (фунт/дюйм 2 x10 3 )

2100

(304,5)

Твердость

кг/мм 2

1100

Прочность на излом K IC

МПа•м 1/2

3,5

Максимальная рабочая температура
(без нагрузки)

°С (°Ф)

1700

(3090)

Термический




Теплопроводность

Вт/м•°К (БТЕ•дюйм/фут 2 •час•°F)

25

(174)

Коэффициент теплового расширения

10 –6 /°С (10 –6 /°F)

8. 2

(4,6)

Удельная теплоемкость

Дж/кг•°К (БТЕ/фунт•°F)

880

(0,21)

Электрика




Диэлектрическая прочность

ак-кв/мм (вольт/мил)

14,6

(365)

Диэлектрическая проницаемость

@ 1 МГц

9,0

(9. 0)

Коэффициент рассеяния

при 1 кГц

0,0011

(0,0011)

Тангенс потерь

при 1 кГц

Объемное удельное сопротивление

Ом•см

>10 14

 

Скачать техническое описание 99,5% глинозема

99,5% Оксид алюминия

Механический

Единицы Мера

СИ/Метрика

(Империал)

Плотность

г/куб. см (фунт/фут 3 )

3,89

(242,8)

Пористость

% (%)

0

(0)

Цвет

слоновая кость

Прочность на изгиб

МПа (фунт/дюйм 2 x10 3 )

379

(55)

Модуль упругости

ГПа (фунт/дюйм 2 x10 6 )

375

(54,4)

Модуль сдвига

ГПа (фунт/дюйм 2 x10 6 )

152

(22)

Объемный модуль

ГПа (фунт/дюйм 2 x10 6 )

228

(33)

Коэффициент Пуассона

0,22

(0,22)

Прочность на сжатие

МПа (фунт/дюйм 2 x10 3 )

2600

(377)

Твердость

кг/мм 2

1440

Прочность на излом K IC

МПа•м 1/2

4

Максимальная рабочая температура
(без нагрузки)

°С (°Ф)

1750

(3180)

Термический




Теплопроводность

Вт/м°К (БТЕ•дюйм/фут 2 •час•°F)

35

(243)

Коэффициент теплового расширения

10 –6 /°С (10 –6 /°F)

8. 4

(4.7)

Удельная теплоемкость

Дж/кг•°К (БТЕ/фунт•°F)

880

(0,21)

Электрика




Диэлектрическая прочность

ак-кв/мм (вольт/мил)

16,9

(420)

Диэлектрическая проницаемость

@ 1 МГц

9,8

(9,8)

Коэффициент рассеяния

при 1 кГц

0,0002

(0,0002)

Тангенс потерь

при 1 кГц

Объемное удельное сопротивление

Ом•см

>10 14

*Все объекты являются комнатами значения температуры, если не указано иное.
Представленные данные типичны для имеющегося в продаже материала и предлагаются только для сравнительных целей. Информация не должна интерпретироваться как абсолютные свойства материала, а также не является заявлением или гарантией за что мы берем на себя юридическую ответственность. Пользователь должен определить пригодность материал для использования по назначению и принимает на себя все риски и ответственность, какие бы связь с ним.

См. также: Керамический стержень и трубка
См. также: Керамический стержень и трубка > Доступный оксид алюминия Размеры

Вернуться к началу

Стандартные продукты | Индивидуальные продукты и услуги | Тематические исследования | Материалы
Примечания по дизайну | Работаем вместе | Зрение | Свяжитесь с нами | Карта сайта

1-908-213-7070

© 2013 Аккурат

Дизайн площадки М. Адамс

Материалы Данные по AlO3 по проекту материалов (набор данных)

Материалы Данные по AlO3 по проекту материалов (набор данных) | Исследователь данных Министерства энергетики США
  • Набор данных
  • Другие связанные исследования

AlO3 имеет структуру, подобную альфа-триоксиду рения, и кристаллизуется в тригональной пространственной группе R-3c. Структура трехмерная. Al связан с шестью эквивалентными атомами O, образуя октаэдры AlO6 с общими углами. Углы наклона октаэдра с общим углом равны 9°. Все длины связи Al–O равны 1,86 Å. O связан в линейной геометрии с двумя эквивалентными атомами Al.

Авторов:
Проект материалов
Дата публикации:
Другие номера:
мп-35200
Номер контракта Министерства энергетики:  
АЦ02-05Ч21231; EDCBEE
Исследовательская организация:
Национальная лаборатория Лоуренса Беркли. (LBNL), Беркли, Калифорния (США). Материалы LBNL Проект
Организация-спонсор:
Департамент науки Министерства энергетики США (SC), Базовые энергетические науки (BES)
Сотрудничество:
Массачусетский технологический институт; Калифорнийский университет в Беркли; герцог; У Лувен
Тема:
36 МАТЕРИАЛОВЕДЕНИЕ
Ключевые слова:
кристаллическая структура
; AlO3; Ал-О
Идентификатор ОСТИ:
1206950
DOI:
https://doi. org/10.17188/1206950

Форматы цитирования

  • MLA
  • АПА
  • Чикаго
  • БибТекс

Проект материалов. Материалы Данные по AlO3 по материалам Проект . США: Н. П., 2020. Веб. дои: 10.17188/1206950.

Копировать в буфер обмена

Проект материалов. Материалы Данные по AlO3 по материалам Проект . Соединенные Штаты. Дои: https://doi.org/10.17188/1206950

Копировать в буфер обмена

Проект материалов. 2020. «Материальные данные по AlO3 по проекту материалов». Соединенные Штаты. дои: https://doi.org/10.17188/1206950. https://www.osti.gov/servlets/purl/1206950. Дата публикации: четверг, 23 июля, 00:00:00 по восточному поясному времени 2020

Копировать в буфер обмена

@article{osti_1206950,
title = {Данные материалов по AlO3 по проекту материалов},
автор = {Проект материалов},
abstractNote = {AlO3 имеет структуру, подобную альфа-триоксиду рения, и кристаллизуется в тригональной пространственной группе R-3c.

Вычитание корней онлайн калькулятор: Калькулятор корней онлайн

Преобразовать мА в А (миллиампер в ампер)

Категории измерений:Активность катализатораБайт / Битвес ткани (текстиль)ВремяВыбросы CO2Громкость звукаДавлениеДинамическая вязкостьДлина / РасстояниеЁмкостьИмпульсИндуктивностьИнтенсивность светаКинематическая вязкостьКоличество веществакоэффициент теплопередачи (U-value)Кулинария / РецептыМагнитный потокмагнитодвижущая силаМасса / ВесМассовый расходМолярная концентрацияМолярная массаМолярная теплоёмкостьМолярный объемМомент импульсаМомент силыМощностьМощностью эквивалентной дозыМузыкальный интервалНапряжённость магнитного поляНефтяной эквивалентОбъёмОбъёмная теплоёмкостьОбъёмный расход жидкостиОбъемный тепловой потокОсвещенностьПлоский уголПлотностьПлотность магнитного потокаПлощадьПоверхностное натяжениеПоглощённая дозаПриставки СИпроизведение дозы на длинупроизведения дозы на площадьПроизводительность компьютера (флопс)Производительность компьютера (IPS)РадиоактивностьРазмер шрифта (CSS)Световая энергияСветовой потокСилаСистемы исчисленияСкоростьСкорость вращенияСкорость передачи данныхСкорость утечкиСопротивление теплопередаче (значение R)Текстильные измеренияТелесный уголТемператураТепловой потокТеплоемкостьТеплопроводностьУдельная теплоёмкостьУскорениеЧастей в . ..ЧастотаЭквивалентная дозаЭкспозиционная дозаЭлектрическая эластичностьЭлектрический дипольный моментЭлектрический зарядЭлектрический токЭлектрическое напряжениеЭлектрическое сопротивлениеЭлектрической проводимостиЭнергияЯркостьFuel consumption   

Изначальное значение:

Изначальная единица измерения:абампер [abA]ампер [А]Био [Bi]В/Ом [В/Ω]Ватт/Вгигаампер [ГА]килоампер [кА]Кл/смегаампер [МА]микроампер [мкА]миллиампер [мА]наноампер [нА]пикоампер [пА]планковское електрический токстатампер [statA]тераампер [ТА]фемтоампер [фА]

Требуемая единица измерения:абампер [abA]ампер [А]Био [Bi]В/Ом [В/Ω]Ватт/Вгигаампер [ГА]килоампер [кА]Кл/смегаампер [МА]микроампер [мкА]миллиампер [мА]наноампер [нА]пикоампер [пА]планковское електрический токстатампер [statA]тераампер [ТА]фемтоампер [фА]

  Числа в научной записи

Прямая ссылка на этот калькулятор:
https://www.preobrazovaniye-yedinits.info/preobrazovat+milliamper+v+amper.php

  1. Выберите нужную категорию из списка, в данном случае ‘Электрический ток’. ), квадратный корень (√), скобки и π (число пи), уже поддерживаются на настоящий момент.
  2. Из списка выберите единицу измерения переводимой величины, в данном случае ‘миллиампер [мА]’.
  3. И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘ампер [А]’.
  4. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.


С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘212 миллиампер’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘миллиампер’ или ‘мА’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический ток’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’34 мА в А‘ или ’68 мА сколько А‘ или ’20 миллиампер -> ампер‘ или ’60 мА = А‘ или ’36 миллиампер в А‘ или ’47 мА в ампер‘ или ’54 миллиампер сколько ампер‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(17 * 76) мА’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. 3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 1,092 954 076 473 9×1032. В этой форме представление числа разделяется на экспоненту, здесь 32, и фактическое число, здесь 1,092 954 076 473 9. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 1,092 954 076 473 9E+32. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 109 295 407 647 390 000 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

Сложение корней, вычитание корней с одинаковыми и разными показателями

Определение

Действие сложения и вычитания квадратных корней возможно лишь при условии одинаковости подкоренных выражений слагаемых.

Сложение корней, формулы

Складывать подобные квадратные корни, то есть иррациональные выражения с одинаковым основанием, очень просто. Для этого суммируют множители слагаемых, а подкоренное число остается неизменным:

\(m\sqrt a+n\sqrt a=\left(m+n\right)\sqrt a\)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В случае со сложением корней с разными подкоренными значениями нужно привести их к подобию. Упрощение корневых чисел выполняют по следующему алгоритму:

  1. Раскладывание подкоренного числа на два множителя так, чтобы один из них являлся числом, из которого извлекается целый квадратный корень.
  2. Извлечение корня из квадратного числа, запись ответа перед символом корня. Второй множитель остается под знаком корня.
  3. Упрощенные корни с одинаковым основанием можно складывать как подобные.

Пример

\(3\sqrt{50}+2\sqrt8+\sqrt{12}\)

\(3\sqrt{50}=3\sqrt{25\times2}=3\times5\sqrt2=15\sqrt2\)

\(2\sqrt8=2\sqrt{4\times2}=2\times2\sqrt2=4\sqrt2\)

\(\sqrt{12}\;=\sqrt{4\times3}=2\times1\sqrt2=2\sqrt2\)

После упрощения исходное выражение приобретает вид:

\(15\sqrt2+4\sqrt2+2\sqrt2=21\sqrt2\)

Примечание

Подкоренные выражения между собой не суммируются и не вычитаются. При этом выражения под одним корнем складываются и вычитаются как обычные числа.

Вычитание корней, формулы

При вычитании подобных корней вычитаются их множители, а подкоренное выражение не меняется:

\(m\sqrt a-n\sqrt a=\left(m-n\right)\sqrt a\)

Чтобы узнать разность иррациональных чисел с разным основанием, нужно привести уменьшаемое и вычитаемое к единому образцу. 2}=\left|а-2\right|+\left|а-4\right|\)

Раскроем модули в промежутке \(2\leq а\leq4\):

\(\vert а-2\vert=а-2,\;т.к.\;а-2\geq0\)

\(\vert а-4\vert=4-а,\;т.к.\;а-4\leq0\)

Следовательно, \(\vert а-2\vert+\vert а-4\vert=а-2+4-а=2\)

Ответ: 2.

Калькулятор вычитания квадратных корней

Наших пользователей:

Замечательный инструмент для нового студента алгебры.
Дерек Бреннан, Иллинойс

Я буду увереннее, когда сдам экзамен по алгебре.
Триш Купер, CO

Теперь вы можете забыть о наказании за плохие оценки по алгебре. С Алгебратором требуется всего несколько минут, чтобы полностью понять и выполнить домашнее задание.
Бриттани Питерс, Северная Каролина

Проведя бесчисленное количество часов, ночь за ночью пытаясь понять мою домашнюю работу, я нашел Алгебратор. Большинство других программ просто дают вам ответ, который не помог мне, когда дело дошло до времени тестирования, Algebrator помог мне шаг за шагом решить каждую проблему. Спасибо!
Сэмюэл Ли, Калифорния


Студенты, борющиеся со всевозможными задачами по алгебре, узнают, что наше программное обеспечение может спасти им жизнь. Вот поисковые фразы, которые сегодняшние поисковики использовали, чтобы найти наш сайт. Сможете ли вы найти среди них свою?


Поисковые фразы, использованные 22 февраля 2010 г.:
  • решение систем методом сложения и вычитания
  • калькулятор +умножение положительных и отрицательных чисел
  • решение систем уравнений на ти 89
  • Алгебра Алмазная коробка факторинг
  • суммы по алгебре
  • булева алгебра для чайников
  • решить ОДУ второго порядка с помощью Matlab
  • пустая координатная плоскость
  • практика умножения и деления радикалов
  • решение логарифмических функций с помощью TI-84
  • калькулятор упрощенных выражений квадратный корень
  • Эйлер найти квадратный корень
  • «абстрактная алгебра» помощь
  • «Язык C» MCQ
  • год семь испытаний
  • саксонская математика онлайн ключ ответа Алгебра 2
  • квадратное уравнение + принцип квадратного корня
  • Примеры тестовых вопросов по основам бухгалтерского учета
  • Mcdougal Littell Science Review ответы
  • как сделать кубический корень на ти-83
  • pdf в ти 89
  • упрощение дробных показателей
  • Разделение листа с остатком
  • графы решателя алгебры
  • учебники по алгебре для девятого класса
  • Программный калькулятор булевой алгебры
  • цепь 4 пароль TI 89
  • математические задачи. com
  • листов для сложения и вычитания положительных и отрицательных чисел
  • t диаграмма математика + 4 класс Канада Онтарио + свободная практика
  • www.5grade алгебра.com
  • остаток для кубов и факторизации
  • рабочих листов для измерения свободного преобразования
  • Феникс читы Ти-84
  • Калькулятор квадратных корней и радикалов
  • Формула такса 5 класса
  • решать уравнения с поясняющей программой
  • счетверённая программа на ти-83
  • игры по алгебре
  • «трехзначные числа», делящиеся на 6
  • алгебра 1 книга ответы
  • добавление рациональных показателей
  • математическое исчисление бесплатный учебник pdf
  • комбинирование одинаковых терминов в таблицах выражений
  • факторизатор квадратного уравнения
  • математические задачи и рабочие листы для 7 и 8 класса бесплатно
  • алегбра 1
  • Рабочие листы для первоклассников
  • комплекс рационализаторский
  • прентис холл математика: алгебра 1 онлайн
  • решение системного уравнения механической системы
  • умножение дробей с показателями
  • математика-учебник 9 класс алгебра
  • бесплатные книги по линейной алгебре в формате pdf
  • математические мелочи в АЛГЕБРЕ с ответами
  • решенных вопросов о способностях
  • дифференциальных уравнений — задача второго закона Ньютона
  • cpm алгебра 2 ответы
  • сетки для рабочих листов KS2 6
  • решение алгебраических квадратных корней
  • Системы уравнений в матлабе с неравенствами
  • рабочих листов с подписанными номерами
  • Комбинации по математике 3 класс
  • рабочий лист деления дроби на целое число
  • печатные листы по математике для седьмого класса листы
  • общие знаменатели
  • Макдугал Литтел Алгебра 2 ответы
  • листов с добавлением целых чисел
  • комбинаций на ti-84 плюс перестановки
  • решить задачи по алгебре в колледже
  • линейные обыкновенные дифференциальные уравнения в Matlab
  • бесплатных математических программ
  • ti89 программа интерполяции введи себя
  • калькулятор упрощенных уравнений
  • упражнения по алгебре с положительными и отрицательными числами
  • план урока грамматики для первого класса
  • Прентис Холл Математика Алгебра 2 рабочая тетрадь
  • линейных неравенств и их графики
  • рабочие листы для девятого класса переменные
  • упрощающие радикалы
  • печатных листов, заменяющих смешанные числа дробью
  • ответы на мой математический hwk
  • q-алгебра-бесплатные предварительные рабочие листы
  • изменение индексов радикальных терминов общие полномочия
  • образование комплексной соли железа, сбалансированное химическое уравнение
Предыдущий Далее
Калькулятор квадратного корня

и упрощение

Калькулятор квадратного корня

Значение N (действительное положительное/отрицательное или комплексное число)
Приблизительное значение — минимальная точность:
Точное значение (если возможно, упростите sqrt)
Вычисление квадратного корня вручную (целое число N, старая школа)

См. также: Кубический корень — калькулятор

Выражение с упрощением квадратного корня

Математическое выражение с корнями
Формат результата Автоматический выбор
Точное значение (по возможности)
Приблизительное числовое значение
Научное обозначение

См. также: Калькулятор — решение уравнений

Пакетное вычисление квадратного корня

Список только целых или десятичных чисел

Загрузка…
(если это сообщение не исчезнет, ​​попробуйте обновить эту страницу)

См. также: Кубический корень — Калькулятор

Ответы на вопросы (FAQ)

Что такое квадратный корень? (Определение)

A квадратный корень от $ x $ (или радикал от $ x $) — это математическое понятие, отмеченное $ \sqrt{x} $ (ou sqrt(x) ), которое относится к числу, которое при умножении само на себя дает число $ х $.

Пример: Квадратный корень из $ 9 $ равен $ 3 $, что записывается как $ \sqrt{9} = 3 $, потому что $ 3 \times 3 = 9 $

Обычно числа имеют 2 корня, положительный и отрицательный, но отрицательный обычно опускается.

Пример: Было бы точнее написать: 92 \times 2 } = 2 \sqrt{2} $. Так как $ \sqrt{2} \ приблизительно 1,414 $, то $ \sqrt{8} \ приблизительно 2,828 $

— С помощью калькулятора квадратного корня , такого как этот из dCode:

Введите положительное или отрицательное число (в этом случае он будет иметь комплексные корни).

