1 | Найти объем | сфера (5) | |
2 | Найти площадь | окружность (5) | |
3 | Найти площадь поверхности | сфера (5) | |
4 | Найти площадь | окружность (7) | |
5 | Найти площадь | окружность (2) | |
6 | Найти площадь | окружность (4) | |
7 | Найти площадь | окружность (6) | |
8 | Найти объем | сфера (4) | |
9 | Найти площадь | окружность (3) | |
10 | Вычислить | (5/4(424333-10220^2))^(1/2) | |
11 | Разложить на простые множители | 741 | |
12 | Найти объем | сфера (3) | |
13 | Вычислить | 3 квадратный корень из 8*3 квадратный корень из 10 | |
14 | Найти площадь | окружность (10) | |
15 | Найти площадь | окружность (8) | |
16 | Найти площадь поверхности | сфера (6) | |
17 | Разложить на простые множители | 1162 | |
18 | Найти площадь | окружность (1) | |
19 | Найти длину окружности | окружность (5) | |
20 | Найти объем | сфера (2) | |
21 | Найти объем | сфера (6) | |
22 | Найти площадь поверхности | сфера (4) | |
23 | Найти объем | сфера (7) | |
24 | Вычислить | квадратный корень из -121 | |
25 | Разложить на простые множители | 513 | |
26 | Вычислить | квадратный корень из 3/16* квадратный корень из 3/9 | |
27 | Найти объем | прямоугольный параллелепипед (2)(2)(2) | |
28 | Найти длину окружности | окружность (6) | |
29 | Найти длину окружности | окружность (3) | |
30 | Найти площадь поверхности | сфера (2) | |
31 | Вычислить | 2 1/2÷22000000 | |
32 | Найти объем | прямоугольный параллелепипед (5)(5)(5) | |
33 | Найти объем | прямоугольный параллелепипед (10)(10)(10) | |
34 | Найти длину окружности | окружность (4) | |
35 | Перевести в процентное соотношение | 1. 2-4*-1+2 | |
45 | Разложить на простые множители | 228 | |
46 | Вычислить | 0+0 | |
47 | Найти площадь | окружность (9) | |
48 | Найти длину окружности | окружность (8) | |
49 | Найти длину окружности | окружность (7) | |
50 | Найти объем | сфера (10) | |
51 | Найти площадь поверхности | сфера (10) | |
52 | Найти площадь поверхности | сфера (7) | |
53 | Определить, простое число или составное | 5 | |
54 | Перевести в процентное соотношение | 3/9 | |
55 | Найти возможные множители | 8 | |
56 | Вычислить | (-2)^3*(-2)^9 | |
57 | Вычислить | 35÷0. 2 | |
60 | Преобразовать в упрощенную дробь | 2 1/4 | |
61 | Найти площадь поверхности | сфера (12) | |
62 | Найти объем | сфера (1) | |
63 | Найти длину окружности | окружность (2) | |
64 | Найти объем | прямоугольный параллелепипед (12)(12)(12) | |
65 | Сложение | 2+2= | |
66 | Найти площадь поверхности | прямоугольный параллелепипед (3)(3)(3) | |
67 | Вычислить | корень пятой степени из 6* корень шестой степени из 7 | |
68 | Вычислить | 7/40+17/50 | |
69 | Разложить на простые множители | 1617 | |
70 | Вычислить | 27-( квадратный корень из 89)/32 | |
71 | Вычислить | 9÷4 | |
72 | Вычислить | 2+ квадратный корень из 21 | |
73 | Вычислить | -2^2-9^2 | |
74 | Вычислить | 1-(1-15/16) | |
75 | Преобразовать в упрощенную дробь | 8 | |
76 | Оценка | 656-521 | |
77 | Вычислить | 3 1/2 | |
78 | Вычислить | -5^-2 | |
79 | Вычислить | 4-(6)/-5 | |
80 | Вычислить | 3-3*6+2 | |
81 | Найти площадь поверхности | прямоугольный параллелепипед (5)(5)(5) | |
82 | Найти площадь поверхности | сфера (8) | |
83 | Найти площадь | окружность (14) | |
84 | Преобразовать в десятичную форму | 11/5 | |
85 | Вычислить | 3 квадратный корень из 12*3 квадратный корень из 6 | |
86 | Вычислить | (11/-7)^4 | |
87 | Вычислить | (4/3)^-2 | |
88 | Вычислить | 1/2*3*9 | |
89 | Вычислить | 12/4-17/-4 | |
90 | Вычислить | 2/11+17/19 | |
91 | Вычислить | 3/5+3/10 | |
92 | Вычислить | 4/5*3/8 | |
93 | Вычислить | 6/(2(2+1)) | |
94 | Упростить | квадратный корень из 144 | |
95 | Преобразовать в упрощенную дробь | 725% | |
96 | Преобразовать в упрощенную дробь | 6 1/4 | |
97 | Вычислить | 7/10-2/5 | |
98 | Вычислить | 6÷3 | |
99 | Вычислить | 5+4 | |
100 | Вычислить | квадратный корень из 12- квадратный корень из 192 |
Как решить 78 разделить на 2? – Обзоры Вики
Используя калькулятор, если вы введете 78, разделенные на 2, вы получите 39. Вы также можете выразить 78/2 в виде смешанной дроби: 39 0/2.
Отсюда, как решить 25 разделить на 2? Поместите эту цифру в частное над знаком деления. Умножьте самую новую цифру частного (2) на делитель 2 . Вычтите 4 из 5 . Результат деления 25÷2 25÷2 равен 12 с остатком 1 .
Как решить 39, разделенное на 2? Используя калькулятор, если вы наберете 39, разделенные на 2, вы получите 19.5. Вы также можете выразить 39/2 в виде смешанной дроби: 19 1/2.
Кроме того, как вы работаете 68 разделить на 2? Используя калькулятор, если вы наберете 68, разделенное на 2, вы получите 34.
Как разделить 216? Делители числа — это точные делители числа, в результате чего остаток равен 0. Делители 216 — это числа, которые точно делят 216. Давайте разделим 216 на несколько чисел, например 2, 3 и 4. Вы заметите, что числа 2, 3 и 4 являются точными делителями числа 216.
Как решить 75 разделить на 2?
Используя калькулятор, если вы введете 75, разделенные на 2, вы получите 37. 5.
Как решить 22 разделить на 2? Поместите эту цифру в частное над знаком деления. Умножьте самую новую цифру частного (1) на делитель 2 . Вычтите 2 из 2 . Результат деления 22÷2 22÷2 равен 11 .
Как вы рассчитываете, что 56 разделить на 2?
Используя калькулятор, если вы введете 56, разделенные на 2, вы получите 28.
Также как решить 41 разделить на 2? Результат деления 41÷2 на 41÷2 равен 20 с остатком 1 .
Каким будет остаток от 37, разделенный на 2?
Результат деления 37 ÷ 2 37 ÷ 2 равен 18 с остатком 1 .
Как решить 88, разделенное на 2? Используя калькулятор, если вы наберете 88, разделенные на 2, вы получите 44.
Как решить 66 разделить на 2?