Выберите формат результата: либо точное значение (если это целое число или переменные), либо приблизительное (десятичное число с регулируемой точностью путем определения минимального количества значащих цифр)

Пример: 92 $

$$ \frac{a}{\sqrt{b}+\sqrt{c}} = \frac{a(\sqrt{b}-\sqrt{c})}{(\sqrt{b} +\sqrt{c})(\sqrt{b}-\sqrt{c})} = \frac{a\sqrt{b}-a\sqrt{c}}{b-c} $$

$$ \frac {a}{\sqrt{b}-\sqrt{c}} = \frac{a(\sqrt{b}+\sqrt{c})}{(\sqrt{b}-\sqrt{c})( \sqrt{b}+\sqrt{c})} = \frac{a\sqrt{b}+a\sqrt{c}}{b-c} $$

Как извлекать квадратный корень?

В формате Unicode есть символ (U+221A).

Определение неопределенный интеграл: Неопределенный интеграл. Понятия и определения. Интегрирование

Неопределенный интеграл. Понятия и определения. Интегрирование

Содержание.

1. Неопределенный интеграл. Основные определения.
2. Основные свойства неопределенного интеграла.
3. Таблица интегралов.
4. Непосредственное интегрирование.
5. Метод подстановки.
6. Метод интегрирования по частям.

Определение 1. Пусть функция f (x) определена на некотором интервале (a, b) и для всех x ∈ (a, b) существует такая функция F(x), что F’(x) = f (x). Тогда F(x) называется первообразной для f (x) на (a, b) .

Например, одной из первообразных функций для функции cos x будет sin x .

Первообразная не единственна, т. к. (cosx + 2)’ =(cosx)’ + 2’=sin x , (cosx — 3)’ = sin x , а поэтому cos x + 2, cos x — 3 также являются первообразными для sin x .

Теорема. Две различные первообразные одной и той же функции, определенной на

интервале (a, b) , отличаются друг от друга в этом промежутке на постоянное слагаемое, т.е. если F1 (x) и F2 (x) – некоторые первообразные, т. е. F1’ (x)= f (x) и F2’ (x) = f (x) то F1 (x) – F2 (x) = C .

Следствие. Прибавляя к какой-либо первообразной F(x) для данной функции f (x), определенной на промежутке (a, b) , всевозможные постоянные C , мы получим все первообразные для функции f (x) .

Определение 2. Общее выражение для всех первообразных данной непрерывной функции f (x) называется неопределенным интегралом от функции f (x) и обозначается символом ∫ f (x)dx .

При этом f (x) называется подынтегральной функцией, f (x)dx – подынтегральным выражением, x – переменной интегрирования.

Согласно определению неопределенного интеграла можно написать:

∫ f (x)dx = F(x)+ C , где F¢(x)= f (x), постоянная C может принимать любое значение и называется произвольной постоянной.

 

Основные свойства неопределенного интеграла

1. Неопределенный интеграл от дифференциала непрерывно дифференцируемой функции равен самой этой функции с точностью до постоянного слагаемого

2. Дифференциал неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции (1,2).

Замечание. В формулах (1) и (2) знаки и уничтожают друга. В этом смысле интегрирование и дифференцирование являются взаимно обратными математическими операциями.

Свойства линейности неопределенного интеграла.

т. е. любая формула интегрирования не изменяет свой вид, если вместо независимой переменной подставить любую дифференцируемую функцию . Поэтому таблицу интегралов от сложной функции запишем в виде:

Таблица интегралов

Непосредственное интегрирование

Непосредственное интегрирование заключается в том, чтобы преобразовать подынтегральное выражение, если это возможно, так чтобы получился дифференциал f (x)dx, а затем в таблице
интегралов найти первообразную.

Пример 1.

Выражение cos xdx заменили на d (sin x) . Получили интеграл

который можно отыскать в таблице интегралов, где u(x) = sin x.

Пример 2. 

Здесь мы умножили подынтегральную функцию и разделили на 2, затем внесли 2 под знак дифференциала. Заменим 2dx  =d (2x +1) и получим табличный интеграл

Проверим результат дифференцированием:

Пример 3.

В данном примере мы применили прием подведения под знак дифференциала cosx и постоянной 1. cos xdx = d(1+ sin x).

Пример 4.

Метод подстановки

Пример 6.

Здесь удобно применить тригонометрическую подстановку x = sint , с помощью которой мы избавимся от корня. Отсюда dx = costdt . 

Метод интегрирования по частям.

Пусть u и v — непрерывно дифференцируемые функции от x . На основании формулы дифференциала произведения имеем d(uv)= udv + vdu.

Иногда формула интегрирования по частям применяется несколько раз. Рассмотрим пример такого интеграла.

Замечание. Иногда применение формулы интегрирования по частям приводит к исходному интегралу, который в таком случае называется циклическим или круговым.

Получили интеграл, в котором cosnx заменился на sin nx .
Проинтегрируем еще раз по частям, обозначим:

Это пример циклического интеграла. {\prime}=x+0=f(x)$

Больше примеров решений Решение интегралов онлайн

Таким образом, если функция $y=f(x)$ имеет первообразную, то она имеет бесконечное множество первообразных.

Теорема

(Об общем виде первообразной для функции)

Если функции $F(x)$ и $\Phi(x)$ — две любые первообразные функции $y=f(x)$, то их разность равна некоторой постоянной, то есть

$$\Phi(x)-F(x)=C=\text { const }$$

Последнюю теорему можно сформулировать иначе: каждая функция, которая является первообразной для функции $f(x)$, может быть представлена в виде $F(x)+C$.

Неопределенный интеграл

Определение

Совокупность всех первообразных функции $y=f(x)$, определенных на заданном промежутке, называется неопределенным интегралом от функции $y=f(x)$ и обозначается символом $\int f(x) d x$. То есть

$\int f(x) d x=F(x)+C$

Знак $\int$ называется интегралом, $f(x) d x$ — подынтегральным выражением, $f(x)$ — подынтегральной функцией, а $x$ — переменной интегрирования.

Операция нахождения первообразной или неопределенного интеграла от функции $f(x)$ называется интегрированием функции $f(x)$. Интегрирование представляет собой операцию, обратную дифференцированию.

Геометрическая интерпретация неопределенного интеграла

Неопределенный интеграл представляет собой семейство параллельно расположенных кривых $F(x)+C$, где каждому конкретному числовому значению постоянной $C$ соответствует определенная кривая из указанного семейства.

График каждой кривой из семейства называется интегральной кривой.

Теорема

Каждая непрерывная на промежутке $(a ; b)$ функция, имеет на этом интервале первообразную.

Читать дальше: свойства неопределенного интеграла.

Исчисление I — Неопределенные интегралы

Показать мобильное уведомление Показать все примечания Скрыть все примечания

Мобильное уведомление

Похоже, вы находитесь на устройстве с «узкой» шириной экрана ( т. е. вы, вероятно, на мобильном телефоне). Из-за характера математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в ландшафтном режиме, многие уравнения будут отображаться сбоку вашего устройства (должна быть возможность прокрутки, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.

Раздел 5.1: Неопределенные интегралы

В предыдущих двух главах нам давали функцию \(f\left( x \right)\), и мы спрашивали, какова производная этой функции. Начиная с этого раздела, мы собираемся изменить ситуацию. Теперь мы хотим спросить, какую функцию мы продифференцировали, чтобы получить функцию \(f\left( x \right)\). 92} — 9x + c,\,\,\hspace{0,25in}c{\mbox{ является константой}}\]

даст \(f\left( x \right)\) после дифференцирования.

В этом последнем примере было два момента. Первый пункт состоял в том, чтобы заставить вас думать о том, как решать эти задачи. Сначала важно помнить, что на самом деле мы просто спрашиваем, что мы дифференцировали, чтобы получить данную функцию.

Другой момент заключается в том, чтобы признать, что на самом деле существует бесконечное количество функций, которые мы могли бы использовать, и все они будут отличаться на константу.

Теперь, когда мы поработали с примером, давайте избавимся от некоторых определений и терминологии.

Определения

Для данной функции \(f\left( x \right)\) антипроизводная функции \(f\left( x \right)\) представляет собой любую функцию \(F\left( x \right)\) такой, что

\[F’\влево(х\вправо) = f\влево(х\вправо)\]

Если \(F\left( x \right)\) является любой антипроизводной \(f\left( x \right)\), то наиболее общая антипроизводная \(f\left( x \right)\) )\) называется неопределенный интеграл и обозначенный,

\[\int{{f\left( x \right)\,dx}} = F\left( x \right) + c,\hspace{0. 25in}\,\,\,\,c{\mbox{ произвольная константа}}\]

В этом определении \(\int{{}}\) называется интегральным символом , \(f\left( x \right)\) называется подынтегральным выражением , \(x\) называется переменная интегрирования и «\(c\)» называются константой интегрирования .

Обратите внимание, что часто мы говорим просто интеграл вместо неопределенного интеграла (или определенного интеграла, если уж на то пошло, когда мы доберемся до них). Из контекста задачи будет понятно, что речь идет о неопределенном интеграле (или определенном интеграле).

Процесс нахождения неопределенного интеграла называется интегрированием или интегрированием \(f\left( x \right)\) . Если нам нужно уточнить переменную интегрирования, мы скажем, что мы 92} — 9х + с\]

Пара предупреждений. Одна из наиболее распространенных ошибок, которую студенты допускают при работе с интегралами (как неопределенными, так и определенными), заключается в том, что они пропускают dx в конце интеграла. Это необходимо! Думайте о знаке интеграла и dx как о наборе скобок. Вы уже знаете и, вероятно, вполне довольны идеей, что каждый раз, когда вы открываете скобку, вы должны ее закрывать. В интегралах думайте о знаке интеграла как о «открытой скобке», а 95} + c + 3x — 9\end{выравнивание*}\]

Вы интегрируете только то, что находится между знаком интеграла и dx . Каждый из приведенных выше интегралов заканчивается в другом месте, поэтому мы получаем разные ответы, потому что каждый раз интегрируем разное количество членов. Во втором интеграле «-9» находится вне интеграла и поэтому не интегрируется. Точно так же в третьем интеграле «\(3x — 9\)» находится вне интеграла и поэтому оставлено в покое.

Знание того, какие термины интегрировать, — не единственная причина для записи \(dx\). В разделе «Правило подстановки» мы фактически будем работать с \(dx\) в задаче, и если у нас нет привычки записывать его, то можно легко забыть об этом, и тогда мы получим неверный ответ на тот этап.

Мораль этого состоит в том, чтобы убедиться и поставить \(dx\)! На данном этапе это может показаться глупым, но это просто необходимо, хотя бы по той причине, что нужно знать, где останавливается интеграл.

Кстати, обозначение \(dx\) должно показаться вам немного знакомым. Мы видели такие вещи пару разделов назад. Мы назвали \(dx\) дифференциалом в этом разделе, и да, это именно то, чем оно является. \(dx\), которым заканчивается интеграл, есть не что иное, как дифференциал. 92} — 9w + c\end{выравнивание*}\]

Изменение переменной интегрирования в интеграле просто меняет переменную в ответе. Однако важно отметить, что когда мы меняем переменную интегрирования в интеграле, мы также изменяем дифференциал (\(dx\), \(dt\) или \(dw\)) в соответствии с новой переменной. Это важнее, чем мы можем себе представить на данный момент.

Еще одно использование дифференциала в конце интеграла — сообщить нам, по какой переменной мы интегрируем. На данном этапе это может показаться неважным, поскольку большинство интегралов, с которыми мы собираемся здесь работать, будут включать только одну переменную. Однако, если вы находитесь на пути к получению степени, который приведет вас к исчислению с несколькими переменными, это будет очень важно на этом этапе, поскольку в задаче будет более одной переменной. Вам нужно выработать привычку записывать правильный дифференциал в конце интеграла, чтобы, когда он станет важным в этих классах, вы уже привыкли записывать его. 92} + с\]

Второй интеграл тоже достаточно прост, но нужно быть осторожным. dx говорит нам, что мы интегрируем \(x\). Это означает, что мы интегрируем только те \(x\), которые входят в подынтегральную функцию, а все остальные переменные в подынтегральной функции считаются константами. Тогда второй интеграл равен

. \[\int{{2t\,dx}} = 2tx + c\]

Может показаться глупым всегда ставить dx , но это важная часть записи, которая может привести к тому, что мы получим неверный ответ, если не введем его.

Теперь есть некоторые важные свойства интегралов, на которые мы должны обратить внимание.

Свойства неопределенного интеграла
  1. \(\displaystyle \int{{k\,f\left( x \right)\,dx}} = k\int{{f\left( x \right)\, dx}}\), где \(k\) — любое число. Таким образом, мы можем выносить мультипликативные константы из неопределенных интегралов.

    Доказательство этого свойства см. в разделе «Доказательство различных интегральных формул» в главе «Дополнительно».

  2. \(\displaystyle \int{{ — f\left( x \right)\,dx}} = — \int{{f\left( x \right)\,dx}}\). Это действительно первое свойство с \(k = -1\), поэтому доказательство этого свойства не приводится.
  3. \(\displaystyle \int{{f\left( x \right) \pm g\left( x \right)\,dx}} = \int{{f\left( x \right)\,dx}} \pm \int{{g\left( x \right)\,dx}}\). Другими словами, интеграл суммы или разности функций есть сумма или разность отдельных интегралов. Это правило можно распространить на столько функций, сколько нам нужно.

    Доказательство этого свойства см. в разделе «Доказательство различных интегральных формул» главы «Дополнительно».

Обратите внимание, что при работе над первым примером выше мы использовали в обсуждении первое и третье свойства. Мы интегрировали каждый член по отдельности, вернули все константы и затем соединили все вместе с соответствующим знаком.

В приведенных выше свойствах не указаны интегралы от произведений и частных. Причина этого проста. Как и в случае с производными, каждое из следующих действий НЕ будет работать.

\[\int{{f\left( x \right)g\left( x \right)\,dx}} \ne \int{{f\left( x \right)dx}}\int{{g\ влево ( х \ вправо) \, dx}} \ hspace {0,75 дюйма} \ int {{\ гидроразрыва {{f \ влево ( х \ вправо)}} {{g \ влево ( х \ вправо)}} \, dx }} \ne \frac{{\int{{f\left( x \right)\,dx}}}}{{\int{{g\left( x \right)\,dx}}}}\]

С производными у нас было правило произведения и правило частного для решения этих случаев. Однако для интегралов таких правил нет. Столкнувшись с произведением и частным в интеграле, у нас будет множество способов справиться с ним в зависимости от того, что представляет собой подынтегральная функция. 92} — 9х + с\]

В этом разделе мы продолжали вычислять один и тот же неопределенный интеграл во всех наших примерах. Цель этого раздела заключалась не в том, чтобы вычислять неопределенные интегралы, а в том, чтобы познакомить нас с обозначениями и некоторыми основными идеями и свойствами неопределенных интегралов. Следующие несколько разделов посвящены фактическому вычислению неопределенных интегралов.

неопределенный интеграл в nLab

Пропустить навигационные ссылки | Домашняя страница | Все страницы | Последние версии | Обсудить эту страницу |

Неопределенные интегралы
  • Идея
  • Определения и обозначения
  • Свойства
  • Обобщения
    • В декартовых пространствах
    • На коллекторах
    • В полях алгебраических пределов
  • См. также

Идея

Неопределенный интеграл менее определен, чем определенный интеграл. В то время как определенный интеграл обычно представляет собой некоторое число или другую конкретную величину, неопределенный интеграл обычно представляет собой другую переменную величину того же типа, что и подынтегральное выражение.

Термин «неопределенный интеграл» сам по себе довольно неопределенный, так как он использовался для множества немного отличающихся понятий. Оба полуопределенных интеграла и первообразные являются более точными версиями неопределенных интегралов. Фундаментальная теорема исчисления — это, по сути, теорема о том, что эти различные виды неопределенного интеграла по существу являются одним и тем же.

Определения и обозначения

Для начала мы обсудим интегрирование вещественных функций на вещественной прямой, но многое из этого можно обобщить и на другие контексты. Итак, пусть ff — частичная функция от ℝ\mathbb{R} до ℝ\mathbb{R}; обычно доменом ff будет интервал, но мы этого не требуем. 9а.)

Полуопределенный интеграл определяется через определенный интеграл. Мы можем поместить такие имена, как «Риман» и «Лебег» между «полуопределенным» и «интегральным», чтобы указать конкретный вид используемого определенного интеграла. Заметим, что областью определения полуопределенного интеграла является интервал, содержащий aa и содержащийся в области определения ff (или, по крайней мере, в его замыкании, если мы допускаем несобственные интегралы или интегрирующие почти функции). Если мы начнем с определения ff как локально интегрируемой функции? на отрезке II, содержащем аа, то полуопределенный интеграл также будет иметь областью определения II. 9х f(t) \,\mathrm{d}t .

Мы можем записать это значение как C+∫af(x)dxC + \int_a f(x) \,\mathrm{d}x для краткости.

Это только одно из значений «неопределенного интеграла», но единственное, не имеющее альтернативной однозначной терминологии. Заметим, что CC — значение неопределенного интеграла при aa; таким образом, CC является начальным значением, если aa является начальной точкой. Но для авторов, использующих это понятие, часто нет необходимости упоминать ни аа, ни СС (и, следовательно, не нужная для них терминология), поскольку их интересует только то, является ли какая-либо другая функция FF неопределенным интегралом от ff, где ff есть локально интегрируемая функция на некотором отрезке.

Определение

Если FF является частичной функцией от ℝ\mathbb{R} до ℝ\mathbb{R}, то FF является первообразной ff (или антидифференциалом fdxf \,\mathrm{d} x) если ff является производной от FF в своей области определения:

∀x∈domF,f(x)=F′(x). \forall\, x \in \dom F,\; f(x) = F'(x) .

Апостериорно FF должен быть дифференцируемым.

Это обычное значение «неопределенного интеграла» в современных учебниках по математическому анализу с использованием интеграла Римана, особенно когда областью определения ff является интервал.

Определение

Если FF — измеримая по Лебегу частичная почти функция от ℝ\mathbb{R} до ℝ\mathbb{R}, то FF — почти первообразная ff, если ff — производная FF почти всюду:

ess∀x∈domF,f(x)=F′(x). \operatorname{ess}\forall\, x \in \dom F,\; f(x) = F'(x) .

Нас особенно интересует случай, когда FF абсолютно непрерывен.

Это нестандартная терминология, но она хорошо сочетается с другими «почти» терминами в теории меры. Это обычное значение «неопределенного интеграла» при использовании интеграла Лебега.

Свойства

Основным свойством, связывающим различные виды неопределенного интеграла, является фундаментальная теорема исчисления (ФТК). Для различных определений интеграла можно доказать, что каждый полуопределенный интеграл или вообще любой неопределенный интеграл в смысле определения является первообразной; и что каждая первообразная или, вообще говоря, каждая почти первообразная является неопределенным интегралом; возможно, с техническими условиями (в зависимости от типа рассматриваемого интеграла), такими как дифференцируемость или абсолютная непрерывность. Подробнее см. в этой статье.