Используя калькулятор, если вы введете 66, разделенные на 2, вы получите 33. Вы также можете выразить 66/2 в виде смешанной дроби: 33 0/2.
Как сделать 100 разделенных на 2?
Используя калькулятор, если вы введете 100, разделенные на 2, вы получите 50. Вы также можете выразить 100/2 в виде смешанной дроби: 50 0/2.
Как получить 36 разделить на 6? Используя калькулятор, если вы наберете 36, разделенное на 6, вы получите 6. Вы также можете выразить 36/6 как смешанную дробь: 6 0/6. Если вы посмотрите на смешанную дробь 6 0/6, вы увидите, что числитель такой же, как остаток (0), знаменатель — это наш исходный делитель (6), а целое число — это наш окончательный ответ (6) .
Как решить 108, разделенное на 12? 108 делить на 12 равно 9.
Как вы рассчитываете, что 64 разделить на 4?
Мы пишем 644 в формате длинного деления. Следовательно, 64 ÷ 4 =16 с остатком 0 .
Как решить 90, разделенные на 2? 90 разделить на 2 — это 45.
Как вы рассчитываете, что 76 разделить на 2?
Используя калькулятор, если вы введете 76, разделенные на 2, вы получите 38.
Чему равно 37.5 в виде дроби? Таблица перевода процентов в дроби
Процент | Доля |
---|---|
37.5% | 3/8 |
40% | 2/5 |
42.86% | 3/7 |
44.44% | 4/9 |
Можно ли 8 разделить на 2?
Используя калькулятор, если вы введете 8, разделенные на 2, вы получите 4.
Как написать 14 разделить на 2? Используя калькулятор, если вы наберете 14, разделенное на 2, вы получите 7. Вы также можете выразить 14/2 в виде смешанной дроби: 7 0/2.
Как решить 39 разделить на 3?
39 разделить на 3 равно 13. 39 ÷ 3 = 13.
Сколько 78 разделить на 6 с использованием длинного деления?
Запутались в длинном делении? К концу этой статьи вы сможете разделить 78 на 6, используя деление в длинную сторону, и сможете применить ту же технику к любой другой задаче на деление в длинную сторону! Давайте взглянем.
Хотите быстро научиться или показать учащимся, как решить деление 78 на 6 с помощью деления в большую сторону? Включи это очень быстрое и веселое видео прямо сейчас!
Итак, первое, что нам нужно сделать, это уточнить термины, чтобы вы знали, что представляет собой каждая часть деления:
- Первое число, 78, называется делимым.
- Второе число 6 называется делителем.
Здесь мы разберем каждый шаг процесса длинного деления на 78, разделенного на 6, и объясним каждый из них, чтобы вы точно поняли, что происходит.
78 разделить на 6 пошаговое руководство
Шаг 1
Первый шаг — поставить задачу деления с делителем слева и делимым справа, как показано ниже:
Шаг 2
Мы можем вычислить, что делитель (6) входит в первую цифру делимого (7), 1 раз(а). Теперь, когда мы это знаем, мы можем поставить 1 вверху:
Шаг 3
Если мы умножим делитель на результат предыдущего шага (6 x 1 = 6), то теперь мы можем добавить этот ответ под делимым:
Шаг 4
Далее из второй цифры делимого (7 — 6 = 1) вычтем результат предыдущего шага и запишем этот ответ ниже:
1 | |||||||||
6 | 7 | 8 | |||||||
— | 6 | ||||||||
1 |
1 | |||||||||
6 | 7 | 8 | |||||||
— | 6 | ||||||||
1 | 8 |
1 | 3 | ||||
6 | 7 900 1 | 8 |
Шаг 7
Если мы умножим делитель на результат предыдущего шага (6 x 3 = 18), то теперь мы можем добавить этот ответ под делимым:
9003 6 | 1 | 3 | ||
6 | 7 | 8 | ||
— | 9003 8 6||||
1 | 8 | |||
1 | 8 |
Шаг 8
Далее вычтем результат предыдущего шага из третьей цифры делимого (18 — 18 = 0) и запишем этот ответ ниже:
1 | 3 | ||||||||
6 | 7 | 8 | |||||||
900 38 — | 6 | ||||||||
1 | 8 | ||||||||
— | 1 | 8 | |||||||
0 |
Формула |
Описание |
Результат |
=COTH(2) |
Возвращает гиперболический котангенс числа 2 (1,037). |
1,037 |
К началу страницы
определений и примеров котангенса — Club Z! Обучение
Определения и примеры формул котангенса
Введение
Котангенс — это тригонометрическая функция, обратная функции тангенса. Он обозначается символом «кроватка» и определяется как отношение косинуса к синусу угла. В этом сообщении блога мы рассмотрим формулу котангенса и несколько примеров того, как ее можно использовать. Мы также углубимся в его историю и то, как он используется в современном мире. Так что, если вы хотите узнать больше об этой увлекательной теме, читайте дальше!
Что такое котангенс?
В математике котангенс является обратной функцией тангенса. Котангенс угла равен длине прилежащей стороны, деленной на длину противолежащей стороны. Другими словами, это мера того, насколько острым является угол.
Функцию котангенса можно использовать для решения задач по тригонометрии и геометрии. Например, его можно использовать для нахождения длин сторон треугольника, когда известны два угла и одна сторона. Его также можно использовать для нахождения углов в треугольнике, когда известны две стороны и один угол.
Функция котангенса также важна в исчислении. Он используется в интегралах и производных с участием тригонометрических функций. Например, его можно использовать для нахождения площади под кривой, заданной тригонометрической функцией.
Формула котангенса
Котангенс угла – это отношение длины прилежащей стороны к длине противолежащей стороны. Другими словами, это функция, обратная касательной. Котангенс можно записать в виде дроби с горизонтальной чертой, например:
cot(?) = смежный / противоположный
Или это можно записать в виде отношения следующим образом:
cot(?) = 1 / tan(?)
Котангенс является важной тригонометрической функцией, которая имеет множество применений по математике и физике. Он используется в исчислении для вычисления производных и интегралов, и он появляется во многих формулах в физике.
Свойства котангенса
Котангенс – это отношение стороны, примыкающей к углу прямоугольного треугольника, к стороне, противолежащей этому углу. Это также величина, обратная касательной.
Котангенс угла обозначается символом: ?
Чтобы найти котангенс угла, разделите длину прилежащей стороны на длину противолежащей стороны:
cot(?) = прилежащая ÷ противолежащая = a/b
Функция котангенса не определена, когда ? = 0° или ? = 180°, потому что в этих случаях смежная и противоположная стороны равны. Следовательно, мы не можем делить на ноль.
Закон котангенса
В математике котангенс является обратной функцией тангенса. Котангенс угла – это отношение длины прилежащей стороны к длине противолежащей стороны. Другими словами, это наклон линии, касательной к кривой в данной точке. Его можно рассматривать как меру того, насколько «крутой» является кривая в данной точке.
Функция котангенса имеет ряд полезных свойств, которые можно вывести из ее определения как функции, обратной функции тангенса. К ним относятся:
– функция котангенса является нечетной, что означает, что она меняет знак, когда x изменяется на -x. Это означает, что он симметричен относительно начала координат (0,0).
— диапазоном функции котангенса являются все действительные числа, кроме тех, которые находятся между двумя вертикальными асимптотами (где функция тангенса не определена).
— Областью определения функции котангенса являются все действительные числа, кроме тех, где есть вертикальные асимптоты (где функция тангенса не определена). 9-1.
Период котангенса — это расстояние между двумя последовательными максимумами или минимумами на его графике. Как и в случае с синусоидальным или косинусоидальным графиком, период котангенсного графика будет в два раза больше длины одного полного цикла. Формула для расчета периода котангенса:
P = 2 * pi / |b|
где P — период, а b — коэффициент при x в уравнении y = cot(x). Например, если y = cot(x), то период будет равен 2 * пи / 1 или просто 2 * пи.
Котангенс единичной окружности
Котангенс является обратной функцией тангенса. Он определяется как отношение длины прилежащей стороны к длине противолежащей стороны в прямоугольном треугольнике. Котангенс можно использовать для нахождения углов в треугольниках, когда известны две стороны. Его также можно использовать для поиска недостающих сторон в треугольнике, когда известны два угла и одна сторона. Котангенс также определен на единичной окружности. Единичная окружность — это окружность с радиусом 1. Котангенс единичной окружности определяется как координата x точки, в которой линия, проведенная из начала координат, пересекает единичную окружность.
Область, диапазон и график котангенса
Область: все действительные числа
Диапазон: все действительные числа, кроме 0
График котангенса: График котангенса представляет собой волну, которая начинается в бесконечности, приближается к 0, затем отрицательная бесконечность. Он имеет вертикальные асимптоты при x=0 и x=(-n)*pi, где n — любое целое число.
Производная и интеграл котангенса
Производная котангенса является обратной величиной тангенса:
$$\frac{d}{dx}\cot x = \frac{1}{\tan x}$$
Интеграл котангенса есть натуральный логарифм тангенса:
$$\int \cot x \, dx = \ln |\tan x| + C$$
Заключение
Мы надеемся, что эта статья помогла прояснить любую путаницу, связанную с формулой котангенса и ее различными приложениями. Как видите, формула котангенса — мощный инструмент, который можно использовать для решения самых разных задач. Немного потренировавшись, вы сможете использовать его как профессионал!
Участки
Альтернативные формы
Альтернативная форма в предположении, что x действительно
Корни
9000 2Свойства как действительная функция
Разложение в ряд при x = 0
Производная
Неопределенный интеграл
Тождества
Альтернативные представления
Представления рядов
Плюсы и минусы формулы котангенса
Сегодня мы рассмотрим формулу котангенса и то, как ее можно использовать в математике. Котангенс угла определяется как отношение косинуса угла к синусу этого угла. Эту формулу часто записывают как cot x = cos x sin x.
Коэффициент котангенса равен длине прилежащей стороны угла, деленной на длину противоположной стороны, поэтому его также можно записать как cb x = c b или cot x = cbx. Это соотношение также может быть выражено через тангенс, который будет выглядеть либо как cot θ = 1/tan θ, либо как cot θ = tan (π/2 – θ).
В прямоугольном треугольнике котангенс угла равен длине прилежащей стороны, деленной на противолежащую сторону. Затем эту формулу можно использовать для определения других сторон и углов в прямоугольном треугольнике, если известны одна сторона и один угол.
По этой формуле также можно определить тангенс угла; она равна отношению его противоположной стороны к прилежащей стороне. Знание этой информации позволяет вам вычислять углы, для которых иначе вы бы не знали, как решить.
В заключение давайте повторим, что мы узнали:
• Формула котангенса записывается как cot x = cos x sin x или cbx =c b
• В прямоугольном треугольнике она равна длина его смежной стороны, деленная на его противоположную сторону
• Его также можно выразить через тангенс: либо 1/тангенс θ, либо тангенс (π/2 -θ)
• Формула тангенса равна отношению его противоположной стороны над соседней стороной
• Зная эту информацию, вы можете вычислить углы, которые иначе не смогли бы решить для
Надеюсь, этот блог прояснил любую путаницу с формулой котангенса и ее отношением к треугольникам!
Формула раскладушки
Формула котангенса используется для вычисления котангенса заданного угла. Котангенс угла равен косинусу угла, деленному на синус угла. Математически это можно выразить как cot x = cos x / sin x. Чтобы найти котангенс угла, нужно сначала вычислить косинус и синус этого угла, а затем разделить одно на другое. Например, если у нас есть угол θ с косинусом и синусом, равными 0,5 и 0,866 соответственно, то его котангенс будет рассчитан как 0,5/0,866 = 0,57735.
Источник: commons.wikimedia.org
Что такое котангенс угла θ?
Котангенс θ — это тригонометрическое отношение, измеряющее угол в прямоугольном треугольнике. Он равен длине прилежащей стороны, деленной на длину стороны, противоположной углу. Это отношение может быть выражено как кроватка (θ) = смежный / противоположный. Важно отметить, что котангенс θ применим только к прямоугольным треугольникам, так как он зависит от двух сторон с углом 90 градусов между ними.
Формула котангенса угла
Формула cot θ выражается двумя способами. Во-первых, это cot θ = 1/tan θ. Это означает, что котангенс угла равен обратной величине тангенса этого угла. Второе выражение для cot θ – это tan(90° – θ). Это означает, что котангенс угла равен тангенсу дополнительного угла (180° – θ). В обоих случаях cot θ можно рассчитать, взяв обратное (или обратное) значение тангенса θ.
Нахождение котангенса треугольника
Чтобы найти котангенс треугольника, вам сначала нужно знать длины сторон, прилегающих к рассматриваемому углу и противоположных ему. Чтобы вычислить отношение котангенса, разделите длину прилежащей стороны на длину противолежащей стороны. Например, если у вас есть треугольник с углом θ и двумя сторонами с длинами a и b, то отношение котангенса будет записано как cot θ = a/b. Это даст вам соотношение между этими двумя сторонами для этого конкретного угла.
Значение слова «кроватка» в калькуляторах
Котангенс, или котангенс, представляет собой тригонометрическую функцию, которая используется для вычисления отношения длин сторон треугольника. Детскую кроватку можно использовать для вычисления углов и сторон треугольника. Кроме того, кроватку можно использовать в более сложных вычислениях, таких как вектора и комплексные числа. Чтобы использовать кроватку в калькуляторе, ее часто выражают как COT(x), где x представляет собой угол, выраженный в радианах. Чтобы преобразовать градусы в радианы, вы можете использовать функцию РАДИАНЫ. Выход COT(x) будет котангенсом x.
Сравнение функций Cot и Cos
Котангенс (cot) и косинус (cos) — две основные тригонометрические функции, используемые в математике. Cot является обратной функцией тангенса, что означает, что для каждого угла котангенс этого угла равен обратной величине его тангенса. Косинус, с другой стороны, является обратной функцией синуса, что означает, что для каждого угла косинус этого угла равен обратной величине его синуса. Котангенс и косинус связаны тем, что оба они используют углы для вычисления отношения между двумя сторонами прямоугольного треугольника.