Неопределенные интегралы дают решения дифференциальных уравнений. Конечно, определение первообразной состоит в том, что это решение очень простого дифференциального уравнения. Используя ФТК, мы видим, что неопределенные интегралы являются решениями соответствующих начальных задач. В частности, решение

F′(x)=f(x),F(a)=C F'(x) = f(x),\; F(a) = C

— неопределенный интеграл от ff с начальной точкой aa и начальным значением CC:

9n, то мы можем определить первообразную (или антидифференциал) ω\omega как любую вещественнозначную функцию ff на SS такую, что df=ω\mathrm{d}f = \omega. Тогда, когда PP является точкой в ​​SS (или, возможно, ее замыканием), мы можем определить значение полуопределенного интеграла от ω\omega с начальной точкой PP как интеграл от ω\omega вдоль отрезка прямой от PP; домен представляет собой звездно-выпуклое множество? исходящие из ПП и содержащиеся в (замыкании) СС. Если мы определим неопределенный интеграл как полуопределенный интеграл плюс постоянное начальное значение, то каждая первообразная ω \ omega на звездно-выпуклом множестве является неопределенным интегралом. Обратно, всякий неопределенный интеграл является первообразной, если ω\omega замкнута. Если ω \ omega не замкнута, то у нее все еще есть неопределенные интегралы (пока они непрерывны или иным образом локально интегрируемы), но они больше не являются первообразными (чего никогда не бывает у незамкнутых форм).

Возможно, это можно обобщить на римановы многообразия, рассматривая интегралы по геодезическим; хотя геодезическая между двумя точками не всегда уникальна (даже если она существует), она уникальна в достаточно малой (а часто и довольно большой) окрестности. (Например, на сфере, пока ω\omega интегрируема, мы можем определить таким образом неопределенный интеграл в любой точке, кроме той, которая находится прямо напротив начальной точки.)

Однако такое прямолинейное определение кажется довольно искусственным. , и может быть лучше использовать более подробное понятие полуопределенного интеграла ниже, применимое только к замкнутым формам, но к более общим многообразиям.

О многообразиях

Мы можем обобщить внешние дифференциальные формы на дифференцируемых многообразиях, обобщив FTC до теоремы Стокса. Ясно, что такое первообразная в этом контексте: α\alpha является внешней первообразной ω\omega тогда и только тогда, когда ω\omega является внешней производной α\alpha. На гладком многообразии мы знаем, что означает «почти», и поэтому можем также определить внешние почти первообразные.

Если ω\omega — 11-форма на любом дифференцируемом многообразии и PP — точка его области определения, то полуопределенный интеграл от ω\omega с начальной точкой PP определен в другой точке QQ тогда и только тогда, когда интеграл от ω\omega равен то же самое на любом пути от PP до QQ (и тогда этот интеграл является значением).

Система 7 из 4: Как рассчитать систему ставок на спорт: таблица расчета и примеры

Калькулятор Cистемы экспрессов онлайн в ставках

Количество матчей 345678910111213141516

Вид системы 2 из 3 (3)Экспресс

События Коэф Возврат Проигрыш

Размер ставки

Вычислить

Выигрыш (минус ставка) 0 (0)
Число экспрессов 0
Сумма ставки на каждый экспресс 0
Прошло экспрессов 0
Не прошло экспрессов 0

Подробный расчет

# экспресса Коэф Размер ставки Выигрыш

Выигрыш (минус ставка) 0 (0)

Как считается система экспрессов в букмекерских конторах

На примере «2 из 3» — каждая пара матчей формирует отдельный экспресс на треть суммы ставки. А значит, если «зайдет» хотя бы два матча, и средний их коэффициент не менее 1,8, то уже получаете выигрыш от бк. С помощью онлайн-калькулятора систем вы можете рассчитать до 16 матчей и посмотреть подробный расчет.

Какие стратегии лучше для системы экспрессов в футболе

Есть умеренные стратегии — исход трех матчей или нулевые форы (если равные команды) в хорошо знакомом вам турнире, даже одна ошибка обычно оставляет в плюсе. Есть совсем рисковые, например взять в «2 из 8» или даже «3 из 10» тур АПЛ после еврокубков, где все поставить на 1:0 в пользу аутсайдеров против измотанных грандов. Даже если угадать три матча, то уже будет большой выигрыш. А каждый последующий угаданный результат умножит эту сумму во много раз. Но такое заходит очень редко.

Можно ли ставить на системы в режиме LIVE?

Да, но надо заранее определиться по какому принципу будете отбирать матчи из линии букмекера, по ходу игры выбирать, например, между европейской и азиатской форой будет сложно, события в футбольных матчах порой очень стремительно развиваются.

Какая ставка лучше — экспресс или система?

Лучше их комбинировать, причем на один и тот же набор матчей — всегда остается вероятность сорвать большой куш. А системой вы страхуете экспресс. Но чаще лучшие ставки те, которые не сделали.

Ставка система у букмекера. Что это, как рассчитывается и нужно ли ставить?

Система – комбинированный вариант ставки на спорт, которая в основном состоит с сплошных экспрессов. По сравнению с обычным экспрессом, система позволяет выиграть даже при незначительном выигрыше, особенно при отдельном выборе комбинаций. Основные преимущества системы – размерность. Она идет в двух числах. К примеру, это обозначаются, как «3 с 4». Это значит, что система содержит в себе 4 выбора, все это объединяется с экспрессами по три выбора в каждом с них. То есть предлагаются всего четыре комбинации, три с них должны выиграть, чтобы система принесла прибыль. Сумма ставки в данном случае будет распределяться поровну.

Как именно рассчитывается система букмекера

Система — совокупность определенн9ого типа экспресс-ставок с 3 и более разными событиями. Расчет данной системы происходит в определенной экспресс-ставке, после будут складываться все числа и в результате появляется выигрыш. Притом букмекер может выставлять ограничения на определенные ставки в системе. Представлены они на огромное количество исходов, и могут насчитываться в объеме 12-20. Минимальное число событий, начинается от трех и более.

Как правильно рассчитать ставку по системе?

Чтобы вычислить определенную выплату по системе, необходимо рассчитать каждый определенный экспресс, который представлен в комбинированном варианте. Для примера можно взять ранее упомянутую систему «3 с 4». К примеру, вы сделали ставку на систему в размере 1000 гривен и выбрали следующие варианты событий:

  • «Челси» побеждает у команды «Атлетико» с коэффициентом 2.0;
  • «ПСЖ» обыгрывает «Баварию» с коэффициентом 2.6;
  • «Милан» выигрывает над «Риекой» всего за 2.14;
  • «Локомотив» будет сильней команды «Фастава» с показателем 1.6.

Как рассматривали систему 3 с 4, то четыре экспресса будет в каждом 3 выборе. Ставки в объеме 1000 гривен можно поделить на четыре позиций, получаем по 250 гривен на каждую. К примеру, победителями оказываются выборы 1,3,4, это значит, что в системе выигрывает одна комбинация, которая состоит с данных выборов. Считать коэффициент можно следующим образом:

 (2,0 * 2,14 * 1,6) * 250 = 6,848 * 250 = 1712 гривен.

При общей сумме выигрыша в размере 1712 гривен, чистая прибыль составит 712 гривен. Если вы собрали данный показатель сразу с четырех экспрессов, то ставка могла проиграть. Впрочем, если в данной системе в проигрыше оказывается всего 2 выбора, то ставка проиграет.

Рассмотрим, что происходит, когда выигрывают все 4 направления системы:

 (2,0 * 2,6 x 2,14) * 250 + (2,0 * 2,6 x 1,6) * 250 + (2,0 x 2,14 * 1,6) * 250 + (2,6 * 2,14 * 1,6) * 250 = 11,128 * 250 + 8,32 * 250 + 6,848 * 250 + 8,902 * 250 = 2782 + 2080 + 1712 + 2225,5 = 8799,5 гривен.

То есть, при выплате бетторы получат чистую прибыль в размере 7800 гривен, с 8800 гривен.

Существуют ли ограничительные меры при составлении определенной системы?

Ограничения, имеющиеся у букмекерских контор относительно системных ставок, повторяют рамки обычных экспресс ставок. Запрещается собирать дубликаты и другие взаимосвязанные между собой события. Если у пользователей не получается выиграть, больше одного выбора, то не получиться поставить на победный результат. Идентичные варианты выбирать, также не удастся. Дело в том, что система в основном должна состоять только с трех выборов.

Некоторые ограничительные меры отличаются лишь по выбору бк. Рассмотрим несколько украинских контор:

  • Максимальное число выборов в установленной системе: «Лига ставок», «Фонбет» — 16, а у «Винлайн» и вовсе 20.
  • Максимально допустимый показатель по выигрышам: у «Винлайн» — 5000, если данный порог был превышен, то расчет все также будет проводиться по нему.
  • Максимально разрешенное число комбинаций в одной системе в «Лиге ставок» составляет 1001.
  • Минимальный показатель ставок на систему в бк «Винлайн» составляет от 100 гривен и более, в «Фонбет» от 50 гривен и до 1001.

Как делать системные ставки?

Собирать системы будет с учетом показателей популярной конторы «Лиги Ставок». Для начала предлагается рассмотреть разные варианты показателей системы, в которых предлагается сделать определенное число комбинаций.

2 с 338 с 9911 с 1212
2 с 462 с 10452 с 1378
3 с 443 с 101203 с 13286
2 с 5104 с 102104 с 13715
3 с 5105 с 102529 с 13715
4 с 556 с 1021010 с 13286
2 с 6157 с 1012011 с 1378
3 с 6208 с 104512 с 1313
4 с 6159 с 10102 с 1491
5 с 662 с 11553 с 14364
2 с 7213 с 1116511 с 14364
3 с 7354 с 1133012 с 1491
4 с 7355 с 1146213 с 1414
5 с 7216 с 114622 с 15105
6 с 777 с 113303 с 15455
2 с 8288 с 1116512 с 15455
3 с 8569 с 115513 с 15105
4 с 87010 с 111114 с 1515
5 с 8562 с 12662 с 16120
6 с 8283 с 122203 с 16560
7 с 884 с 1249513 с 16560
2 с 9365 с 1279214 с 16120
3 с 9846 с 1292415 с 1616
4 с 91267 с 12792
5 с 91268 с 12495
6 с 9849 с 12220
7 с 93610 с 1266

Для начала войдите на официальный сайт конторы, выберите там те выборы, которые хотели бы добавить в систему. Возможно, ими могут стать:

  • «Селтик» в выигрыше в игре с командой «Андерлехт» с показателем в 1,85;
  • «Реал» побеждает «Тоттенхэм» всего за 1,48;
  • «Салават Юлаев» выигрывает «Динамо» с показателем 1,96;
  • «Сан-Антонио» побеждает «Оклахоме» с коэффициентом 3,75.

Если рассмотреть правую сторону экрана, то можно увидеть все имеющиеся у беттора выборы. После достаточно нажать на нужный вариант ставки – в данном случае это экспресс/система. Следом придется определиться с общей суммой сделки. Можно выбирать комбинированную ставку и нажать на клавишу «Поставить», как только чуть ниже появится максимальный выигрыш, можно выделить следующие варианты систем «2 с 4», а также «3 с 4».

Выгодной ли делать ставки в систему в бк?

В материалах о экспресс-ставках говорилось, что разные комбинированные ставки могут уменьшить размер получаемой прибыли на определенной дистанции, поэтому с получением определенных коэффициентом маржа будет увеличиваться. Соответственно особенностью букмекера перед бетторами заметно возрастет. Система практически ничем не отличается от экспресс-ставок.

Еще одним немаловажным недостатком в данном деле можно считать то, что пользователь не будет знать, какую сумму он получит на руки при выигрыше сделки. Каждый может просчитать свои позиции. Притом выплата по определенной системе будет значительно меньше, чем начальная сумма ставок. Другими словами, беттеры смогут выиграть ставку, но при этом потеряют определенную часть средств.

Система будет снижать любые риски, но максимальный размер выплаты по ней предлагается ниже, чем по экспресс-ставкам с теми же выборами. Именно в таком формате система будет позиционировать конторы. Если надоело делать одиночные ставки, и вы хотели бы выиграть на комбинированных событиях, но не готовы рисковать, то пробуйте систему. Конечно, даже профессионал не может гарантировать, что такой подход приведет вас к однозначной победе.

Вывод

Системой принято называть экспресс-ставки, у которых установлены определенные параметры. Отличительными свойствами по сравнению с экспрессами – является то, что даже при проигрыше определенных событий пользователи могут начать получать доход. Расчет системы будет зависеть только от определенного коэффициента, сыгравших при событиях, которые были заданы по размерности ставок.

Ответы на частые вопросы

  1. Насколько выгодно делать ставки, воспользовавшись системой?

Если вы устали делать одиночные ставки, и вы хотели бы заработать сразу за несколько событий, но не готовы сливать все свои средства, то предлагается попробовать использовать систему.

  1. Какая минимальная сумма ставки по системе допустима?

Система — совокупность экспресс-ставок с 3 и более событиями. Естественно, у каждой букмекерской конторы представлены свои лимиты на минимальный размер ставок.

3.      На какие разновидности спортивных дисциплин можно делать ставку системы?

Делать ставки можно на любую разновидность спорта.

4.       Ставки по системе «2 с 3» — как понять?

В системе 2 с 3 — общее число комбинированных экспрессов равняется трем. Притом действует по 2 выбора.

 

Рейтинг записи:

Структура приза

TOTO | Сингапурские пулы

×

Установка банковской ссылки, депозит, снятие средств и оплата ставок через банковскую ссылку (UOB) будут недоступны в понедельник, 17 апреля, с 12:00 до 8:00 в связи с плановым техническим обслуживанием.

×

Настройка банковской ссылки, депозит, снятие средств и оплата ставок через банковскую ссылку (OCBC) будут недоступны в воскресенье, 16 апреля, с 2:00 до 5:00 в связи с плановым техническим обслуживанием.

    Главная Лотерея Структура приза TOTO

Если выбранные вами номера включают как минимум три выигрышных номера, вы выиграете приз.

Сумма вашего приза зависит от того, сколько выбранных вами номеров совпадает с выигрышными номерами.

 

54% от продаж в каждом розыгрыше будут добавлены в призовой фонд. Призовой фонд предназначен для распределения призов, которые могут быть выиграны в каждом розыгрыше.

Призы распределяются следующим образом:

Призовая группа номеров совпало Сумма приза
Группа 1 (Джекпот) 6 выигрышных номеров 38% от призового фонда
(минимальная гарантированная сумма $1,000,000)
Группа 2 5 выигрышных номеров + дополнительный номер 8% от призового фонда
Группа 3 5 выигрышных номеров 5,5% от призового фонда
Группа 4 4 выигрышных номера + дополнительный номер 3% от призового фонда
Группа 5 4 выигрышных номера $50
Группа 6 3 выигрышных номера + дополнительный номер $25
Группа 7 3 выигрышных номера 10 долларов

Если в каждой победителе есть более одного победителя в каждой из групп с 1 по 4, призы будут разделены по сравнению с всеми победителями соответствующей группы.

Суммы призов для групп с 5 по 7 фиксированы.

 

Сумма приза увеличивается как снежный ком, если нет победителя в Группе 1, 2, 3 или 4, т.е. она добавляется к сумме приза в той же Группе следующего Розыгрыша.

Сумма приза группы 1 будет увеличиваться как снежный ком только до четвертого розыгрыша.

Суммы призов для групп 2, 3 и 4 будут увеличиваться как снежный ком, пока они не будут выиграны.

 

Каскадная жеребьевка проводится после трех последовательных розыгрышей без победителя группы 1.

Джекпот не увеличивается после четвертого розыгрыша подряд. Если в конце четырех последовательных розыгрышей нет победителя группы 1, окончательная сумма джекпота (38% от призового фонда четвертого розыгрыша плюс сумма, полученная снежным комом из трех предыдущих розыгрышей) каскадируется, т. е. она будет выплачена следующей призовой группе. с победителем(ями) и разделены поровну.

Призовая группа Победитель?
Группа 1 (Джекпот)
Группа 2 Да
Группа 3 Да
Группа 4 Да
Группа 5 Да
Группа 6 Да
Группа 7 Да
Результат джекпота Поделились поровну между победителями группы 2 Поделились поровну между победителями группы 3 Поделились поровну между победителями группы 4 Поделились поровну между победителями группы 5 Поделились поровну между победителями группы 6 Поделились поровну между победителями группы 7

Сколько выигрывает система 4 toto 7 номеров?

TOTO Правила игры (общие) | Бассейны Сингапура

Система Бросок для выбора из пяти (5) номеров , как описано в Правиле 5. 2(a) Система 8 на выбор из восьми (8) номеров . Система 9 для выбора из девяти (9) номеров . Система 10 на выбор из десяти (10) номера . Система 11 на выбор из одиннадцати (11) номеров . Система 12 на выбор …

ТОТО Типы ставок | Бассейны Сингапура

TOTO Типы ставок Обычный вход. Выберите шесть номеров от 1 до 49. Вы выиграете приз группы 1, также известный как джекпот, если все шесть выбранных номеров совпадут с выигрышным …

Тото Розыгрыш Хун Бао 2022: выигрыш в размере 16 миллионов долларов TOTO

TOTO ticket buyer selects 7 numbers from 1 to 49. System 8: $28: TOTO ticket buyer selects 8 numbers from 1 to 49. … How Much to Win хотя бы группа 4 Тогда?

Сингапур TOTO – intmath. com

Система 7 означает, что вы выбираете 7 номера (вместо обычных 6). Это дает вам 7 шансов на выигрыш (так что это стоит 7 умножить на много ), так как это эквивалентно покупке 7 различных 6- число игр, или C( 7 ,6 ). Допустим, вы выбрали 1, 3, 5, 7 , 9, 11, 13 в качестве номеров 7 . У вас есть следующие 7 способов выиграть, если 6 выигрышных номера оказалось:

Сколько много стоит Тото ? – TreeHozz.com

Точно так же как много Система 12? Система 12 является самой дорогой, с 12 номерами и стоит колоссальные 924 сингапурских доллара. Согласно веб-сайту Interactive Mathematics, система 12 даст вам наилучшие шансы на победу. Вероятность того, что обычная ставка в 1 сингапурский доллар выиграет джекпот, составляет 1 из 13,9. Шанс 83 816. Кроме того, как работает Toto ?