Значение θ в тригонометрии
В тригонометрии θ — это угол в треугольнике. Он широко известен как угол «тета» и обычно используется для вычисления сторон прямоугольного треугольника. В частности, это один из острых углов треугольника, и его синус, косинус и тангенс можно рассчитать, используя отношения противолежащего катета к гипотенузе и прилежащего катета к гипотенузе для синуса и косинуса соответственно, а также отношение противолежащего катета. к соседней стороне для касательной.
Что означает θ в математике?
В математике θ (греческая буква «тета») обычно используется для обозначения угла. Углы обычно измеряются в градусах, а θ обычно используется как символ для неизвестной меры угла. Он также иногда используется в качестве переменной для указания произвольного угла при решении уравнений или выполнении вычислений с использованием углов.
Значение котангенса в градусах
Значение cot (отношение косинуса и синуса угла) для любого заданного градуса равно отношению косинуса этого угла к синусу этого угла. Таким образом, для любой заданной степени, если мы обозначим ее как ‘x’, то cot(x) = cos(x)/sin(x). Однако в тех случаях, когда синус заданного угла равен 0, тогда значение cot неопределенно или равно бесконечности (∞), так как потребовалось бы взять отношение, где знаменатель равен 0. Это происходит при 0°, 180° и 360°.
Источник: intomath.org
Является ли котангенс обратным тангенсу?
Да, cot (котангенс) является обратной величиной tan (тангенса). Котангенс — это отношение прилежащего катета к гипотенузе прямоугольного треугольника, а тангенс — это отношение противолежащего катета к прилежащему. Поскольку эти два отношения являются обратными друг другу, отсюда следует, что cot является обратным отношением tan.
Обратная функция котангенса
Обратная функция котангенса, также известная как арккот или арккотангенс, представляет собой математическую функцию, которая берет котангенс числа и возвращает его угол в радианах. Область определения и диапазон функции арккота равны -∞ < x < ∞ и 0 < y < π соответственно.
Cos2X функция: на якому з наведених рисунків зображено графік y=cos2x
По теореме Виета решим квадратное уравнение:
а1=1;а2=3-не удовлетворяет условию
При sinx=1: х=arcsin(1)=90
Знаешь ответ? Добавь его сюда!
Последние вопросы
- Физика
21 минут назад
Оценить число молекул воздуха в земной атмосфере, если давление воздуха вблизи поверхности Земли на уровне моря равно 760 мм рт.ст., молярная масса воздуха 29 г/моль. Радиус Земли 6400 км. Ускорение свободного падения считать постоянным и равным 9,8 м/с2 .
- Математика
1 час назад
умоляю помогите
- Математика
3 часа назад
Помогите пожалуйста от этой оценки зависит годовая оценка
- Информатика
11 часов назад
3 вариант
- Информатика
11 часов назад
Помогите
- Физика
14 часов назад
Реохорд. x+1 y(0)=2; y'(0)=1. - Математика
15 часов назад
1. Случайная величина распределена равномерно на отрезке [−2; 5]. Найти математическое ожидание и дисперсию. Что вероятнее: в результате ис- пытания случайная величина окажется в интервале (2,5; 3) или вне его?
- Математика
15 часов назад
1. В цехе работают 8 мужчин и 12 женщин. По табельным номерам отбира- ют 6 человек. Какова вероятность того, что среди них будут только 2 женщины?
- Физика
15 часов назад
определи фокусное расстояние лупы с точностью до сантиметра если её оптическая сила равна d 5.3 дптр.
- Алгебра
17 часов назад
-6x^2+x+2>0. Решение квадратных неравенств
- Физика
17 часов назад
2.3. Блок укреплен на вершине двух наклонных плоскостей, составляющих с горизонтом углы а = 30° и (3 = 45°. Гири равной массы
(т
х = т2 = 2 кг) соединены нитью, перекинутой через блок. Считая нить и блок невесомыми, принимая коэффициенты трения гирь о наклонные плоскости равными f1= f2= =0,1 и пренебрегая трением в блоке, определите: 1) ускорение, с которым движутся гири; 2) силу натяжения нити. [1) 0,24 м/с2; 2) 12 Н]
- История
22 часов назад
ПЖ помогите КТО ЭТО Я НЕЗНАЮ
- Алгебра
22 часов назад
Негр и мексиканец падают с небоскрёба. Кто упадёт первым?
- Математика
1 день назад
В машине сидят негр и мексиканец. Кто за рулём?
Довідкові матеріали до НМТ з математики
Advertisement
Download to read offlineEducation
Довідкові матеріали до НМТ з математики
Advertisement
Advertisement
Advertisement
Довідкові матеріали до НМТ з математики
- 2 Таблиця квадратів від 10 до 49 АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ ДОВІДКОВІ МАТЕРІАЛИ Одиниці Десятки 0 100 1 400 2 900 3 1600 4 1 121 441 961 1681 2 144 484 1024 1764 3 169 529 1089 1849 4 196 576 1156 1936 5 225 625 1225 2025 6 256 676 1296 2116 7 289 729 1369 2209 8 9 324 361 784 841 1444 1521 2304 2401 Формули скороченого множення Квадратне рівняння Модуль числа Степені Логарифми Арифметична прогресія Теорія ймовірностей Комбінаторика Геометрична прогресія a2 – b2 = (a – b)(a + b) (a + b)2 = a2 + 2ab + b2 (a – b)2 = a2 – 2ab + b2 ax2 + bx + c = 0, a ≠ 0 D = b2 – 4ac – дискримінант x1 = –b – D — 2a , x2 = –b + D — 2a , якщо D > 0 x1 = x2 = –b — 2а , якщо D = 0 ax2 + bx + c = a(x – x1)(x – x2) a1 = а, аn = a ⋅ a . .. ⋅ a n разів для a ∈ R, n ∈ N, n 2 a0 = 1, де а ≠ 0 a2 = а a–n = 1 — аn для а ≠ 0, n ∈ N a m — n = am n , а > 0, m ∈ Z, n ∈ N, n 2 ax ⋅ ay = ax + y аx — аy = ax – y (ax )y = ax ⋅ y (ab)x = ax ⋅ bx (a – b) x = аx — bx a > 0, а ≠ 1, b > 0, c > 0, k ≠ 0 alogab = b logаа = 1 logа1 = 0 logа(b ⋅ c) = logаb + logаc logа b – c = logаb – logаc logаbn = n ⋅ logаb logаk b = 1 – k ⋅ logаb an = a1 + d(n – 1) Sn = a1 + аn — 2 ⋅ n Pn = 1 ⋅ 2 ⋅ 3 ⋅ … ⋅ n = n! C k n = n! — k! ⋅ (n – k)! Ak n = n! — (n – k)! P(A) = k – n bn = b1 ⋅ qn – 1 Sn = b1(qn – 1) — q – 1 , (q ≠ 1) a = a, якщо а 0, –a, якщо а < 0
- 23 Похідна функції Тригонометрія Таблиця значень тригонометричних функцій деяких кутів Первісна функції та визначений інтеграл С, – сталі (С)′ = 0 х′ = 1 (х )′ = x–1 ( x)′ = 1 – 2 x (ex )′ = ex (ln x)′ = 1 – x (sin x)′ = cos x (cos x)′ = –sin x (tg x)′ = 1 – cos2x (u + v)′ = u′ + v′ (u – v)′ = u′ – v′ (uv)′ = u′v + uv′ (Cu)′ = Cu′ (u – v)′ = u′v – uv′ – v2 sin = y cos = x sin2 + cos2 = 1 tg = sin – cos 1 + tg2 = 1 – cos2 sin2 = 2sin cos cos2 = cos2 – sin2 sin(90o + ) = cos sin(180o – ) = sin cos(90o + ) = –sin cos(180o – ) = –cos tg(90o + ) = – 1 – tg tg(180o – ) = –tg a ∫ b f(x)dx = F(x)a b = F(b) – F(a) – формула Ньютона-Лейбніца 0 –1 –1 1 1 y x M(x, y) x y tg α cos α sin α рад град 0o 0 α 0 1 0 0 0 30o π – 6 1 – 2 1 – 2 2 — 2 1 — 3 2 — 2 3 — 2 3 — 2 45 o π – 4 1 3 60 o π – 3 90 o 180 o 270 o 360 o π – 2 π 3π — 2 2π 1 0 0 –1 –1 0 0 1 не існує не існує Загальний вигляд первісних F(x) + C, C – довільна стала Функція f(x) 0 C x + 1 — + C + 1 ln x + C x + C sin x –cos x + C cos x sin x + C tg x + C 1 — cos2 x 1 ex ex + C 1 – x x , ≠ –1
- 24 Кінець зошита ГЕОМЕТРІЯ Довільний трикутник Паралелограм Пряма призма Циліндр Конус Куля, сфера Правильна піраміда Прямокутник Ромб Трапеція Прямокутний трикутник Координати та вектори Трикутники Чотирикутники Коло Об’ємні фігури та тіла Круг S = ab sinγ S = aha V = Sосн ⋅ H Sб = Pосн ⋅ H V = 1 – 3 Sосн ⋅ H Sб = 1 – 2 Pосн ⋅ m V = πR2 H Sб = 2πRH V = 1 – 3 πR2 H Sб = πRL V = 4 – 3 πR3 S = 4πR2 L = 2πR (x – x0)2 + (y – y0)2 = R2 S = πR2 S = 1 – 2 d1d2, d1, d2 – діагоналі ромба S = a + b — 2 ⋅ h, a і b – основи трапеції S = ab p = a + b + c — 2 + β + γ = 180о a2 = b2 + c2 – 2bc cos a — sin = b — sinβ = c — sinγ = 2R R – радіус кола, описаного навколо трикутника ABC a2 + b2 = c2 (теорема Піфагора) b – c = cos a – c = sin a – b = tg c a b C A B β γ ha α c a b α a b γ ha a b d1 d2 a b h R M(x0, y0) H M(x0, y0, z0) A(x1, y1, z1) B(x2, y2, z2) H m H R R H L R R S = 1 – 2 a ⋅ ha S = 1 – 2 b ⋅ c ⋅ sin S = p(p – a)(p – b)(p – c) x0 = x1 + x2 — 2 y0 = y1 + y2 — 2 z0 = z1 + z2 — 2 AB(x2 – x1, y2 – y1, z2 – z1) AB= (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2 a ⋅ b = a1b1 + a2b2 + a3b3 a ⋅ b = a⋅bcosφ φ a(a1, a2, a3) b(b1, b2, b3)
Advertisement
Формула Cos2x: вывод, применение и пример вопроса с решением
Формула Cos2X является одним из основных тригонометрических тождеств, используемых для определения значения тригонометрической функции косинуса для двойных углов.
Cos2x Формула в тригонометрии может быть выражена через различные тригонометрические функции, такие как синус, косинус и тангенс. Это также известно как тождество двойного угла функции косинуса. Идентичность cos2x помогает представить косинус составного угла 2x в терминах синуса, а также тригонометрические функции косинуса только в терминах функции косинуса, только функции синуса и только функции тангенса. 92 раза?
Идентичность формулы cos2x в тригонометрии может быть выражена различными способами. Cos2x представлен множеством тригонометрических функций, включая, среди прочего, синус, косинус и тангенс. Формула cos2x относится к категории тригонометрических тождеств двойного угла, поскольку рассматриваемый угол является делителем 2 или удвоенным по отношению к x. Идентичность cos2x в нескольких альтернативных формах показана ниже:
- cos2x = cos2x — sin2x
- cos2x = 2cos2x — 1
- cos2x = 1 — 2sin2x
- cos2x = (1 — tan2x)/(1 + tan2x)
Cos2x, также называемый тождеством функции косинуса с двойным углом, является одним из многих важных тригонометрических тождеств, используемых для нахождения значения тригонометрической функции косинуса для двойных углов. Cos2x выражается через различные тригонометрические функции, и каждая из его формул используется для упрощения сложных тригонометрических выражений и решения задач интегрирования. Это тригонометрическая функция двойного угла, которая помогает узнать значение cos при удвоении угла x.
Вывод формулы Cos2xФормула cos2x может быть выражена в четырех различных формах. Значение косинуса составного угла «2x» представлено только с точки зрения функции синуса, только с точки зрения функции косинуса, с точки зрения тригонометрических функций синуса и косинуса и только с точки зрения функции тангенса. Ниже показаны некоторые способы получения формулы Cos2x:
Вывод формулы Cos2x с использованием формулы сложения угловФормулу Cos2x можно получить, используя формулу сложения углов для функции косинуса. Угол 2x также можно записать как 2x = x + x. Кроме того, мы уже знаем, что cos (a + b) = cos a x cos b — sin a x sin b. Это можно использовать для подтверждения идентичности cos2x. Используя формулу сложения углов для функции косинуса, мы можем заменить a = x и b = x в формуле для cos (a + b).
cos2x = cos (x + x)
= cos x x cos x — sin x x sin x
= cos2x — sin2x
Таким образом, мы имеем cos2x = cos2x — sin2x
Вывод формулы Cos2x через Sin xТеперь, когда мы установили cos2x = cos2x — sin2x, мы выведем формулу для cos2x только через синус функция. Мы можем использовать тождество тригонометрии cos2x + sin2x = 1, чтобы вывести формулу cos2x через sin x. Имеем
cos2x = cos2x — sin2x
= (1 — sin2x) — sin2x [Так как cos2x + sin2x = 1 ⇒ cos2x = 1 — sin2x]
= 1 — sin2x — sin2x
= 1 — 2sin2x
Следовательно, с точки зрения sin x мы имеем cos2x = 1 — 2sin2x.
Деривация формулы COS2X в терминах COS X, как мы получили COS2X = 1 — 2SIN2X, мы получим COS2X с точки зрения COS X, т.е. — sin2x и cos2x + sin2x = 1, чтобы доказать, что cos2x = 2cos2x — 1, мы имеем,
cos2x = cos2x — sin2x
= cos2x — (1 — cos2x) [Так как cos2x + sin2x = 1 ⇒ sin2x = 1 — cos2x ]
= cos2x — 1 + cos2x
= 2cos2x — 1
Следовательно, через cos x имеем cos2x = 2cos2x — 1.