Что означает группа в toto ? – СидмартинБио

TOTO Структура призов 1 Призовые группы. Призовой фонд предназначен для распределения призов, которые могут быть выиграны в каждом розыгрыше. 2 Обычный и Система Таблица призов за участие 3 Система Таблица призов по броскам 4 Таблица призов iTOTO. Если в каждой из групп с 1 по 9 более одного победителя0272 4 , призы будут разделены поровну между всеми победителями соответствующей группы.

Какие хорошие призы можно раздать?

Каждая единица стоит 33 доллара (стоимость System 12 Entry составляет 924 доллара, деленная на 28). Сумма приза за каждую выигрышную единицу iTOTO равна сумме приза выигравшего билета Quick Pick System 12 Entry, деленному на 28. Выиграет ли 4 номера в до ? Если вы выбрали номера включают как минимум три выигрышных номера , вы выиграете приз.

Сингапур Тото Результаты, Выигрыш Номера – LotteryPros

Сингапур Тото Распределение призов. Чтобы выиграть джекпот, вы должны угадать все 6 выпавших номеров , и шансы на это составляют 1: 13,983, 816. Эта призовая группа разделяет 38% призового фонда. Вторая призовая группа разделяет 8% призового фонда. до выиграет , вы должны угадать 5 чисел и дополнительное число с коэффициентом 1: 2 330 636.

TOTO Результаты – Пулы Сингапура

5458. Группа 6. 25 долларов. 6444. Группа 7 . 10 долларов. 101 045. Несколько единиц iTOTO могут быть проданы через одну и ту же торговую точку или через учетную запись Singapore Pools. Приз группы 1 и общая сумма доли для группы 1 могут отличаться из-за округления.

Спорт Тото Система Play – штатив

Для Toto 4 /49 System Play вы можете выбрать от 5 номеров до максимум 15 номеров , от 1 до 49 для каждой ставки. В этой таблице рассказывается о каждой Системе , о том, сколько комбинаций вы можете иметь и о том, сколько сколько стоит играть. Стоимость комбинации 1 руб.

Тото (лотерея) – Википедия

Максимально допустимое совпадение чисел равно семи (победитель выигрывает как группу 1, так и группу 2 розыгрыша — это может произойти только в том случае, если человек купил билет системы 7 и выше). Таким образом, если шесть номеров в билете Toto совпадают с шестью выпавшими номерами (за исключением дополнительного номера ), джекпот (группа 1) выигран.

Как купить TOTO и 4D в Сингапуре – TheSmartLocal

Последний тип входа, в который вы можете играть, — это 4D Roll, где вы выбираете 3 числа вместо 4 и отмечаете R вместо оставшегося числа . R представляет любой номер от 0 до 9 и работает много как TOTO System Roll. Это обойдется вам в 10 раз больше вашей ставки.

Как и что я могу выиграть когда я играю Системы ? — Лотерейвест

С билетом System вы можете выиграть несколько призов за одну заявку. Например, предположим, вы покупаете билет Saturday Lotto System 7 , содержащий семь номеров 1 …

Математика, стоящая за TOTO — вот почему (статистически) это не так …

Резюме ТОТО Правила. Для тех, кто не знает , как играть в ТОТО , вот краткое изложение основных правил. 1) Вы выбираете не менее 6 номеров от 1 до 49. 2) Во время каждого розыгрыша разыгрываются 6 выигрышных номеров и 1 дополнительный номер . 3) Если выбранные вами номера совпадают как минимум с 3 из выигрышных номеров , вы выиграете приз.

Toto обсуждение стратегии. я тото ? Система 7 ? Макс выиграть как много

2,4 млн долларов – 1 система 7 1 система быстрого выбора $ 4 .

Корень 3 sinx 2: кубических, тригонометрических, логарифмических и др. уравнений · Калькулятор Онлайн для чайников 🫖🤓

2
Функция — Квадрат x
ctg(x)
Функция — Котангенс от x
arcctg(x)
Функция — Арккотангенс от x
arcctgh(x)
Функция — Гиперболический арккотангенс от x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
DiracDelta(x)
Дельта-функция Дирака
Heaviside(x)
Функция Хевисайда

Интегральные функции:

Si(x)
Интегральный синус от x
Ci(x)
Интегральный косинус от x
Shi(x)
Интегральный гиперболический синус от x
Chi(x)
Интегральный гиперболический косинус от x

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7. 3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
15/7
— дробь

Другие функции:

asec(x)
Функция — арксеканс от x
acsc(x)
Функция — арккосеканс от x
sec(x)
Функция — секанс от x
csc(x)
Функция — косеканс от x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция — гиперболический арксеканс от x
csch(x)
Функция — гиперболический косеканс от x
sech(x)
Функция — гиперболический секанс от x
acsch(x)
Функция — гиперболический арккосеканс от x

Постоянные:

pi
Число «Пи», которое примерно равно ~3. 2
Функция — Квадрат x
ctg(x)
Функция — Котангенс от x
arcctg(x)
Функция — Арккотангенс от x
arcctgh(x)
Функция — Гиперболический арккотангенс от x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
DiracDelta(x)
Дельта-функция Дирака
Heaviside(x)
Функция Хевисайда

Интегральные функции:

Si(x)
Интегральный синус от x
Ci(x)
Интегральный косинус от x
Shi(x)
Интегральный гиперболический синус от x
Chi(x)
Интегральный гиперболический косинус от x

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7. 3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
15/7
— дробь

Другие функции:

asec(x)
Функция — арксеканс от x
acsc(x)
Функция — арккосеканс от x
sec(x)
Функция — секанс от x
csc(x)
Функция — косеканс от x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция — гиперболический арксеканс от x
csch(x)
Функция — гиперболический косеканс от x
sech(x)
Функция — гиперболический секанс от x
acsch(x)
Функция — гиперболический арккосеканс от x

Постоянные:

pi
Число «Пи», которое примерно равно ~3. 14159..
e
Число e — основание натурального логарифма, примерно равно ~2,7183..
i
Комплексная единица
oo
Символ бесконечности — знак для бесконечности

Мэтуэй | Популярные задачи

92
1 Найти точное значение грех(30)
2 Найти точное значение грех(45)
3 Найти точное значение грех(30 градусов)
4 Найти точное значение грех(60 градусов)
5 Найти точное значение загар (30 градусов)
6 Найти точное значение угловой синус(-1)
7 Найти точное значение грех(пи/6)
8 Найти точное значение cos(pi/4)
9 Найти точное значение грех(45 градусов)
10 Найти точное значение грех(пи/3)
11 Найти точное значение арктан(-1)
12 Найти точное значение cos(45 градусов)
13 Найти точное значение cos(30 градусов)
14 Найти точное значение желтовато-коричневый(60)
15 Найти точное значение csc(45 градусов)
16 Найти точное значение загар (60 градусов)
17 Найти точное значение сек(30 градусов)
18 Найти точное значение cos(60 градусов)
19 Найти точное значение cos(150)
20 Найти точное значение грех(60)
21 Найти точное значение cos(pi/2)
22 Найти точное значение загар (45 градусов)
23 Найти точное значение arctan(- квадратный корень из 3)
24 Найти точное значение csc(60 градусов)
25 Найти точное значение сек(45 градусов)
26 Найти точное значение csc(30 градусов)
27 Найти точное значение грех(0)
28 Найти точное значение грех(120)
29 Найти точное значение соз(90)
30 Преобразовать из радианов в градусы пи/3
31 Найти точное значение желтовато-коричневый(30)
32
35 Преобразовать из радианов в градусы пи/6
36 Найти точное значение детская кроватка(30 градусов)
37 Найти точное значение арккос(-1)
38 Найти точное значение арктан(0)
39 Найти точное значение детская кроватка(60 градусов)
40 Преобразование градусов в радианы 30
41 Преобразовать из радианов в градусы (2 шт. )/3
42 Найти точное значение sin((5pi)/3)
43 Найти точное значение sin((3pi)/4)
44 Найти точное значение тан(пи/2)
45 Найти точное значение грех(300)
46 Найти точное значение соз(30)
47 Найти точное значение соз(60)
48 Найти точное значение соз(0)
49 Найти точное значение соз(135)
50 Найти точное значение cos((5pi)/3)
51 Найти точное значение cos(210)
52 Найти точное значение сек(60 градусов)
53 Найти точное значение грех(300 градусов)
54 Преобразование градусов в радианы 135
55 Преобразование градусов в радианы 150
56 Преобразовать из радианов в градусы (5 дюймов)/6
57 Преобразовать из радианов в градусы (5 дюймов)/3
58 Преобразование градусов в радианы 89 градусов
59 Преобразование градусов в радианы 60
60 Найти точное значение грех(135 градусов)
61 Найти точное значение грех(150)
62 Найти точное значение грех(240 градусов)
63 Найти точное значение детская кроватка(45 градусов)
64 Преобразовать из радианов в градусы (5 дюймов)/4
65 Найти точное значение грех(225)
66 Найти точное значение грех(240)
67 Найти точное значение cos(150 градусов)
68 Найти точное значение желтовато-коричневый(45)
69 Оценить грех(30 градусов)
70 Найти точное значение сек(0)
71 Найти точное значение cos((5pi)/6)
72 Найти точное значение КСК(30)
73 Найти точное значение arcsin(( квадратный корень из 2)/2)
74 Найти точное значение загар((5pi)/3)
75 Найти точное значение желтовато-коричневый(0)
76 Оценить грех(60 градусов)
77 Найти точное значение arctan(-( квадратный корень из 3)/3)
78 Преобразовать из радианов в градусы (3 пи)/4 
79 Найти точное значение sin((7pi)/4)
80 Найти точное значение угловой синус(-1/2)
81 Найти точное значение sin((4pi)/3)
82 Найти точное значение КСК(45)
83 Упростить арктан(квадратный корень из 3)
84 Найти точное значение грех(135)
85 Найти точное значение грех(105)
86 Найти точное значение грех(150 градусов)
87 Найти точное значение sin((2pi)/3)
88 Найти точное значение загар((2pi)/3)
89 Преобразовать из радианов в градусы пи/4
90 Найти точное значение грех(пи/2)
91 Найти точное значение сек(45)
92 Найти точное значение cos((5pi)/4)
93 Найти точное значение cos((7pi)/6)
94 Найти точное значение угловой синус(0)
95 Найти точное значение грех(120 градусов)
96 Найти точное значение желтовато-коричневый ((7pi)/6)
97 Найти точное значение соз(270)
98 Найти точное значение sin((7pi)/6)
99 Найти точное значение arcsin(-( квадратный корень из 2)/2)
100 Преобразование градусов в радианы 88 градусов

(1) 1/2 логтан(х/2+пи/(12))+с (2) 1/2логтан(х/2-пи/(12))+с (3) логтан(х/2+ пи/(12))+с (4) логтан(х/2-пи/(12))+с

Вопрос

ВОПРОС


JEE MANIS предыдущего года.

Ответить

Пошаговое решение, разработанное экспертами, чтобы помочь вам в разрешении сомнений и получении отличных оценок на экзаменах.

Расшифровка

В этом вопросе мы хотим интегрировать функцию DX по cos x + root 3 sin x и хотим определить это значение, чтобы sabse pahle Ham получил выражение в данном выражении оценивает karni hai DX по cosx + root 3 минус 2 — это полная карна для небольшой сложной задачи Hai To Ham Kya Karenge ismein cos a cos b wale формула Karenge Cos A + B wale to Binu ki Cos A минус b kya hota hai Cos A минус b равно 1 на Cos A cosby sin a sin b Tu Agar Ham Kya Karen данное выражение mein agar Humse обеденный метр ko использовать разделить bhi kar den aur умножить bhi kar de theek ho jayega это равно

умножить karne se на Adhik Jaega Bahar baithe ho jaega lekin метрика ужина Jaega yahan se это равно DX на 1 на 2 на cos x + корень 3 на 2 на sin x на косвенно Karam Dekhte pahle value ke likhe Hue cos 3 Cos pi на 3 sin pi на 3, чтобы косвенно иметь значительно из конвертера Mein Denge iski Ham form convert karte ho jaega 1. 2 интегрирование DX на cos x минус 5 на 3 равно cos x минус 5 на 3 единицы на cos theta в это равно 1 при 2 интегрировании сек x минус 5 на

3 DX интеграция sec theta kya hota hai интеграция сектора равна интеграции sec theta равна Allen sec theta + tan theta sec theta + tan theta аналогично Yahan Bik Jaega agar mein se Karenge этому равна интеграции ки видеовызов karne per 1 на 2 в Allen sec x минус 5 на 3 x минус 5 на 3 x минус 5 на 3 + 10 x минус 5 на 3 Agar Ham Dekhe To Ham Jo Sare ответы заданные варианты Mein ok 10 ki aur uski form дал Хам Саб 10 ки телефон мейн кайс преобразовать кар сакте в 10 км грех от cos chahie Хога ок взял агар майн Кья Карун

чистый ко кья болат Хайн окончательная форма косми конвертировать кар ло в знак кофе превращая пользу в джага это логарифм одного на соз пусть секс минус 5 по сигме тета значение один на соз тета + син тета на соз тета аб 1 + sin theta запятая влияет на 1 + sin theta равно log kya Karega один совершает sin квадрат тета на 2 sin квадрат тета на 2 + cos квадрат тета на 2 Abdul Kabe Se Main Aur sin theta in sin theta на 2 cos theta на 2 Угол B ок для углов основной конвертировать Kalyan cos theta на 2 или нишу Kamar pass mein cos theta это cos theta

теперь вы можете прямо это равно 1 на 2 log син тета на 2 + cos тета на 2 ка целый квадрат 2 это синус тета на 2 + cos тета на 2 целый квадрат по стоимости Cos угла B и угла ki сформировать кос квадрат тета на 2 минус синус квадрат тета на 2 или Кья Хога иски множители ка кайсе сократить кар денге туджхе карвана телефон выйти из системы Упар ке син тета + соз тета на 2 года назад на квадрат минус б квадрат к ке упар hamare pass mein sin theta на 2 cos theta на 2 или ужин Mein hamare pass mein factor karne per sin theta на 2 + cos theta на 2 октября per Khatam Hogi a

минус b в a + b Karenge aur dusre movie cos theta на 2 минус sin theta на 2, чтобы найти площадь, где она равна 1 на 2 log ok sin theta + cos theta на cos theta минус sin Agar message kya karun cos- тета, как известно, сегодня вызывает общую сторону Доно се Лене се кья хо джаега упар се кам акостета Камал тан тета плюс один Орегон Ниша Се Кам Карега это 1 минус 10 тета есть и избегать непосредственного восстановления 10 5 на 4 + тета импорт кар денге потом взял и плюс би ка тан А + тан Б при 1 минус 10 с этим равно 1 при 2 логарифм 10 рейта фариа 10 тета на 2 больше не тета тан тета на 2

см на 2 минус 5 на 4 упрощенный Kanya PG 3rd T20 x минус 5 на 3 равно как ценный финал ганы для камеры, так что это равно выходу из системы 10 x на 2 минус 5 на 6 Oracle + vah извините aur + 5 на 4, так что это ответ на этот вопрос, пожалуйста, humre Tod se, модификация Кариб Кайсе, углы ke, формула Uske, угол по Mein, конвертировать karne ke в окончательный sem 1 на 2, log 10 x на 2 минус 6 на 6 плюс xy4 ключевое значение угла в правильном ответе заблокировано и аб на самом деле Мейн Кахин отточить ке Каран ху Джо Хамара ответ хай исмейн Карен минус 5 на 6 5 4 ко бхи чалу Карие Аати Хай Савал карне за 12 журнал 10к это

равно 10 и X на 2 aur pi на 4 — 562 Jagah Aisi Mukesh Kitna 1233 — 25 на 12 + 5 на 12 вдохновлено 12 x на 2 + 5 на 12 правильный ответ вариант 11 на 2 log 10 x на 2 + b + c c q 1 константа интегрирования, поэтому


Похожие видео

Выберите правильный ответ∫√31dx1+x2равно
(A) π3
(B) 2π3
(C) π6
(D) π12

9090×6 Выражение +2tan2x+1)cos2x, когда x=π12, может быть равно (а)4(2−√3) (б) 4(√2+1) (с)16cos2π12 (г) 16sin2π12

Если y=x4−x2+1×2+√3x+1 и dydx=ax+b, тогда значение a-b равно (а) детская кроватка (π8) (б) раскладушка (π12) (c) загар (5π12) (г) тангенс(5π8)

∫1cosx+√3sinx dx равно логтан(π3+x2)+C (б) логтан(x2−π3)+C (в) 12logtg(x2+π3)+C (d) ни один из этих

1461993

∫√3111+x2dx равно №12 б.

5 3 корня из 2: (3 корня из 5) в квадрате и деленное на 15

2
Функция — Квадрат x
ctg(x)
Функция — Котангенс от x
arcctg(x)
Функция — Арккотангенс от x
arcctgh(x)
Функция — Гиперболический арккотангенс от x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
DiracDelta(x)
Дельта-функция Дирака
Heaviside(x)
Функция Хевисайда

Интегральные функции:

Si(x)
Интегральный синус от x
Ci(x)
Интегральный косинус от x
Shi(x)
Интегральный гиперболический синус от x
Chi(x)
Интегральный гиперболический косинус от x

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7. 3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
15/7
— дробь

Другие функции:

asec(x)
Функция — арксеканс от x
acsc(x)
Функция — арккосеканс от x
sec(x)
Функция — секанс от x
csc(x)
Функция — косеканс от x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция — гиперболический арксеканс от x
csch(x)
Функция — гиперболический косеканс от x
sech(x)
Функция — гиперболический секанс от x
acsch(x)
Функция — гиперболический арккосеканс от x

Постоянные:

pi
Число «Пи», которое примерно равно ~3. 14159..
e
Число e — основание натурального логарифма, примерно равно ~2,7183..
i
Комплексная единица
oo
Символ бесконечности — знак для бесконечности

6.4 Устойчивость систем автоматического регулирования. Частотный критерий устойчивости Михайлова / Хабр

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.3, 2.3 — 2.8, 2.9 — 2.13. 

3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ. 3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья. 3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора. 3.4. Апериодическое звено 2-го порядка.  3.5. Колебательное звено. 3.6. Инерционно-дифференцирующее звено. 3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением). 3.9. Изодромное звено (изодром). 3.10 Минимально-фазовые и не минимально-фазовые звенья. 3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности. 

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица.

6.4. Частотный критерий устойчивости Михайлова

Советским ученым Михайловым в 30-тых годах впервые был предложен оригинальный критерий оценки устойчивости САР, основанный на исследовании частотных свойств полинома при подстановки вместо , где

Связь между частотными свойствами системы и передаточными функцииями более подробно описана в лекции 3. Частотные характеристики САР

Подставим в формулу 6.4.1

Совершенно очевидно, что:

Критерий устойчивости Михайлова:

Чтобы САР (замкнутая или разомкнутая) была устойчивой, необходимо и достаточно, чтобы годограф при изменении от нуля до переходил  поочередно из квадранта в квадрант против часовой стрелки, совершив при этом поворот  на угол  , где — степень полинома .

На рисунке 6.4.1 представлены варианты годографов для различных степеней n полинома

Рисунок 6.4.1 Годографы устойчивых систем

Если САР устойчива, то вектор при изменении от 0 до совершает поворот на угол , где n — степень полинома .

Следствием частотного критерия Михайлова является перемежаемость (чередование) нулей полиномов и в самом деле (см. рисунок 6.4.1), для кривой с последовательность пресечения осей получается как на рисунке 6.4.2

Рисунок 6.4.2. Нули полиномови чередуются для устойчивости системы.

Если система находится на апериодической границе устойчивости (один нулевой полюс при всех остальных в левой полуплоскости), то годограф имеет следующий «примерный» вид, см. рисунок 6.4.3:

Рисунок 6.4.3 — Годограф начинается из начала координат и поочередно «проходит» все квадранты в положительном направлении (начиная со 2-го квадранта).

Если система находится на колебательной границе устойчивости (2 чисто мнимых полюса при всех остальных в левой полуплоскости), то годограф имеет вид как на рис. 6.4.4:

Рисунок 6.4.4 — Годограф при некоторой частоте проходит через начало координат, «перескакивая» из 2-го в 4-ый квадрант (минуя 3-ий). Частота — частота незатухающих колебаний в такой САР.

Если САР неустойчива, годографы имеют вид как представлено на рисунке 6.4.5:

Рисунок 6.4.5. Годографы неустойчивых систем.

Докажем ряд основных моментов в критерии Михайлова.

Представим полином  в виде произведения:

где  — полюса главной передаточной функции.

Учитывая, что любое комплексное число типа  можно представить в виде: где – модуль, — фаза.

Рассмотрим изменнение фазы, при изменении от 0 до . Обозначим изменение фазы как

Для устойчивой САР, все полюса D(s) лежат в левой полуплоскости. (см. предыдущию лекцию) Рассмотрим различные варианты расположения полюсов на плоскости:

1-й случай: пусть является реальным числом , например, , где , поскольку корень в левой полуплоскости.

Рассмотрим поведение вектора  при изменении  от нуля до бесконечности

Рисунок 6.4.6. Вектор для реального корня

Из рисунка 6.4.6 очевидно, что

при ,

при .

Т.е. при изменении от 0 до вектор, описывающий скобку  повернется в положительном  направлении на угол .

2-й случай: Пусть где, преобразуем скобку:

Рассмотрим изменение от до :

при — точка лежит в правом нижнем квадранте коплексной плоскости, фаза (сдвиг фазы):

(см. рис. 6.4.7)

при фаза (сдвиг фазы) (см. рис. 6.4.7)

Рисунок 6.4.7 Вектор длядля комплексного корня.

Изменение фазы:

3-й случай: Пусть (полюс комплексно сопряженный со вторым вариантом). Преобразуем скобку

Рассмотрим изменение от до :

при — точка лежит в правом верхнем квадранте коплексной плоскости, фаза (сдвиг фазы):

(см. рис. 6.4.8)

при фаза (сдвиг фазы) (см. рис. 6.4.8)

Рисунок 6.4.8 Вектор длядля комплексного корня.

Изменение фазы:

Рассмотрим изменения годографа полинома устойчивой системы c учетом изменения фазы для трех случаев полюсов рассмотрены выше.

Пусть у нас общее количество полюсов , — количество сопряженных полюсов полинома, тогда количество вещественных полюсов.

Покольку вещественны полюс дает (cм. формулу 6.4.6), а два комплексно сопряженных корня в сумеее дают (формулы 6.4.7 и 6.4.8)

Это означает, что при изменении частоты от нуля до бесконечности, годограф должен поочередно пройти все квадранты в положительном направлении, если САР – устойчива.

Рассмотрим неустойчивую САР, у которой ряд полюсов полинома расположен в правой полуплоскости.

4-й случай: Пусть где — реальное число.

Преобразуем скобку подставля значения полюса .

Рассмотрим изменние вектора при изменении от 0 до. Примерный вид представлен на рисунке 6.4.9, где :

Рисунок 6.4.9 Вектор длядля комплексного корня.

Изменение фазы вектора:

при ;

при .

Изменение фазы:

Следовательно отрицательный реальный полюс дает вращение вектора   в отрицательном  направлении на угол . Получается наличе одного реального полюса вызывает «недоповорот» вектора на угол .

Рассмотрим два варианта с коплексными полюсами лежашими в левой полуплоскости:

5-й случай: Пусть , где и преобразуем скобку для данного случая:
.

Рассмотрим изменние вектора при изменении от 0 до . Примерный вид представлен на рисунке 6.4.10, где: ,

Рисунок 6.4.10 Вектор длядля комплексного корня.

Рисунок 6.4.10 Вектор длядля комплексного корня. Изменение фазы вектора:

при ;

при .

Изменение фазы:

6-й случай: Пусть , явялется комплексно сопряженным полюсом для 5-го случая, где и преобразуем скобку для данного случая:.

Рассмотрим изменние вектора при изменении от 0 до . Примерный вид представлен на рисунке 6.4.11, где: ,

Рисунок 6.4.11 Вектор длядля комплексного корня.

при ;

при .

Изменение фазы:

При наличии двух комплексно-сопряженных корней в левой полуплоскости (варианты 5 и 6) общее изменение фазы вычисляется по формуле:

Резюмируем:

Если САР — устойчива все полюса полинома степенью лежат в левой полуплоскости, то изменение фазы годографа при изменении on 0 доописывается формулой 6.4.13:

Если один полюс полинома степенью лежит в правой полуплоскости, а остальные в левой полуплоскости, то изменение фазы годографа при изменении on 0 доописывается формулой 6.4.14:

Если в правой полуплоскости расположено L полюсов полинома степенью , а остальные в левой полуплоскости, то изменение фазы годографа при изменении on 0 доописывается формулой 6.4.15:

Предельный случай

Если один из полюсов полинома явялется бесконечным (см. рисунок 6.4.12):

Рисунок. 6.4.12 Бесконечный полюс

Данный случай возникает, если  годограф  в этом случае ведет себя как показано на рисунке 6.4.13:

Рисунок 6.4.13 Вид годографа  c «бесконечным» корнями

Пример

Исследовать на устойчивость САР , представленную на рисунке 6.4.14 с использованием критерия Михайлова

Рисунок 6.4.14 САР для исследования

Полином

Корни полинома : ;

Корни полинома ;

Чередования 0 для полиномов не происходит, (см. рис. 6.4.15)

Рисунок 6.4.15 Корни полиномов

Определим какие должны быть коэффициенты полинома и что бы САР была устойчивой согласно критерию Михайлов.

Для устойчивой системы, необходимо чередование корней, для нашего случа корни могут распологаться по возрастанию в следующем порядке:

Изменим коэффициент так, что-бы неравенство сталов верным. Например пусть . Тогда решая уравнение для , при получаем коэффициент

Проверим результат численным моделированием. Создадим стуркутурную схему, как показанао на рисунке 6. 4.15.

Рисунок 6.4.15 Схема модели для проверки решения примера 1.

Используем блок передаточная переменная общего вида, где будем задавать, коэффициет k, из условия задачи в качестве глобальной переменной, меня которую можно изменять коэффициент числителя (см. рис. 6.4.15). Зададим в качестве тестового воздействия ступеньку на 5-й секунду, так же поместим на схему блок построения гадогрофа Михайлова. Результаты расчет приведены на рисунке 6.4.16

Рисунок 6.4.16 Расчет неустойчивой системы.

Меняя коэффициет , можно убедиться, что система остается неустойчивой, при любых значениях коэффициента меняется только амплитуда колебательного процесса. График годографа Михайлова показывает, что годограф переходит из квадранта в квандрат комплексной полсокости, по часовой стрелке (см. рис. 6.4.16).

Изменим коэффициент блока предаточной функции общего вида рассчитанные для получения чердования корней , и повторим расчет. Изменненная модель и результаты моделирования представлены нар рисунке 6.

Правило как найти делимое: Нахождение неизвестного делимого — урок. Математика, 3 класс.

Как найти делимое. Чтобы найти неизвестное делимое. Правило чтобы найти делимое.

  • Альфашкола
  • Статьи
  • Как найти делимое?

Дарим в подарок бесплатный вводный урок!

Предметы

  • Математика
  • Репетитор по физике
  • Репетитор по химии
  • Репетитор по русскому языку
  • Репетитор по английскому языку
  • Репетитор по обществознанию
  • Репетитор по истории России
  • Репетитор по биологии
  • Репетитор по географии
  • Репетитор по информатике

Специализации

  • Подготовка к ЕГЭ по математике (базовый уровень)
  • Репетитор по геометрии
  • Репетитор по химии для подготовки к ЕГЭ
  • Подготовка к олимпиадам по физике
  • Репетитор по грамматике русского языка
  • Репетитор по английскому языку для подготовки к ОГЭ
  • Подготовка к олимпиадам по английскому языку
  • Репетитор по английскому для взрослых
  • Репетитор по географии для подготовки к ОГЭ
  • Подготовка к ОГЭ по литературе

Существует определенное правило для нахождения делимого.   Вспомним, что такое делимое, делитель и частное. 

В примере выше делимое у нас 12, поэтому для его нахождения надо умножить делитель на частное. Это не сложно, не так ли? Давайте попрбуем на более сложных примерах. 


Пример 1. Найдите делитель: \(322x : 92 = 14\).

Решение:

\(322x : 92 = 14\)

Для того чтобы найти делимое , схема решения аналогично выше: пермножаем делить и частное.

\(322x=92*14\)

\(322x=1288\)

\(x=1288:322\)

\(x =4\)

Ответ: искомый делитель \(-1288\) , \(x=4\).


Если вы сомневаетесь, что на что надо умножать, то придумайте такой же пример, только с простыми числами. Рассмотрим это на примере ниже.

 

Пример 2. Найдите делитель: \(x:5=165\). 

Решение:

\(x:5=165\)

\(x:3=2\) \(-\) здесь ясно, чтобы найти \(x \) , надо \(3*2 \) , то есть делитель равен \(6\)

\(5*165=825\)  \(-\) искомый делитель.

Ответ : \(825 -\)искомый делитель.

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!

Запишитесь на бесплатное тестирование знаний!

Нажимая кнопку «Записаться» принимаю условия Пользовательского соглашения и Политики конфиденциальности

Наши преподаватели

Галина Федоровна Захарина

Репетитор по математике

Стаж (лет)

Образование:

Гомельский государственный университет имени Ф. Скорины

Проведенных занятий:

Форма обучения:

Дистанционно (Скайп)

Мария Валерьевна Загребина

Репетитор по математике

Стаж (лет)

Образование:

Удмуртский государственный университет

Проведенных занятий:

Форма обучения:

Дистанционно (Скайп)

Ольга Яновна Савинова

Репетитор по математике

Стаж (лет)

Образование:

Гродненский государственный университет имени Янки Купалы

Проведенных занятий:

Форма обучения:

Дистанционно (Скайп)

Похожие статьи

  • Приведение к общему знаменателю
  • Определенный интеграл
  • Свойства параллелограмма. Параллелограмм и его свойства.
  • Что такое процент?
  • Формулы окружности
  • Корень из числа
  • НИУ ВШЭ: Факультет Психологии
  • Отпусти меня, мама, я уже взрослый

Нажимая кнопку «Записаться» принимаю условия Пользовательского соглашения и Политики конфиденциальности

Математика Делимое и делитель

Материалы к уроку

  • 30. Делимое, делитель.doc

    69 KBСкачать
  • 30. Делимое, делитель.ppt

    12.79 MBСкачать

Конспект урока

30.  Делимое, делитель

 

Организационный этап

 

Мы в лес за наукой сегодня пойдём,
Смекалку и знания с собою возьмём.

Здравствуйте, дорогие ребята. Сегодня на уроке мы отправимся с вами в лесную школу. Отправляемся в путь!

 

Этап подготовки учащихся к активному сознательному усвоению знаний

 

Устный счёт

 

Звери и птицы пришли в школу учиться!

Учиться считать, учиться решать.

Ребята, кто же первым из лесной школы нас встретит — угадайте.


Ты его узнаешь сразу:
Летом на зиму припасы
Не ложил он день за днем
Весь запас всегда при нем.
Спать ложится, снимет тапок
И сосёт, как соску, лапу.
А начнет капель звенеть,
Просыпается.

Медведь


Медведь – директор лесной школы.

Медведь школу открывает,

Считать устно приглашает.

 

Задание 1

Зайцы по лесу бежали,
Волчьи следы по дороге считали.
Стая большая волков здесь прошла.
Каждая лапа в снегу их видна.
Оставили волки 40 следов.
Сколько, скажите, здесь было волков?

У каждого волка 4 лапы, которые оставили 40 следов. 40:4=10. Значит, прошло 10 волков.

 

Задание 2

Сорока прожить может 27 лет.

В 3 раза короче у ласточки век. Сколько лет может прожить ласточка?

9 лет

27:3=9

 

Задание 3

3 бельчонка маму – белку
Ждали около дупла.
Им на завтрак мама-белка
30 шишек принесла,
Разделила на троих,
Сколько каждому из них?

Каждому бельчонку досталось по 10 шишек.

 

Задание 4

Под берёзой 90 листиков лежат,
А мышата в листиках шуршат.
И для них нашлась работа:
Собирают листочки для счёта.
По 9 листочков берут,
В школу весело бегут.
Сколько мышат прибежало в нашу лесную школу?

Правильно, 10 мышат.

 

Этап усвоения новых знаний

 

Вспомните, как называются компоненты при делении?

делимое       делитель      частное

Отгадайте загадку:

Хитрая плутовка
Рыжая головка
Хвост пушистый – краса!
А зовут её…   Лиса

Ребята, лиса принесла числовое выражение: 15:5=3.

Чем является число 15?                

Чем является число 5?

Чем является число 3?

Компоненты при делении называются: делимое, делитель, частное.

 

Сейчас поиграем в математические прятки, я буду прятать число, а вы мне должны объяснить, как его найти. А поможет нам в этом знание математического правила о делении.

Что такое деление?

Деление — это действие, обратное умножению.


Первым спряталось частное.

Как найти частное?

Делимое разделить на делитель, получится частное.


Играем дальше. Спряталось делимое.

Как найти делимое?

Если делитель  умножить на частное, то получится делимое.


Играем дальше. Спрятался делитель.

Как  найти делитель?

Если делимое разделить на частное, то получится делитель.

Сделаем вывод:

  1. Если делитель умножить на частное, то получится делимое.
  2. Если делимое разделить на частное, то получится делитель.

 

Я – Лиса-краса, могу всех обхитрить, а могу всё хорошо объяснить. Вы поняли, ребята, что при делении все три компонента: делимое, делитель и частное между собой взаимосвязаны.

 

Этап закрепления новых знаний

 

Ребята угадайте кто это?

В лесу темно,
Все спят давно.
Одна птица не спит:
На суку сидит,
Мышей сторожит…

Сова


Да, это Сова – ещё один житель леса. А ещё  она главный консультант лесной школы. И к нам она не с пустыми руками прилетела, а принесла много заданий.

 

Задание

Выпишите и решите только те выражения, в которых надо найти частное.

4 + 3          5 · 2            6 : 3               

8 – 4          4 > 3           12 : 2

Проверьте себя и оцените свои успехи.


6:3=2

12:2=6
 

Задание

Сделайте вычисления, подчеркните делитель.

36:9

72:8

35:7

Проверьте себя и оцените свои успехи.


36:9=4 — делитель – 9

72:8= 9 — делитель – 8

35:7=5 — делитель – 7

 

Задание

Сделайте вычисления, обведите делимое.

45:5=

20:2=

56:8=

Проверяем.


45:5=9 — делимое – 45

20:2=10 — делимое – 20

56:8=7 — делимое – 56

 

Молодцы, ребята, вы справились с заданиями мудрой Совы.

 

Ребята, угадайте кто этот лесной житель?

Сам он круглый, а не мяч,
Рта не видно, а кусач,
Голой ручкой не возьмешь,
А зовется это … ёж


Ёжик – лучший ученик лесной школы. Он на своих колючках вам тоже припас задание.

 

Самостоятельная работа

 

Решите числовые выражения.

96 : 3

84 : 7

88 : 4

78 : 6

85 : 5

Проверьте себя и оцените свои успехи.


96:3=(90+6):3=90:3+6:3=30+2=32

84:7=(70+14):7=70:7+14:7=10+2=12

88:4=(80+8):4=80:4+8:4=20=2=22

78:6=(60+18):6=60:6+18:6=10+3=13

85:5=(50+35):5=50:5+35:5=10+7=17

 

Этап подведения итогов

 

Запомните:

1.  Если делитель умножить на частное, то получится делимое.

2. Если делимое разделить на частное, то получится делитель.

 

Рефлексия

 

Ребята, если вам всё понятно, нарисуйте  листик красного цвета; если не совсем понятно, то листик желтого цвета; а если не понятно ничего –  зелёный листик.

Спасибо за работу!

Остались вопросы по теме? Наши педагоги готовы помочь!

  • Подготовим к ЕГЭ, ОГЭ и другим экзаменам

  • Найдём слабые места по предмету и разберём ошибки

  • Повысим успеваемость по школьным предметам

  • Поможем подготовиться к поступлению в любой ВУЗ

Выбрать педагогаОставить заявку на подбор

Как рассчитать дивиденды: формула для использования балансового отчета

Большинство компаний сообщают о своих дивидендах в отчете о движении денежных средств, в отдельной бухгалтерской сводке в своих регулярных отчетах для инвесторов или в отдельном пресс-релизе, но это не всегда случай. Если нет, вы можете рассчитать дивиденды, используя баланс и отчет о прибылях и убытках. Вы найдете их в годовом отчете компании 10-K.

Вот формула для расчета дивидендов: Чистая годовая прибыль минус чистое изменение нераспределенной прибыли = выплаченные дивиденды.

Использование чистой прибыли и нераспределенной прибыли для расчета выплаченных дивидендов

Использование чистой прибыли и нераспределенной прибыли для расчета выплаченных дивидендов

Чтобы вычислить дивиденды, если они не указаны явно, вам нужно обратить внимание на две вещи. Во-первых, балансовый отчет — запись активов и пассивов компании — покажет, сколько компания сохранила в своих бухгалтерских книгах в виде нераспределенной прибыли. Нераспределенная прибыль — это общая прибыль, полученная компанией за всю ее историю, которая не была возвращена акционерам в виде дивидендов.