Вывод формулы Cos2x через Tan xИспользование уголка Формула сложения, мы получили cos2x = cos2x — sin2x. Теперь мы выведем cos2x через tan x, используя несколько тригонометрических тождеств и тригонометрических формул, таких как cos2x = cos2x — sin2x, cos2x + sin2x = 1 и tan x = sin x/cos x.
Мы это уже знаем,
cos2x = cos2x — sin2x
= (cos2x — sin2x)/1
= (cos2x — sin2x)/(cos2x + sin2x) [Как cos2x + sin2x = 1]
Деление числителя и знаменателя (cos2x — sin2x)/( cos2x + sin2x) на cos2x.
(cos2x — sin2x)/(cos2x + sin2x) = (cos2x/cos2x — sin2x/cos2x)/( cos2x/cos2x + sin2x/cos2x)
= (1 — tan2x)/(1 + tan2x) [Поскольку tan x = sin x / cos x]
Таким образом, в терминах тангенса x мы имеем cos2x = (1 — tan2x)/(1 + tan2x)
92x = (cos2x + 1)/2
⇒ cos2x = (cos2x + 1)/2
Как применить идентификатор Cos2x?Формула cos2x используется для решения различных математических задач. Рассмотрим пример, демонстрирующий применение формулы cos2x.
Например: мы определим значение cos 120°, используя тождество cos2x. Уже известно, что cos2x = cos2x — sin2x и sin 60° = √3/2, cos 60° = 1/2. Поскольку 2x = 120°, x = 60°. Следовательно, имеем
cos 120° = cos260° — sin260°
= (1/2)2 — (√3/2)2
= 1/4 — 3/4
= -1/2
Решенные примеры с использованием формулы Cos2x
Понять формулу cos2x, учитывая решенные примеры показывают, как можно использовать формулу cos 2x
Пример 1 : Найдите тождество тройного угла функции косинуса, используя формулу cos2x
Решение: тождество тройного угла функции косинуса равно cos 3x = 4 cos3x – 3 cos x
cos 3x = cos (2x + x) = cos2x cos x – sin 2x sin x
= (2cos2x – 1) cos x – 2 sin x cos x sin x [Поскольку cos2x = 2cos2x – 1 и sin2x = 2 sin x cos x]
= 2 cos3x – cos x – 2 sin2x cos x
= 2 cos3x – cos x – 2 cos x (1 – cos2x) [Поскольку cos2x + sin2x = 1 ⇒ sin2x = 1 – cos2x]
= 2 cos3x – cos x – 2 cos x + 2 cos3x
= 4 cos3x – 3 потому что х.
Пример 2: Решить Sin x = 12/13, найти Cos 2x
Решение: Как мы знаем, Cos2x = 1 –2Sin2x
= 1 – 2 (12/13)2
= 1 – 2 (144/169)
= 1 –288/169
= 169 – 288/169
= -119/169
Формула двойного угла для косинуса 9000 1
Тригонометрическое соотношение – это отношение длины любых двух сторон прямоугольного треугольника. Эти соотношения можно использовать для вычисления сторон прямоугольного треугольника, а также углов, образующихся между ними. Отношение косинусов рассчитывается путем вычисления отношения длины прилежащей стороны угла к длине гипотенузы. Обозначается аббревиатурой cos.
Если θ — угол между основанием и гипотенузой прямоугольного треугольника, то
cos θ = Основание/Гипотенуза = BC/AC
Cos Формула двойного угла
В тригонометрии cos 2x — это тождество двойного угла. Поскольку функция cos является обратной функцией секущей, ее также можно представить как cos 2x = 1/sec 2x. Это важное тригонометрическое тождество, которое можно использовать для решения различных задач тригонометрии и интегрирования. Значение cos 2x повторяется через каждые π радиан, cos 2x = cos (2x + π). Он имеет значительно более узкий график, чем cos x. Это тригонометрическая функция, которая возвращает значение функции cos двойного угла.
cos 2x = cos 2 x – sin 2 x
Приведенную выше формулу можно еще больше упростить, используя тождество синуса и косинуса.
Подставляя sin 2 x = 1 – cos 2 x, формула принимает вид 002 cos 2x = 2 cos 2 x – 1
Подставляя cos 2 x = 1 – sin 2 x, формула принимает следующий вид:
cos 2x = (1 – sin 2 x) – sin 2 x
cos 2x = 1 – 2 sin 2 x
Производная
Примеры задачФормулу для cos 2x можно получить, используя формулу суммы углов для функция косинуса.
Мы уже знаем, cos (A + B) = cos A cos B – sin A sin B
Чтобы вычислить значение косинуса двойного угла, угол A должен быть равен углу B.
Полагая A = B, мы получить,
cos (A + A) = cos A cos A – sin A sin A
cos 2A = cos 2 A – sin 2 A
Отсюда выводится формула соотношения двойного угла косинуса.
Задача 1. Если cos x = 3/5, найдите значение cos 2x по формуле.
Решение:
Имеем, cos x = 3/5.
Очевидно, sin x = 4/5.
Используя формулу получаем,
cos 2x = cos 2 x – sin 2 x
= (3/5) 2 – (4/5) 2
= 9/25 – 16/25
= -7/25
Задача 2. Если cos х = 12/ 13, найдите значение cos 2x по формуле.
Решение:
Имеем, cos x = 12/13.
Очевидно, sin x = 5/13.
Используя формулу получаем,
cos 2x = cos 2 x – sin 2 x
= (12/13) 2 – (5/13) 2 90 226
= 144/169 – 25/169
= 119/169
Задача 3. Если sin x = 3/5, найдите значение cos 2x по формуле.
Решение:
Итак, sin x = 3/5.
Очевидно, что cos x = 4/5.
Используя формулу получаем,
cos 2x = cos 2 x – sin 2 x
= (4/5) 2 – (3/5) 2
= 16/25 – 9/25
= 7/25
Задача 4. Если tan x = 12/5, найдите значение cos 2x по формуле.
Решение:
Имеем tan x = 12/5.
Очевидно, что sin x = 12/13 и cos x = 5/13.
Используя формулу получаем,
cos 2x = cos 2 x – sin 2 x
= (5/13) 2 – (12/13) 2 90 226
= 25/169 – 144/169
= -119/169
Задача 5. Если sec x = 17/8, найдите значение cos 2x по формуле.
Решение:
Имеем, сек х = 17/8.
Очевидно, что cos x = 8/17 и sin x = 15/17.
Используя формулу получаем,
cos 2x = cos 2 x – sin 2 x
= (8/17) 2 – (15/17) 2 90 226
= 64/289 – 225/289
= -161/225
Задача 6. Если cot x = 15/8, найдите значение cos 2x по формуле.
Решение:
Имеем, кроватка х = 15/8.
Очевидно, что cos x = 15/17 и sin x = 8/17.
Используя формулу получаем,
cos 2x = cos 2 x – sin 2 x
= (15/17) 2 – (8/17) 2 90 226
= 225/289 – 64/289
= 161/225
Задача 7. Если cos 2 x = 5/8, найдите значение cos 2x по формуле.
Решение:
Имеем
cos 2 x = 5/8
Используя формулу получаем,
cos 2x = 2 cos 2 x – 1
= 2 (5/8) – 1
= 5/4 – 1
= 1/4 9000 3
Задача 8.