Во-вторых, отчет о прибылях и убытках в годовом отчете, который измеряет финансовые результаты компании за определенный период времени, покажет вам, сколько чистой прибыли компания получила за данный год. Эта цифра помогает установить, каким было бы изменение нераспределенной прибыли, если бы компания решила не выплачивать 90 005 дивидендов в размере 90 006 в течение данного года.

Как рассчитать дивиденды из баланса и отчета о прибылях и убытках

Как рассчитать дивиденды из баланса и отчета о прибылях и убытках

Чтобы рассчитать дивиденды за данный год, сделайте следующее:

  1. Возьмите нераспределенную прибыль на начало года и вычтите ее из числа на конец года. Это покажет вам чистое изменение нераспределенной прибыли за год.
  2. Затем возьмите чистое изменение нераспределенной прибыли и вычтите его из чистой прибыли за год. Если нераспределенная прибыль увеличилась, то результат будет меньше, чем чистая прибыль за год. Если нераспределенная прибыль упала, то результат будет больше, чем чистая прибыль за год.

Ответ представляет собой общую сумму выплаченных дивидендов.

Например, скажем, компания заработала 100 миллионов долларов в данном году. Он начался с 50 миллионов долларов нераспределенной прибыли и закончил год с 70 миллионами долларов. Увеличение нераспределенной прибыли составило 70 миллионов долларов минус 50 миллионов долларов, или 20 миллионов долларов.

Вот математика: 100 миллионов долларов чистой прибыли — 20 миллионов долларов изменения нераспределенной прибыли = 80 миллионов долларов, выплаченных в виде дивидендов.

Источник изображения: Getty Images.

Расчет коэффициента выплаты дивидендов

Расчет коэффициента выплаты дивидендов

Одной из наиболее полезных причин для расчета общего дивиденда компании является определение коэффициента выплаты дивидендов, или DPR. Он измеряет процент чистой прибыли компании, который выплачивается в виде дивидендов.

Пестрый дурак

Разделите общую сумму дивидендов на чистую прибыль, и вы получите DPR.

Это полезно для измерения способности компании продолжать выплачивать или даже увеличивать дивиденды. Чем выше коэффициент выплат, тем сложнее его поддерживать; чем ниже, тем лучше.

Расчет дивидендов на акцию

Расчет дивидендов на акцию

После того, как вы получите общую сумму дивидендов, преобразование ее в сумму на акцию осуществляется путем деления ее на количество акций в обращении, что также содержится в годовом отчете.

Вот формула для дивидендов на акцию: Общая сумма дивидендов ÷ акции в обращении = дивиденды на акцию.

Использование этого метода для расчета дивидендов на акцию может не быть точным на 100%, поскольку компания может увеличивать или уменьшать свои дивиденды (обычно они выплачиваются ежеквартально) в течение года, а также может выпускать или выкупать акции, изменение количества акций. Эти изменения могут повлиять на точность этого расчета.

Лучший способ найти точную информацию о дивидендах на акцию — прочитать самый последний пресс-релиз или отчет SEC, когда компания объявляет о своих следующих дивидендах, или обратиться за помощью к хорошему онлайн-брокеру, который покажет сумму на акцию. последнего дивиденда, который компания выплатила или объявила о скорой выплате.

Связанные темы дивидендных акций

Инвестиции в дивидендные акции

Эти компании регулярно платят своим акционерам, что делает их хорошим источником дохода.

Лучшие дивидендные аристократы S&P 500

Эти участники S&P 500 увеличивали свои дивиденды 25 лет подряд.

Дивидендные короли 2023 года

Эти компании S&P 500 увеличивали свои дивиденды 50 лет подряд.

8 высокодоходных ежемесячных дивидендных акций

Ежемесячные дивиденды могут быть важным источником дохода инвестора. Какие здесь лучшие акции?

В «Пестром дураке» действует политика раскрытия информации.

Как рассчитать дивиденды

Как рассчитать дивиденды

Дивиденды — это часть прибыли компании, которая выплачивается каждому акционеру в дополнение к любой прибыли, которую акционер получает при повышении цены акций компании.

Большинство компаний рассчитывают дивиденды и объявляют о них во время регулярного раскрытия информации своим инвесторам или в отдельном пресс-релизе. Компании обычно выплачивают дивиденды акционерам ежеквартально, хотя некоторые компании платят ежемесячно или ежегодно.

Как рассчитать общие дивиденды

Формула для расчета того, сколько денег компания выплачивает в виде дивидендов, проста — вычесть чистую нераспределенную прибыль из годовой чистой прибыли.

Дивиденды = годовая чистая прибыль — чистая нераспределенная прибыль

Вы можете найти доход и прибыль из баланса компании и отчета о прибылях и убытках.

Баланс показывает активы и пассивы компании. Он также показывает нераспределенную прибыль компании — общую прибыль компании, которая не была возвращена ее акционерам в виде дивидендов.

Отчет о прибылях и убытках показывает чистую годовую прибыль компании. Он также показывает, сколько компания заработала в течение данного года, если бы она решила не выплачивать дивиденды.

При расчете дивидендов за данный год вычтите нераспределенную прибыль на начало года из числа на конец года. Остается чистое изменение нераспределенной прибыли за этот год.

Допустим, компания начинает год с 10 млн долларов нераспределенной прибыли и 30 млн долларов в конце. Он также зарабатывает 50 миллионов долларов чистой прибыли за год.

Используя приведенную выше формулу, вот математика:

Шаг 1: 30 млн – 10 млн долларов = 20 млн долларов нераспределенной прибыли

Шаг 2: годовой доход 50 млн долларов — нераспределенная прибыль 20 млн долларов = 30 млн долларов, выплаченных в виде дивидендов.

Инвесторы могут сделать еще один шаг вперед и разделить 30 миллионов долларов на общее количество акций в обращении, также указанное в балансе, для расчета дивидендов на акцию.

Другие способы определения общей суммы дивидендов компании включают расчет дивидендной доходности компании и коэффициента выплаты дивидендов.

Что такое дивидендная доходность?

Дивидендная доходность — это процентная сумма, которую компания выплачивает по отношению к цене своих акций. Для инвесторов дивидендная доходность является показателем того, сколько дополнительных денег они ожидают заработать на каждый вложенный доллар. Инвестор, владеющий акциями на сумму 5000 долларов с дивидендной доходностью 5%, рассчитывает заработать 250 долларов в год.

Стоимость акций, однако, колеблется, и выплаты дивидендов основаны на стоимости акции, а не на цене в долларах, поэтому они меняются в зависимости от динамики акций.

Формула для расчета дивидендного дохода:

Дивидендный доход = годовые дивиденды на акцию / цена на акцию

Таким образом, если компания выплачивает 2,45 доллара в виде дивидендов на акцию, а текущая цена на акцию составляет 35 долларов, дивидендный доход составляет 7%.

Акционер, владеющий 1000 акций этой компании, получит ежегодную выплату в размере 2450 долларов (1000 акций x 2,45 доллара каждая) или 612,50 доллара в квартал.

Каков коэффициент выплаты дивидендов?

Коэффициент выплаты дивидендов (DPR) показывает процент от общей прибыли, которую компания выплатила своим акционерам в виде дивидендов.

Он также показывает, сколько денег компания возвращает своим акционерам по сравнению с деньгами, которые они держат или удерживают.

Компании по-разному относятся к выплате дивидендов. Некоторые выплачивают всю свою прибыль, в то время как другие оставляют часть на погашение долгов, реинвестирование или накопление денежных резервов.

Вот формула для расчета коэффициента выплаты дивидендов:

Коэффициент выплаты дивидендов = выплаченные дивиденды / чистая прибыль

Предположим, вымышленная компания выплатила 10 миллионов долларов в виде дивидендов, а ее чистая прибыль составляет 50 миллионов долларов.

4 четное или нечетное число: Четные и нечетные числа в математике

Четные и нечетные числа в математике

Поможем понять и полюбить математику

Начать учиться

232.6K

Делить или не делить — вот в чем вопрос. В этой статье разберем, что такое четные числа, чем они отличаются от нечетных и зачем вообще нам это знать.

Стремление человека делить и половинить сопровождает его всю жизнь. Нас хлебом не корми, дай поделить на два.

Прежде чем разобраться, зачем и почему мы это делаем, давайте познакомимся с определениями.

Четное число — это число, которое делится нацело на 2.


4 : 2 = 2
Это значит, что 4 — четное число.

Нечетное число — это число, которое не делится на 2 без остатка.


5 не делится на 2 без остатка — значит, 5 это нечетное число.

Если число оканчивается на 0, 2, 4, 6, 8, то это число четное.

Если число оканчивается на 1, 3, 5, 7, 9, то это число нечетное.

Если двузначное число круглое, то это число четное. Например, 20, 30, 40, 50 и т. д. — четные числа.

Свойства четных и нечетных чисел

  • Если сложить два четных числа, получится четное число:
    8 + 8 = 16
    16 : 2 = 8
  • Если сложить два нечетных числа, получится четное число:
    3 + 3 = 6
    6 : 2 = 3
  • Если сложить четное число с нечетным, получится нечетное число:
    4 + 5 = 9
    9 : 2 = 4 (остаток 1)
  • Если четное число умножить на четное число, получится четное число:
    2 × 2 = 4
    4 : 2 = 2
  • Если четное число умножить на нечетное число, получится четное число:
    4 × 3 = 12
    12 : 2 = 6
  • Если нечетное число умножить на нечетное, получится нечетное:
    3 × 3 = 9

Четные и нечетные числа чередуются друг с другом

1 — нечетное,
2 — четное,
3 — нечетное,
4 — четное,
5 — нечетное,
6 — четное,
7 — нечетное,
8 — четное,
9 — нечетное.

Внимательно рассмотрите таблицу четных и нечетных чисел. На ней хорошо видно, как они чередуются между собой.

1112131415161718191
2122232425262728292
3132333435363738393
4142434445464748494
5152535455565758595
6162636465666768696
7172737475767778797
8182838485868788898
9192939495969798999
102030405060708090100

Умение быстро определять четность и нечетность поможет в решении примеров, особенно, когда нужно посчитать в уме. Вот шпаргалка — держите ее под рукой, чтобы быстро ориентироваться в цифрах и числах.

  • Цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
  • Однозначные числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
  • Натуральные числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13…
  • Четные числа: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26…
  • Нечетные числа: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25…
  • Круглые числа: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120…

Онлайн-курсы по математике для детей помогут быстрее освоить новую тему при поддержке опытного преподавателя.

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Задачи для практики

Давайте проверим, как хорошо вы научились определять четность и нечетность. Выполним несколько несложных заданий.

Задачка 1. Назовите числа, которые спрятаны за ♥. Назовите их по порядку. Какие из них — четные, а какие — нечетные?

117
210
1119
420
513
1422
71523
8

Ответ: 3 — нечетное, 6 — четное, 9 — нечетное, 12 — четное, 16 — четное, 18 — четное, 21 — нечетное, 24 — четное.

Задачка 2. Вставьте в таблицу пропущенные числа. Определите, четное или нечетное получилось число.

X246810
X × 2     
X : 2     

X246810
X × 248121620
X : 212345

Как решаем:

2 × 2 = 4 — четное
2 : 2 = 1 — нечетное
4 × 2 = 8 — четное
4 : 2 = 2 — четное
6 × 2 = 12 — четное
6 : 2 = 3 — нечетное
8 × 2 = 16 — четное
8 : 2 = 4 — нечетное
10 × 2 = 20 — четное
10 : 2 = 5 — нечетное

Задачка 3. В коробке 44 конфеты: 15 шоколадных и 12 — с карамелью. А все остальные с воздушным рисом. Сколько в коробке конфет с воздушным рисом? Получившееся значение — четное или нечетное?

Как решаем:

  1. Посчитаем, сколько в сумме конфет шоколадных и с карамелью:
    15 + 12 = 27 (к)

  2. Отнимем от общего количества конфет получившееся число:
    44 — 27 = 17 (к)

Ответ: в коробке 17 конфет с воздушным рисом. 17 — нечетное число.

Задачка 4. В инстаграме у Маши четное количество фотографий. Она добавила еще пять фотографий. Теперь фотографий 51. Сколько у Маши изначально было фотографий?

Как решаем:

51 — 5 = 46 (ф)
46 — четное число.

Ответ: изначально у Маши в инстаграме было 46 фотографий.

Задачка 5. Назовите числа, закрытые ☆. Распределите их по четности и нечетности. Сложите их и назовите получившееся значение.

135
6910
121315
161920
222325

Ответ:
2 — четное, 4 — четное, 7 — нечетное, 8 — четное, 11 — нечетное, 14 — четное, 17 — нечетное, 18 — четное, 21 — нечетное, 24 — четное.

Как решаем:

Складываем сначала четные: 2 + 4 + 8 + 14 + 18 + 24 = 70

Затем складываем нечетные: 7 + 11 + 17 + 21 = 56
70 + 56 = 126
Число 126 оканчивается на четную цифру 6. Значит, число 126 — четное.

Ответ: 126 — четное.

 

Шпаргалки для родителей по математике

Все формулы по математике под рукой

Анастасия Белова

К предыдущей статье

114.2K

Сложение и вычитание смешанных чисел

К следующей статье

Округление десятичных дробей

Получите план обучения, который поможет понять и полюбить математику

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Определить чётное или нечётное число онлайн

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Определить чётное или нечётное число

Чтобы определить, является ли число чётным или нечётным, воспользуйтесь нашим очень удобным онлайн определителем:

Введите число:

Просто введите целое число и получите ответ.

Сколько чётных и нечётных чисел между…

Сколько чётных и нечётных чисел от до ?

Теория

Чётное ли число

Чётным является целое число, которое делится на 2 без остатка (нацело).

Все многозначные числа, оканчивающиеся на 0,2,4,6 или 8, являются чётными числами:

10 , 12, 134, 2786, 6389246858 и др.

Примеры

Чётное ли число 10?

10 ÷ 2 = 5

Десять разделилось на два без остатка, следовательно 10 является чётным числом.

Чётное ли число 1?

1 ÷ 2 = 0.5

После деления единицы на два мы получаем нецелое число, следовательно 1 не является чётным числом.

Чётность нуля

Чётное ли число 0?

Ноль (0) является чётным числом.

Ноль чётное число, так как оно делится на два без остатка: 0 ÷ 2 = 0

В числовом ряду с обоих сторон от чётного числа стоят нечётные числа, и ноль тут не исключение, так как -1 это нечётное число:

-5 -4 -3 -2 -1 0 1 2 3 4 5

Нечётные числа

Нечетным является целое число, которое не делится на 2 без остатка.

Все многозначные числа, оканчивающиеся на 1,3,5,7 или 9, являются нечётными числами:

11 , 113, 1245, 43547, 63563469 и др.

Пример

Для примера рассмотрим число 67. Так как оно заканчивается цифрой 7 (нечётной), уже можно утверждать, что оно нечётное. Для пущей уверенности разделим 67 на два:

67 ÷ 2 = 33.5, то есть 33 и остаток 1 (67 = 33 ⋅ 2 + 1)

Окончательно делаем вывод, что число 67 является нечётным числом.

Сколько чётных и нечётных чисел в ряду

Сколько чётных и нечётных чисел находится в ряду между n и m?

Если n и m разные по чётности

Если n и m разные по чётности числа, то есть одно из них четное, а второе нечётное, то количество чётных и нечётных чисел в ряду одинаковое:

Кол чёт/нечёт = (m — n +1) ÷ 2, m > n

Пример

Возьмём ряд чисел между n = 22 и m = 31:

22, 23, 24, 25, 26, 27, 28, 29, 30, 31

Определим количество чётных и нечётных чисел в этом ряду.

Так как 22 и 31 являются числами разной чётности делаем вывод, что чётных и нечётных чисел в данном ряду поровну:

Кол чёт/нечёт = (31 — 22 + 1) / 2 = 10 / 2 = 5

5 чётных и 5 нечётных

22 24 26 28 30
23 25 27 29 31
Если n и m чётные

Если n и m чётные числа, то чётных чисел в ряду будет на одно больше, чем нечётных:

Кол чёт = (m — n) ÷ 2 + 1 , m > n

Кол нечёт = (m — n) ÷ 2 , m > n

Пример

Возьмём ряд чисел между n = 10 и m = 20:

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Определим количество чётных и нечётных чисел в этом ряду.

Кол чёт = (20 — 10) ÷ 2 + 1 = 6

Кол нечёт = (20 — 10) ÷ 2 = 5

6 чётных и 5 нечётных

10 12 14 16 18 20
11 13 15 17 19
Если n и m нечётные

Если n и m нечётные числа, то чётных чисел в ряду будет на одно меньше, чем нечётных:

Кол чёт = (m — n) ÷ 2 , m > n

Кол нечёт = (m — n) ÷ 2 + 1 , m > n

Пример

Возьмём ряд чисел между n = 11 и m = 19:

11, 12, 13, 14, 15, 16, 17, 18, 19

Определим количество чётных и нечётных чисел в этом ряду.

Кол чёт = (19 — 11) ÷ 2 = 4

Кол нечёт = (19 — 11) ÷ 2 + 1 = 5

4 чётных и 5 нечётных

12 14 16 18
11 13 15 17 19

Четные и нечетные числа

Что такое четное число?

Число, которое делится на 2 и дает в остатке 0, называется четным числом . Примеры четных чисел: 2, 4, 6, 8, 10 и т. д. Например, предположим, что у вас есть десять шоколадных конфет. Эти конфеты можно разделить на две группы, по пять штук в каждой. Итак, десять — четное число.

Родственные игры

Что такое нечетное число?

Однако 11 конфет нельзя сгруппировать таким образом, поэтому 11 нечетное число. Нечетное число — это число, которое не делится на 2. Остаток в случае нечетного числа всегда равен «1». 11 — нечетное число.

Давайте узнаем, что такое четное число:

В следующих разделах мы рассмотрим некоторые дополнительные интригующие методы понимания четных чисел, их особенности и интересные факты о них.

Связанные листы

Как определить эти числа?

1. Поняв число в разряде единиц

В этом подходе мы анализируем число в разряде единиц в целом числе, чтобы проверить, является ли число четным или нечетным. Все числа, оканчивающиеся на 0, 2, 4, 6 и 8, являются четными числами . Например, такие числа, как 14, 26, 32, 40 и 88, являются четными числами.

2. По группировке

Если число разделить на две группы с одинаковым количеством элементов в каждой, то число будет четным числом.

Удивительные свойства четного числа

Посмотрите на свойства чисел, такие как сложение, умножение и вычитание.