Тесты по бухгалтерскому учету с ответами бесплатно 2019: Тесты по бухучету с ответами
Бесплатный онлайн-тренажер квалификационного экзамена для лицензирования управляющих компаний ЖКХ
Что это такое?
Это документ, подтверждающий квалификацию должностного лица соискателя лицензии.
Кому он нужен?
В управляющей организации должен быть сотрудник, который имеет квалификационный аттестат. Председателю ТСЖ подтверждать квалификацию не нужно.
Зачем его получать?
Для открытия новой управляющей компании нужно получить лицензию на управление МКД. Для получения такой лицензии должностное лицо лицензиата, должностное лицо соискателя лицензии должно сдать квалификационный экзамен и получить квалификационный аттестат (п. 2 ч. 1 ст. 193 ЖК РФ).
Такое положение обосновано также приказом Минстроя РФ от 05.12.2014 № 789/пр. Получение квалификационного аттестата – одно из лицензионных требований.
Где проходит экзамен?
В вашем регионе. Его принимает региональная лицензионная комиссия.
Что нужно сделать до экзамена?
Чтобы пройти экзамен, подайте заявку в ГЖИ. Образец заявления есть на сайте вашей ГЖИ. На одобрение заявки уходит до 15 рабочих дней.
Сколько вопросов в экзамене?
Всего 200 вопросов. На экзамене из них индивидуально, произвольно и автоматически выпадает 100 – по 3 варианта ответов на каждый, один из которых правильный.
Как проходит экзамен?
Не опаздывайте на экзамен, будет проходить регистрация и присвоение номеров. Эти номера понадобятся при сдаче теста – по ним идентифицируют участников. На экзамен нужно взять паспорт или другой документ, удостоверяющий личность.
Квалификационный экзамен бесплатный, проходит в режиме тестирования. Тестирование проводится на компьютере. За 2 часа вам нужно правильно ответить хотя бы на 86 вопросов из 100, но не меньше. В противном случае, экзамен не будет засчитан и его придётся пересдавать.
Результаты огласят через 5 дней. Успешно прошедшие тест получат квалификационный аттестат сроком действия на 5 лет.
Как отвечать на вопросы?
Отвечайте по порядку – приступайте к следующему вопросу после ответа на предыдущий. Пересмотр ответов не допускается.
Что нельзя делать на экзамене?
Нельзя общаться и обмениваться вещами с другими участниками экзамена, а также пользоваться текстами законами, актами, справочниками, средствами связи, покидать помещение
Можно ли пересдать экзамен?
Можно. Пересдавать квалификационный экзамен ЖКХ можно неограниченное количество раз.
Где можно работать с квалификационным аттестатом?
Управлять МКД можно не только в том регионе, где вы сдали экзамен и получили квалификационный аттестат, но и в любом другом. Квалификационный аттестат выдается на физическое лицо без привязки к компании или региону.
А вот лицензия на управление МКД уже обязывает лицензиата (организацию или ИП) осуществлять свою деятельность только там, где лицензия была выдана. Экзамен и получение аттестата происходят в одном и том же регионе.
Изменения в аттестате
Если вы изменили ФИО, это нужно отразить в квалификационном аттестате. Квалификационный аттестат переоформляется на новом бланке на основании письменного заявления.
При потере квалификационного аттестата пересдавать квалификационный экзамен ЖКХ не нужно. Подайте письменное заявление об утере, и вам выдадут дубликат.
Как пройти экзамен ЖКХ онлайн?
Можно потренироваться и пройти пробный квалификационный экзамен ЖКХ онлайн. На платформе есть бесплатный тренажер по сдаче такого экзамена. В нём доступно два режима: обучение и экзамен.
Режим обучения дает возможность последовательно или в выборочном порядке ответить на все 200 вопросов экзамена. Даны правильные ответы с разъяснениями и отсылками к законодательству. Из списка можно выбрать только те вопросы к экзамену, в которых вы не уверены.
В режиме экзамена условия максимально приближены к экзаменационным. Каждый претендент получает индивидуальный набор тестов, состоящий из 100 вопросов. За отведенное на тестирование время нужно правильно ответить на максимальное количество вопросов экзамена ЖКХ.
Могут ли аннулировать квалификационный аттестат?
Да, это может сделать ГЖИ.
Почему аттестат могут аннулировать?
Аттестат может быть аннулирован по решению ГЖИ до истечения срока его пятилетнего действия, если обнаружится, что аттестат получен при помощи подложных документов или сведения о владельце аттестата попали в реестр дисквалифицированных лиц.
Поводом для аннулирования квалификационного аттестата может стать вступление в силу решения суда в отношении владельца аттестата, если оно предусматривает наказание за преступления в сфере экономики, тяжкие и особо тяжкие преступления.
Как оформляется аннулирование аттестата?
Решение об аннулировании аттестата протоколируется письменно, подкрепляется основанием для данного действия и подписывается руководителем ГЖИ. Орган ГЖН в течение 5 рабочих дней ставит в известность владельца аттестата об аннулировании документа.
Соответствующие корректировки вносятся и в реестр квалификационных аттестатов. Сведения об этом хранятся на протяжении 3 лет. В течение этого периода повторно сдать квалификационный экзамен нельзя. Постановление о дисквалификации можно оспорить в суде.
Изменения в бухгалтерском учете и законе в 2019 году чего коснулись — 27 сентября 2019
Все новостиМоре зрителей и места на газонах. В Магнитогорске Евгений Миронов открыл Фестиваль театров малых городов России
По Москве ударили восемь беспилотников, Шойгу назвал потери украинской армии: главные новости СВО за 30 мая
На соревнованиях по мотокроссу южноуралец ударил своего сына-гонщика. Всё попало в прямой эфир
Свитеры от-кутюр: челябинец покорил гостей известного шоу необычным хобби
На спектакле с Мироновым под открытым небом в Магнитогорске зрительница сломала ногу
«Такая аудитория — находка для преступников»: депутат Госдумы выступила за запрет телефонов на уроках
В Челябинске полуголый парень прокатился на капоте «десятки». Водителю выписали четыре протокола
В Москве произошла массовая атака БПЛА. Долетят ли дроны до Челябинска?
«Есть над чем работать»: Путин — об атаке беспилотников на Москву
Не доставайся же ты никому! Бизнесмен 5 лет содержал любовницу, а затем засудил за шантаж, но продолжает признаваться ей в любви
В Минэкологии прокомментировали перекачку воды из Челябинской области в Екатеринбург
В челябинских школах будут бесплатно кормить детей погибших на СВО военных
В Иркутске собаки сиба-ину взяли в семью леопарда Мао — подробности удивительной истории
Челябинские власти разъяснили, что считать газоном. Штрафы за парковку на нем увеличат
«Если вам нагадят под дверь, понравится?» Крик души собачника, который убирает за своим питомцем на улице
В Челябинске построят здание для фонда, который займется поддержкой ветеранов СВО и семей погибших
Взрывы в жилых домах, 8 БПЛА и пострадавшие. Как беспилотники атаковали Москву и Подмосковье — видео
В Челябинске перекроют две улицы из-за молебна о Победе
«Выбирая профессию, слушайте себя»: интервью директора Уральского филиала Финуниверситета Дианы Циринг
Челябинские депутаты единогласно одобрили замену публичных слушаний на «общественные обсуждения»
Не сходил к нотариусу — забрали квартиру. После смерти отца москвичка судится с государством за свою жилплощадь
Прилет и мысли. Что люди, переехавшие из Челябинска в Москву, говорят об атаке беспилотников
В Кремле объяснили, для чего беспилотники атаковали Москву и Подмосковье этим утром
Как беспилотники смогли долететь до Москвы? Объясняют эксперты
Синоптики предупредили жителей Челябинской области об аномальной жаре
В Челябинске обанкротили участника громкого сговора на торгах с экс-губернатором Дубровским
«Через весь город ехать — это смерть»: в Челябинске начали штрафовать перевозчиков за жару в автобусах
В Челябинске с участием звезд футбола прошел спортивный фестиваль для воспитанников школ и секций
Наталья Котова назвала новые сроки появления платных парковок в центре Челябинска
Турнир по конному поло впервые был включен в программу спортивных игр ПМЭФ-2023
Незаконно призванные смогут дезертировать? В России снова изменили законы о службе в армии и мобилизации
С золотой ложкой во рту. Кто из южноуральцев попал в топ-20 богатейших наследников России
Власти объяснили, почему в городе на Южном Урале нет воды более 10 дней
Делегация Алжира примет участие в ПМЭФ-2023
Когда школьники узнают свои результаты ЕГЭ? Показываем в одной картинке
В Минобороны рассказали, сколько беспилотников атаковало Москву и Подмосковье
Полиция признала 7-летнего ребенка виновником ДТП в Новосибирске: машина сбила его возле подъезда
Жительница Челябинской области заявила о пропаже двух школьниц, плававших по озеру на матрасе
«Прям над нашим домом, братан»: видео атаки беспилотников на Москву и Подмосковье от очевидцев
Все новостиУчастие в Едином семинаре 1С бесплатное
Фото: «Первый Бит»
Поделиться
Каждый год в законодательную систему вносятся изменения, многие из них касаются налогообложения и ведения бизнеса. С 2019 года вступят огромное количество изменений и поправок в налоговом и бухгалтерском учете, в частности, по НДС, НДФЛ, налогу на прибыль и УСН. Внедрен новый налог для самозанятых — налог на профессиональный доход. Появятся новые формы 2-НДФЛ и 3-НДФЛ.
Федеральный закон о «Товарах, маркированных средствами идентификации» вступил в силу с 1 января 2019 года. Правительство РФ утвердило в своем распоряжении 11 групп товаров, подлежащих обязательной маркировке. Раньше всего попадают табачная продукция и обувь — с 1 июля. Остальные группы будут маркироваться позднее.
Не у всех собственников и бухгалтеров есть источники, где можно узнать достоверную информацию.
9 октября 2019 года задать вопросы и получить на них ответы возможно на одном из масштабных мероприятий — Едином семинаре 1С. Приглашенные гости и ведущие эксперты компании «Первый Бит» поделятся информацией о нововведениях в законодательстве, дадут рекомендации по применению новых правил, расскажут, на что необходимо обратить внимание при сдаче отчетности.
Поделиться
Программа Единого семинара 1С:
- налоговая отчетность за 9 месяцев 2019 года;
- учет НДС в «1С: Бухгалтерии 8»;
- как не попасть на уловки контрагентов при заключении договоров;
- онлайн-кассы: применение при взаимозачетах и удержаниях из зарплаты, ответы на часто задаваемые вопросы;
- учет НДФЛ в «1С: Зарплате и управлении персоналом 8»;
- электронный кадровый документооборот подготовка к переходу;
- маркировка. Поддержка в «1С.Практика автоматизации с пользой для бизнеса»;
- особенности проведения инвентаризации;
- как минимизировать риски назначения выездной налоговой проверки, в том числе в случае, когда вы уже привлекли внимание налоговых органов. Спикер: Ольга Худякова, юрисконсульт, ООО «Налоговый Консалтинг».
На мероприятии, помимо полезной информации об изменениях и нововведениях, вы сможете получить бесплатные консультации технических специалистов и специалистов линии консультаций 1С.
Поделиться
Участие в Едином семинаре 1С 9 октября бесплатное. Предварительная регистрация обязательна.
А приятным дополнением станут общение, обмен опытом с коллегами во время кофе-брейка за чашкой горячего чая или кофе, а также розыгрыш от организатора мероприятия и партнеров.
Поделиться
Дата семинара: 9 октября 2019, начало в 10:00,
место проведения: Челябинск, банкет-холл «АТТИМО», пр. Ленина, 68;
организатор: «Первый Бит. Челябинск».
До встречи на Едином семинаре 1С 9 октября!
Реклама
Увидели опечатку? Выделите фрагмент и нажмите Ctrl+Enter
практических вопросов CMA | ИМА
Диалоговое окно подтверждения адреса. Нажмите Escape, чтобы закрыть.
Чтобы предоставить кандидатам краткий обзор некоторых типов вопросов на экзамене CMA ® (Certified Management Accountant), мы предлагаем пять вопросов с правильными ответами и пояснениями к каждому.После каждого ответа вы увидите соответствующую часть Схемы содержания (CSO) и Заявления о результатах обучения (LOS), которой соответствует каждый вопрос.
Экзамен CMA, часть 1:
1. Финансовая отчетность, включенная в годовой отчет акционерам, наименее полезна для какого из следующих факторов?
а. Биржевые маклеры
b. Банкиры готовятся одолжить деньги
c. Конкурирующие предприятия
d. Менеджеры, отвечающие за операционную деятельность
Правильный ответ: (г). Годовой отчет акционерам составляется в соответствии с общепринятыми принципами бухгалтерского учета и предназначен для предоставления информации, имеющей отношение к инвесторам и другим внешним пользователям. Менеджеры, отвечающие за операционную деятельность, используют внутренние отчеты, предназначенные для предоставления информации о различных аспектах внутренних функций, которые измеряют эффективность и результативность операций.
(CSO: 1A1a; LOS: 1A1a)
2. Компания изолирует свое отклонение по цене на сырье, чтобы предоставить как можно более раннюю информацию менеджеру, ответственному за отклонение. Бюджетный объем использования материалов на год был рассчитан следующим образом:
150 000 единиц готовой продукции x 3 фунта за единицу x 2 доллара США за фунт = 900 000 долларов США.
Фактические результаты за год составили:
Готовая продукция произведена | 160 000 шт. |
Закуплено сырье | 500 000 фунтов стерлингов |
Используемое сырье | 490 000 фунтов стерлингов |
Цена за фунт | 2,02 долл. США |
Отклонение по цене сырья за год составило
a. 9600 долларов неблагоприятно.
б. 9800 долларов неблагоприятно.
в. 10 000 долларов невыгодно.
д. 20 000 долларов неблагоприятно.
Правильный ответ (с). Отклонение по цене сырья (отклонение по цене покупки) составляет 10 000 долларов США, как показано ниже.
Разница в цене | = | (Фактическая цена – Стандартная цена) x Фактическое количество |
= | (2,02–2,00 доллара США) x 500 000 | |
= | 