Свойство сложения
  • Сложение двух четных чисел дает четное число. Например, 12 + 8 = 20.
  • Четное число плюс нечетное число равно нечетному числу. Например, 6 + 7 = 13,
  • .
  • При сложении двух нечетных чисел получается четное число. Например, 15 + 11 = 26.

Свойство вычитания
  • Вычитание двух четных чисел дает четное число. Например, 32 – 6 = 26,
  • .
  • При вычитании четного из нечетного числа получается нечетное число. Например, 37 – 4 = 33,
  • .
  • Вычитание двух нечетных чисел дает четное число. Например, 63 – 17 = 46,
  • .

Свойство умножения
  • При умножении двух четных чисел получается четное число. Например, 14 х 2 = 28,
  • .
  • Четное число, умноженное на нечетное, дает четное число. Например, 10 х 3 = 30,
  • .
  • Умножение нечетного числа на другое нечетное число дает нечетное число. Например, 3 х 5 = 15,
  • .

Решенные примеры четных и нечетных чисел

Пример 1. Является ли 29510 четным числом?

Решение: Единицы в данном числе равны 0, а это четное число. Таким образом, число 29510 — четное число.

Пример 2: Какова сумма первого и последнего четных чисел от 1 до 100?

Решение: Между 1 и 100 наибольшее четное число равно 98, а наименьшее четное число равно 2. 

Итак, искомая сумма равна 98 + 2 = 100. формула суммы первых n четных чисел ряда?

Решение: Формула суммы первых n четных чисел равна n $\times (n + 1)$.

Практические задачи на четные и нечетные числа

1

Является ли 350 четным числом?

Да

Нет

Правильный ответ: Да
350 — четное число, потому что оно точно делится на 2.

2

Какие из этих чисел являются примерами четных чисел?

5, 23, 147

2, 16, 234

89, 573, 1257

123, 567, 897

Правильный ответ: 2, 16, 234
2, 16, 234 2.

3

Сколько четных чисел находится между 20 и 50?

13

14

15

16

Правильный ответ: 16
Между 20 и 50 16 четных чисел. 38, 40, 42, 44, 46, 48, 50.

4

Какова сумма всех четных чисел от 1 до 35?

312

306

364

395

Правильный ответ: 306
Мы знаем, что существует 17 четных чисел от 1 до 35.
Формула для суммы четных чисел = $S_{n} п + 1)
Итак, $S_{n}$ = n(n + 1) = 17(17+1) = 17*18 = 306

Часто задаваемые вопросы о четных и нечетных числах

Какое простое число является четным? ?

Единственное число, которое одновременно и простое, и четное, это 2.

Какое из чисел 11, 22, 81 и 5 четное?

В данном списке 22 — четное число, так как оно делится на 2.

Чему равен остаток после деления четного числа на два?

Четное число точно делится на два; следовательно, остаток будет равен 0.

В чем разница между двумя четными числами?

Когда четное число вычитается из другого, всегда получается четное число.

Сумма четных чисел | Формула суммы четных чисел

Сумму четных чисел можно легко вычислить, используя арифметическую прогрессию, а также используя формулу суммы всех натуральных чисел. Мы уже знаем, что четные числа — это числа, которые делятся на 2, начиная с 2 и до бесконечности, например 2, 4, 6, 8, 10, 12, 14, 16 и так далее. Теперь найдем сумму этих чисел. Формула для нахождения суммы четных чисел имеет вид S e = n(n+1).

В этой статье давайте узнаем о формуле суммы четных чисел и о том, как вычислить сумму четных чисел с помощью решенных примеров.

1. Что такое сумма четных чисел?
2. Формула суммы четных чисел
3. Сумма первых десяти четных чисел
4. Сумма четных чисел от 1 до 100
5. Часто задаваемые вопросы о сумме четных чисел

Что такое сумма четных чисел?

Сумму четных чисел от 2 до бесконечности можно легко найти, используя арифметическую прогрессию, поскольку набор четных чисел также является арифметической прогрессией с фиксированной разницей между любыми двумя последовательными членами. Формулу для нахождения суммы четных чисел можно вывести, используя формулу суммы натуральных чисел, например S = 1+2+3+4+5+6+7…+n. Таким образом, S = n(n+1)/2. Теперь, чтобы найти сумму последовательных четных чисел, умножьте сумму формулы натуральных чисел на 2. Следовательно, S e = n(n+1)

Формула суммы четных чисел

Давайте выведем формулу суммы четных чисел, используя пошаговую процедуру.

  • Пусть сумма первых n четных чисел равна S n . Таким образом, S n = 2+4+6+8+10+…………………. .+(2n) ……. (1)
  • Для арифметической последовательности сумма чисел определяется как S n =1/2×n[2a+(n-1)d] ……..(2) (где n = количество цифр в ряду , a = первый член A.P и d = общая разница в A.P)
  • Подставьте значения в уравнении 2 относительно уравнения 1. Таким образом, a=2 , d = 2 и пусть, последний член, l = (2n).
  • Итак, сумма будет S n = ½ n[2.2+(n-1)2] ⇒ S n = n/2[4+2n-2] ⇒ S n = n/2[ 2+2n] ⇒ S n = n(n+1)

Следовательно, сумма n четных чисел = n(n+1) или S e = n(n+1).

Сумма первых десяти четных чисел

Найдем первые десять четных чисел. В список первых четных чисел войдут следующие четные числа — 2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

Таким образом, сумма четных чисел от 1 до 10, стоящих подряд: S n = 2+4+6+8+10+… 10 слагаемых.

По формуле S n = n(n+1) имеем S = 10(10+1) = 10 x 11 =110 (n = 10)

Также 2+4+6+8+10 +12+14+16+18+20=110

Значит проверено.

Сумма четных чисел от 1 до 100

Мы знаем, что четные числа — это числа, которые делятся на 2. Мы также знаем, что разница между любыми двумя последовательными четными числами равна 2. Сумма четных чисел от 1 до 100 дает сумму всех четных чисел в список от 1 до 100. По определению четных чисел существует 50 четных чисел от 1 до 100. Таким образом, n = 50

Подставляем значение n в формулу суммы четных чисел, S n = n(n+1)

Следовательно, S n = 50(50+1) = 50 x 51 = 2550

Сумма четных чисел от 1 до 50

Сумма четных чисел от 1 до 50 дает сумму всех четных чисел в списке от 1 до 50. По определению четных чисел существуют четные числа от 1 до 50 включают 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 ). Таким образом, n = 25,

Подставьте значения в формулу S n = n(n+1).

Следовательно, S = 25(25+1) = 25 x 26 = 650

Сумма четных чисел от 51 до 100

Сумма четных чисел от 51 до 100 даст сумму всех четных чисел в списке от 51 до 100. По определению четных чисел к четным числам от 51 до 100 относятся 52, 54, 56, 58, 60, 62, 64, 66, 68, 70,72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100. Таким образом, всего 25 четных чисел от 51 до 100.

Здесь, a = 52, d = 2, n = 25

Применение формулы суммы ap,

S n =1/2×n[2a+(n-1)d]

S=1 /2×25[2,52+(25-1)2]

S=1/2×25[104+(24)2]

S=25/2[152]

S=[25(76) ] = 1900

Статьи по теме

  • Нечетные числа
  • Порядковые номера
  • Сумма n членов Ap
  • Геометрические прогрессии

Часто задаваемые вопросы о сумме четных чисел

Что такое формула суммы четных чисел?

Формула суммы четных чисел дает общую сумму всех четных чисел. Формула для нахождения суммы четных чисел: n(n+1), где n — натуральное число. Эта формула выводится с помощью формулы суммы натуральных чисел.

Как найти сумму четных чисел?

Формула для нахождения суммы четных чисел: n(n+1), где n — натуральное число.

Относительная молекулярная масса na2so4: Na2SO4 Определить относительную молекулярную массу

7.Относительная атомная и молекулярная масса. Качественный и количественный состав вещества.

1. Относительная атомная масса серы:

1) 32 2) 16 3) 32 4) 16

2. Соотнесите:

формула вещества относительная молекулярная масса

А) BaSO4 В) CuCl2 1) 342 3) 63 5) 133

Б) HNO3 Г) Al2(SO4)3 2) 135 4) 233 6) 66

3. Молекула сернистого газа состоит из атома серы и двух атомов кислорода. Напишите ее формулу и рассчи­тайте относительную молекулярную массу.

4. Выберите правильную запись расчета относительной молекулярной массы серной кислоты H2SO4:

1) 1 + 32 + 16 2) 14 • 2 + 32 + 16 • 4 3) 1 • 2 + 32 + 16 • 4 4) 1 • 2 + 32 + 16

5. Соотнесите:

формулы веществ: относительные молекулярныемассы веществ:

1) Fe2O3 а) 72 д)170

2) MgO б) 180 е) 138

3) AgNO3 в) 100 ж) 40

4) С6Н12O6 г) 160

6*. Выберите правильные записи:

1) Mr (CuO) = 2Mr (NaOH) 3) Mr (CuSO4) >Mr (Fe2O3)

2)Mr(N2) <Mr(O2) 4)Mr(PH3) < 2Mr(NH3)

7*. Соотнесите:

величины относительных молекулярных масс веществ формулы веществ

1) 40 а) КНСO3 г)СаСО3

2) 100 б)KNO3 д)NaOH

в)MgO е)CaH2

8. Молекула углекислого газа состоит из атома углерода и двух атомов кислорода. Напишите ее формулу и рассчитайте относительную молекулярную массу.

9. Выберите правильную запись расчета относительной молекулярной массы фосфорной кислоты H3PO4:

1) 1 + 31 + 16 2) 1 · 3 + 31 + 16 · 4 3) 14 · 3 + 31 + 16 · 4 4) 1 · 3 + 31 + 16

10. Соотнесите:

формулы веществ относительные молекулярные массы веществ

1) C2H4O2 а) 232 г) 60 ж) 56

2) Na2SO4 б) 29 д) 72

3) CaO в) 71 е) 142

4) Fe3O4

11*. Выберите правильные записи:

1) Мr (KHCO3) <Mr (CaCO3) 3) Mr (Fe2O3) = 2Mr (SO3)

2) Mr (Cl2) >Mr (N2) 4) Mr (H2S) >Mr (SO2)

12*. Соотнесите:

величины относительных формулы веществ

молекулярных масс веществ а) CuSO4 г) C2H6

1) 34 б) PH3 д) H2S

2) 160 в) Fe2O3е) AgNO3

13. Рассчитайте относительные молекулярные массы веществ

1) азотной кислоты HNO3 3) карбоната кальция СаСO3

2) оксида магния MgO 4) сульфата натрия Na2SO4

14. Рассчитайте относительные молекулярные массы веществ:

1) серного ангидрида SO3 3) фосфина РН3

2) оксида алюминия А12O3 4) фосфата калия К3РO4

15. Выберите формулы веществ, относительная молекулярная масса которых равна 98:

1) СаСO3 2) С7Н14 3) ВаСl2 4) Na2SO3 5 )Na3PO4 6) H2SO4.

16. Выберите формулы веществ, относительная молеку­лярная масса которых равна 100:

1) КНСO3 2) Fe2O3 3) MgO 4) Mg3N2 5) AgCl 6) NH3

17. Выберите формулы веществ, относительная молеку­лярная масса которых равна 40:

1) СаН2 2) MgCO3 3) MgO 4) С3Н4 5) АlСl3 6) NaOH

18. Выберите формулы веществ, относительная молеку­лярная масса которых равна 142:

1) Na2SO4 2) Н2СO33) Fe2O3 4) С8Н16 5) Na2HP04

19. Рассчитайте относительные молекулярные массы ве­ществ и поставьте знаки равенства, «больше» или «меньше» в следующих записях (место знака отмечено звездочкой, формулы переставлять нельзя):

1) Mr(SO3) * 2Mr(MgO) 3) 5Мr (СН4) * 2Mr(NaOH)

2) Мr (ВаС12) * Mr(Ag2O) 4) Mr(K3P04) * Mr(ZnSO4).

20. Рассчитайте относительные молекулярные массы ве­ществ и поставьте знаки равенства, «больше» или «меньше» в следующих записях (место знака отмечено звездочкой, формулы переставлять нельзя):

1) Mr(BaSO4) * 2Мг(СаС 3) Мr(K2НРO4) * Mr(Fe3O4)

2) 2Мr (Сl2) * Mr(Na2SO4) 4) Мr (КНСO3) * Mr(CuSO4).

21. Установите соответствие.

относительная атомная масса: химический элемент

1) 40 а) фосфор г)серебро

2) 108 б) кальций д) азот

3) 31 в)кислород е) магний

22. Установите соответствие.

формула: расчет относительной молекулярной массы:

1) CO2 а) 12+16 г) 1+14+16

2) HNO3 б) 12*1+16*3 д)1*1+14*1+16*3

в) 12*1+16*2

23. Установите соответствие.

формула: относительная молекулярная масса:

1) Cl2 а) 48 г) 56

2) SO2 б) 64 д) 71

3) СH4 в) 97 е) 16

ICSC 0952 — СУЛЬФАТ НАТРИЯ

ICSC 0952 — СУЛЬФАТ НАТРИЯ

« back to the search result list(ru)  

Chinese — ZHEnglish — ENFinnish — FIFrench — FRGerman — DEHebrew — HEHungarian — HUItalian — ITJapanese — JAKorean — KOPersian — FAPolish — PLPortuguese — PTRussian — RUSpanish — ES

СУЛЬФАТ НАТРИЯICSC: 0952 (Октябрь 2005)
CAS #: 7757-82-6
EINECS #: 231-820-9

  ОСОБЫЕ ОПАСНОСТИ ПРОФИЛАКТИЧЕСКИЕ МЕРЫ ТУШЕНИЕ ПОЖАРА
ПОЖАР И ВЗРЫВ Не горючее. При пожаре выделяет раздражающие или токсичные пары (или газы).        В случае возникновения пожара в рабочей зоне, использовать надлежащие средства пожаротушения.    

   
  СИМПТОМЫ ПРОФИЛАКТИЧЕСКИЕ МЕРЫ ПЕРВАЯ ПОМОЩЬ
Вдыхание   Применять вентиляцию.  Свежий воздух, покой. 
Кожа   Защитные перчатки.  Ополоснуть и затем промыть кожу водой с мылом. 
Глаза   Использовать средства защиты глаз.  Прежде всего промыть большим количеством воды в течение нескольких минут (снять контактные линзы, если это возможно сделать без затруднений), затем обратится за медицинской помощью.  
Проглатывание Тошнота. Рвота. Боль в животе. Диарея.  Не принимать пищу, напитки и не курить во время работы.   Дать выпить один или два стакана воды. 

ЛИКВИДАЦИЯ УТЕЧЕК КЛАССИФИКАЦИЯ И МАРКИРОВКА
Индивидуальная защита: Респиратор с сажевым фильтром, подходящий для концентрации вещества в воздухе. Смести просыпанное вещество в закрытые контейнеры. При необходимости, сначала намочить, чтобы избежать появления пыли. 

Согласно критериям СГС ООН

 

Транспортировка
Классификация ООН
 

ХРАНЕНИЕ
 
УПАКОВКА
 
СУЛЬФАТ НАТРИЯ ICSC: 0952
ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Агрегатное Состояние; Внешний Вид
БЕЛОЕ ГИГРОСКОПИЧНОЕ ТВЕРДОЕ ВЕЩЕСТВО В РАЗЛИЧНЫХ ФОРМАХ.  

Физические опасности
 

Химические опасности
Разлагается при нагревании. При этом выделяется оксиды серы и оксиды натрия. 

Формула: Na2SO4
Молекулярная масса: 142.1
Температура плавления: 884°C
Относительная плотность (вода = 1): 2.7
Растворимость в воде: очень хорошо 


ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ И ЭФФЕКТЫ ОТ ВОЗДЕЙСТВИЯ

Пути воздействия
 

Эффекты от кратковременного воздействия
Проглатывание может оказать воздействие на желудочно-кишечный тракт. 

Риск вдыхания
Испарение при 20°C незначительно; однако может быть быстро достигнута концентрация частиц в воздухе, вызывающая неприятные ощущения,.  

Эффекты от длительного или повторяющегося воздействия
 


Предельно-допустимые концентрации
 

ОКРУЖАЮЩАЯ СРЕДА
 

ПРИМЕЧАНИЯ
 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ
  Классификация ЕС
 

(ru)Ни МОТ, ни ВОЗ, ни Европейский Союз не несут ответственности за качество и точность перевода или за возможное использование данной информации.
© Версия на русском языке, 2018

Какова относительная молекулярная масса сульфата натрия? (Относительные атомные массы Na, S и O равны 23u, 32u и 16u соответственно)

Дата последнего обновления: 06 апреля 2023 г.

Всего просмотров: 292,2 тыс. Ответ

Проверено

292,2 тыс.+ просмотров

Подсказка: мы знаем, что химическая формула сульфата натрия $\text{N}{{\text{a}}_{2}}\text{S}{{\text {O}}_{4}}$.
Сначала умножьте относительную атомную массу каждого атома на их валентность, а затем добавьте индивидуальное число, и мы получим относительную молекулярную массу. 9{12}\text{C}$) выбран в качестве стандарта. Его масса принята равной ровно 12. Относительные массы атомов и молекул — это количество раз, во сколько каждый атом или молекула тяжелее, чем $\dfrac{1}{12}\text{th}$ массы одного атома C-12. . Часто мы имеем дело с элементами и соединениями, содержащими изотопы различных элементов. Поэтому мы предпочитаем использовать средние массы атомов и молекул. Таким образом, $\dfrac{1}{12}\text{th}$
— Относительная молекулярная масса$=\dfrac{\text{Средняя масса 1 молекулы вещества}}{\dfrac{1}{12}\ text{масса одного атома C-12}}$
— Если мы знаем молекулярную формулу молекулы, мы можем рассчитать ее относительную молекулярную массу, добавив относительные атомные массы всех составляющих ее атомов. Рассчитаем относительную молекулярную массу сульфата натрия, $\text{N}{{\text{a}}_{2}}\text{S}{{\text{O}}_{4}}$.
Относительная молекулярная масса сульфата натрия, $\text{N}{{\text{a}}_{2}}\text{S}{{\text{O}}_{4}}$= $(2 \text{x относительная атомная масса (Na) + относительная атомная масса (S)+4 x относительная атомная масса (O))}$
$\begin{align}
& =(2\text{x 23 + 32+4 x 16)} \\
& \text{=142}u \\
\end{align}$
Следовательно, относительная молекулярная масса сульфата натрия равна 142 ты

Примечание: Эксперименты показывают, что один атом O-16 в 1,333 раза тяжелее одного атома C-12. Таким образом,
$\text{Относительная атомная масса O-16= 1}\text{.333×12=15}\text{.996}\приблизительно \text{16}\text{.0 }$
Относительная атомная масса одинаковым образом определяются все элементы. Относительные молекулярные массы также могут быть определены экспериментально аналогичным образом. В случае молекулярной формулы молекулы мы можем рассчитать ее относительную молекулярную массу, добавив относительную массу всех составляющих ее атомов. Следует также отметить, что относительные атомная и молекулярная массы являются просто числами и безразмерны.

Недавно обновленные страницы

Рассчитать изменение энтропии, связанное с конверсией класса 11 химии JEE_Main

Закон, сформулированный доктором Нернстом, является первым законом термодинамики класса 11 химии JEE_Main

Для реакции при rm0rm0rmC и нормальном давлении класса A 11 химия JEE_Main

Двигатель, работающий между rm15rm0rm0rmC и rm2rm5rm0rmC класс 11 химия JEE_Main

Для реакции rm2Clg в rmCrmlrm2rmg признаки 11 класса химии JEE_Main

Изменение энтальпии перехода жидкой воды в химический класс 11 JEE_Main

Рассчитайте изменение энтропии при переходе в химический класс 11 JEE_Main

Закон, сформулированный доктором Нернстом, представляет собой Первый закон термодинамики 11-го класса химии JEE_Main

Для реакция при rm0rm0rmC и нормальном давлении А химический класс 11 JEE_Main

Двигатель, работающий между rm15rm0rm0rmC и rm2rm5rm0rmC химический класс 11 JEE_Main

0003

Изменение энтальпии перехода жидкой воды 11 класс химии JEE_Main

Актуальные сомнения

Вопрос Видео: Расчет молярности раствора по массе и объему

Видео стенограмма Что такое амолярность


9 решение получают путем растворения 21,5 г сульфата натрия Na2SO4 в количестве воды, достаточном для образования 150 миллилитров раствора? Дайте ответ до трех знаков после запятой места. Молярная масса кислорода 16 граммов на моль, натрия — 23 грамма на моль, а серы — 32 грамма на моль.

Молярность или молярная концентрация, является одним из нескольких способов выразить количественное количество растворенного вещества в решение. Точнее, молярность выражает количество молей растворенного вещества на литр раствора. Молярность раствора может быть рассчитывается по уравнению 𝑐 равно 𝑛, деленному на 𝑣, где 𝑐 — молярность в молях на литр, 𝑛 — количество растворенного вещества в молях, а 𝑣 — объем раствор в литрах.

В вопросе нам говорят, что 21,5 г сульфата натрия растворяют в воде с образованием раствора. Поскольку сульфат натрия является растворенное вещество является растворенным веществом в этом растворе. Нам дана масса растворенного вещества в граммах, но нам нужно знать количество растворенного вещества в молях. Мы можем использовать уравнение 𝑛 равно нижний регистр 𝑚 разделить на заглавную 𝑀, чтобы преобразовать массу в граммах в количество в родинки. В этом уравнении 𝑛 представляет собой количество в молях, строчная 𝑚 — масса в граммах, а заглавная 𝑀 — молярная масса в грамм на моль. Мы знаем массу, но у нас нет дана молярная масса сульфата натрия. Нам дали среднее молярная масса кислорода, натрия и серы. Мы можем использовать эти значения для рассчитать молярную массу сульфата натрия.

Одна формульная единица сульфата натрия содержит два атома натрия, один атом серы и четыре атома кислорода. Каждый атом натрия имеет среднее молярная масса 23 грамма на моль. Таким образом, два атома натрия будут иметь средняя молярная масса 46 грамм на моль. Один атом серы имеет в среднем молярная масса 32 грамма на моль. Один атом кислорода имеет в среднем молярная масса 16 грамм на моль, поэтому четыре атома кислорода будут иметь среднюю молярную массу. масса 64 грамма на моль. Складывая эти молярные массы вместе дает нам молярную массу сульфата натрия, 142 грамма на моль.

Теперь мы можем заменить массу и молярную массу в уравнении. Единица грамма будет отменена, оставив нас с единицей молей. Выполнение расчета дает нам количество 0,1514 моль. Теперь мы знаем значение 𝑛 в молярное уравнение. Вопрос говорит нам о том, что объем раствора 150 миллилитров. Но для того, чтобы решить для молярности, объем должен быть указан в литрах. Мы можем конвертировать между двумя единицы объема, используя соотношение один литр равен 1000 миллилитров.

Чтобы выполнить преобразование, мы можем умножьте 150 миллилитров, данные в вопросе, на соотношение, записанное в виде дробь с единицей миллилитров в знаменателе так, чтобы единицы миллилитров отмена.

Hcl hclo3 cl2 h2o: HClO3 + HCl = Cl2 + H2O

Кислородосодержащие соединения галогенов (оксиды, гидроксиды, соли). Их получение и химические свойства. Хлорная известь

Оксиды

Галогены непосредственно с кислородом не реагируют, так как эти реакции эндотермичны (rH > 0), rS < 0 и, следовательно, rG > 0. Оксиды галогенов – кислотные оксиды. Оксиды хлора устойчивее оксидов брома.

Фторид кислорода OF2

O IIF2 -I – светло-жёлтый газ, не растворяющийся в воде и не реагирующий с ней: 2NaOH(разб.) + 2F2 = 2NaF + OF2 + h3O.

OF2 – сильный окислитель: 2h3 + OF2 = 2HF + h3O

4Nh4 + 3OF2 = 2N2 + 6HF + 3h3O.

Оксид дихлора, Cl2O

Получение: 2Cl2 + 2HgO = ClHgOHgCl + Cl2O↑,

при 0 °C 2HClO = Cl2O↑ + h3O — в h3SO4.

Разложение: 4Cl2O = 2ClO2 + 3Cl2.

Реакция с водой: Cl2O + h3O = 2HClO.

Диоксид хлора, ClO2

Получение: а) KClO3 + h3SO4 = HClO3 + KHSO4 3HClO3 = 2ClO2↑ + HClO4 + h3O

б) 2KClO3 + h3C2O4 + h3SO4 = K2SO4 + 2CO2↑ + 2ClO2↑ + 2h3O

в) 2KClO3 + SO2 + h3SO4 = 2ClO2↑ + KHSO4.

Разложение: 2ClO2 = Cl2 + 2O2 – со взрывом.

Реакции с водой и щёлочью: 6ClO2 + 3h3O = 5HClO3 + HCl 2ClO2 + 2KOH = KClO2 + KClO3 + h3O.

Гексаоксид дихлора, Cl2O6

Получение: 2ClO2 + 2O3 = 2O2 + Cl2O6.

Разложение: Cl2O6 = 2ClO2 + O2.

Cl2O6 = 2ClO3 – при нагревании.

Реакция со щёлочью: Cl2O6 + 2KOH = KClO3 + KClO4 + h3O.

Гептаоксид дихлора, Cl2O7

Получение: 2HClO4 + P2O5 = Cl2O7 + 2HPO3.

Разложение: 2Cl2O7 = 2Cl2 + 7O2 – выше 120 °C со взрывом.

Реакция с водой: Cl2O7 + h3O = 2HClO4.

Пентаоксид дииода, I2O5

Получение: 2HIO3 = I2O5 + h3O – при 240 °C.

Разложение: 2I2O5 = 2I2 + 5O2 – при 300 °C.

Реакция с водой: I2O5 + h3O = 2HIO3.

Реакция для количественного определения CO: I2O5 + 5CO = I2 + 5CO2.

Кислородсодержащие кислоты галогенов

Большинство кислот неустойчивы в свободном состоянии и разлагаются. Известны следующие кислоты в свободном состоянии: HClO4, HIO3, H5IO6. Соли кислот стабильнее самих кислот. Кислоты и их соли являются сильными окислителями, особенно в кислой среде.

Хлорноватистая, бромноватистая, иодноватистая кислоты, HHlgO

Получение (хлорная, бромная, иодная вода): Hlg2 + h3O = HHlg + HHlgO. В щелочной среде равновесие смещено вправо.

При 20 °C: Cl2 + 2KOH = KClO + KCl + h3O – жавелевая вода,

Cl2 + Ca(OH)2 = h3O + CaCl(OCl) – хлорная (белильная) известь,

При нагревании: 3Cl2 + 6KOH = KClO3 + 5KCl + 3h3O,

При 20 °C: 3Br2 + 6KOH = KBrO3 + 5KBr + 3h3O 3I2 + 6KOH = KIO3 + 5KI + 3h3O.

Разложение.

В темноте: 3HClO = 2HCl + HClO3 HClO3 + 5HCl = 3Cl2 + 3h3O,

На свету: 2HClO = 2HCl + O2.

Гипохлориты

Сильные окислители в кислых средах: NaOCl + 2NaI + h3SO4 = NaCl + I2 + Na2SO4 + h3O.

CaOCl2 + HCl = CaCl2 + Cl2 + h3O,

CaOCl2 + CO2 + h3O = HClO + CaCl(HCO3),

HClO + CaCl(HCO3) = CaCO3 + Cl2 + h3O.

Разложение при нагревании (Co2+): 2CaOCl2 = 2CaCl2 + O2.

Хлористая кислота, HClO2

Получение: 2ClO2 + h3O2 + 2NaOH = 2NaClO2 + O2 + 2h3O,

NaClO2 + h3SO4 = HClO2 + NaHSO4.

Разложение: 4HClO2 = HCl + HClO3 + 2ClO2 + h3O.

Хлорноватая кислота, HClO3

Получение: 6Ba(OH)2 + 6Cl2 = 5BaCl2 + Ba(ClO3)2 + 6h3O.

Ba(ClO3)2 + h3SO4 = 2HClO3 + BaSO4↓.

Разложение: 3HClO3 = 2ClO2 + HClO4 + h3O.

Хлораты

Сильные окислители в кислой среде. KClO3 – хлорат калия, бертолетова соль 2KClO3 + 3S = 3SO2 + 2KCl.

5KClO3 + 6P = 3P2O5 + 5KCl.

KClO3 + Al = Al2O3 + KCl.

Разложение.

При 400 °C : 4KClO3 = 3KClO4 + KCl.

При 200-250 °C (MnO2): 2KClO3 = 2KCl + 3O2.

Бромноватая кислота, HBrO3. Иодноватая кислота, HIO3

Получение HBrO3 (См. HClO3): Br2 + 5Cl2 + 6h3O = 2HBrO3 + 10HCl.

Разложение: 4HBrO3 = 2Br2 + 5O2 + 2h3O.

Получение HIO3: 3I2 + 10HNO3 = 6HIO3 + 10NO + 2h3O.

Хлорная кислота, HClO4

Получение — электролиз растворов KClO3 или KCl: KClO3 + h3O = KClO4 + h3,

KCl + h3O = KClO4 + 4h3,

KClO4 + h3SO4 = HClO4 + KHSO4.

Разложение при нагревании: 4HClO4 = 4ClO2 + 3O2 + 2h3O.

Перхлораты

Перхлораты в растворах не проявляют окислительных свойств.

Разложение при нагревании : 4Nh5ClO4 = 2N2O + 2Cl2 + 8h3O + 3O2.

Сила кислот: Чем меньше отрицательный заряд на атомах кислорода аниона кислоты, тем сильнее кислота.

Кислоты хлора | Дистанционные уроки

29-Окт-2012 | Нет комментариев | Лолита Окольнова

 

Хлор — самый богатый на кислоты элемент!

5 кислот — таким рекордом может похвастаться не каждый!

 

Хлор  — элемент 7-й группы главной подгруппы и к тому же 3-го периода.

 

Что это означает?

 

Это означает много степеней окисления! 🙂

 

  • Т.к. элемент находится в 7-й группе, то ему не хватает всего 1 электрона до завершения электронной оболочки — минимальная степень окисления хлора = -1.
  • Т.к. хлор находится в 3-ем периоде, то он может распаривать электроны с p-подуровня на d-подуровень  — степени окисления +1, +3, +5 и +7.

 

 

  1. HCl — хлороводородная или соляная кислота. 

    Степень окисления хлора= -1.

    Сильная кислота. Едкая жидкость, дымит на воздухе. В воде практически полностью диссоциирует на ионы:HCl = H(+)  + Cl(-) .

    Соли — хлориды.

 

Ей присущи все свойства кислот:  взаимодействие с металлами до водорода, взаимодействие с основными оксидами, с основаниями, с солями.

 
 
 
При взаимодействии с окислителями окисляется до Cl2: 

2HCl + h3SO4 = SO2 + Cl2↑ + 2h3O

 

2. HClO — хлорноватистая кислота.

Степень окисления хлора = +1.

Бесцветный раствор. Это очень слабая кислота. Неустойчивая. Небольшая степень диссоциации. Ей соответствует кислотный оксид Cl2O.
Получение:

Сl2 + h3O = HCl + HClO

 

Cl2O + h3O = 2HClO

 
НО: это сильная кислота-окислитель:    2HClO +  h3S = S + Cl2 + h3O
 
Cоли — гипохлориты.
 
3. HClO2 — хлористая кислота.
 
Степень окисления хлора = +3.
 
Бесцветная. Кислота средней силы. Неустойчивая. Ей соответствует кислотный оксид Cl2O3.
 
Проявляет окислительные свойства. 
 
Соли — хлориты.
 
4. HClO3 — хлорноватая кислота. 
 
Степень окисления хлора = +5
 
В свободном виде она не получена, «живет» только в растворах. Сильное вещество как просто кислота, и как кислота-окислитель. Кислотный оксид — Cl2O5.
 
Сильная кислота — окислитель:      HClO3 + S + h3O= h3SO4 +  HCl
 
Соли — хлораты.
 
5. HClO4 — хлорная кислота.
 
Степень окисления хлора= +7
 
Одна из самых сильных кислот, одна из самых сильных окислителей.
 
Взрывоопасна. Бесцветная, летучая, парит на воздухе.
 
Кислотный оксид — Cl2O7.
 
Соли — перхлораты.
 
Обратите внимание на изменение свойств кислот с изменением степени окисления:
 

  • хлор в минимальной степени окисления дает сильную кислоту, но не окислитель;
  • с увеличением степени окисления увеличивается сила кислот и окислительные свойства

 

 
 
 

  • Подписка на рассылку

(Правила комментирования)

5HCl + HClO3 = 3Cl2 + 2h3O

Поиск

хлороводород + хлорная кислота = хлор + вода | Температура: вареная

Содержание

Нажмите, чтобы увидеть более подробную информацию и рассчитать вес/моль >>

Окислительно-восстановительная реакция

jpg» substance-weight=»36.4609″> 5HCl + Реклама

Дополнительная информация об уравнении 5HCl + HClO

3 → 3Cl 2 + 2H 2 O

В каких условиях происходит реакция HCl (хлороводород) с HClO3 (хлористоводородной кислотой)?

Температура: вареная

Объяснение: идеальные условия окружающей среды для реакции, такие как температура, давление, катализаторы и растворитель. Катализаторы — это вещества, которые ускоряют темп (скорость) химической реакции, не потребляясь и не становясь частью конечного продукта. Катализаторы не влияют на равновесные ситуации.

Как могут происходить реакции с образованием Cl2 (хлор) и h3O (вода)?

В полном предложении вы также можете сказать, что HCl (хлороводород) реагирует с HClO3 (хлорная кислота) и производит Cl2 (хлор) и h3O (вода)

Явление после взаимодействия HCl (хлористого водорода) с HClO3 (хлористоводородной кислотой)

Нажмите, чтобы увидеть явление уравнения

Какую другую важную информацию вы должны знать о реакции

У нас нет дополнительной информации об этой химической реакции.

Категории уравнения


Другие вопросы, связанные с химическими реакциями 5HCl + HClO

3 → 3Cl 2 + 2H 2 O

Вопросы, связанные с реагентом HCl (хлороводород)

Каковы химические и физические характеристики HCl (хлороводород)? В каких химических реакциях используется HCl (хлороводород) в качестве реагента?

Вопросы, связанные с реагентом HClO3 (хлорная кислота)

Каковы химические и физические характеристики HClO3 (хлорная кислота)? Какие химические реакции происходят с использованием HClO3 (хлорная кислота) в качестве реагента?

Вопросы, связанные с продуктом Cl2 (хлор)

Каковы химические и физические характеристики Cl2 (хлорная кислота)? Каковы химические реакции, в которых Cl2 (хлор) является продуктом?

Вопросы, связанные с продуктом h3O (вода)

Каковы химические и физические характеристики h3O (хлорная кислота)? Каковы химические реакции, в результате которых образуется h3O (вода)?

Новости Только 5% НАСЕЛЕНИЯ знают

Essentt — Товары, подобранные вручную

Товары, подобранные вручную, необходимые при работе из дома!

Уравнения с HCl в качестве реагента

хлористый водород

Fe + 2HCl → FeCl 2 + H 2 2HCl + Zn → H 2 + ZnCl 2 HCl + NaOH → H 2 O + NaCl Просмотреть все уравнения с HCl в качестве реагента

Уравнения с HClO3 в качестве реагента

хлорная кислота

3HClO 3 → H 2 O + 2ClO 2 + HClO 4 5HCl + HClO 3 → 3Cl 5 O 2 2 0 + 6Ag + 6HClO 3 → AgCl + 3H 2 О + 5AgClO 3 Просмотреть все уравнения с HClO3 в качестве реагента

Реклама

Уравнения с HClO3 в качестве продукта

хлорная кислота

H 2 SO 4 + Ba(ClO 2 ) 2 → HClO 3 + BaSO 4 4HClO 3 9003 2 2 2 035 O + HCl + 2ClO 2 + HClO 3 3HClO → 3HCl + HClO 3 Просмотреть все уравнения с HClO3 в качестве продукта

Уравнения с HClO3 в качестве продукта

хлорная кислота

H 2 SO 4 + Ba(ClO 2 ) 2 → HClO 3 + BaSO 4 4HClO 90 904 H904 2 9034 2 90 35 O + HCl + 2ClO 2 + HClO 3 3HClO → 3HCl + HClO 3 Просмотреть все уравнения с HClO3 в качестве продукта

hcl+hclo3 → cl2+h3oTất cả phương trình điều chế từ hcl+hclo3 ra cl2+h3o hclo3 ra cl2+h3o

    org/BreadcrumbList»>
  • Транг чо

Тим Ким Пхонг Трин Хоа Хок
Hãy nhập vào chất tham gia hoặc/và chất sản phẩm để bắt đầu tìm kiem

Тим Ким Нхом Хок Мьен Пхи Онлайн Facebook
Lưu ý: mỗi chất cách nhau 1 khoảng trắng, ví dụ: h3 O2

Tổng hợp đầy đủ và chi tiết nhất can bằng phương trình điều chế từ hcl+hclo3 ra cl2+h3o.

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта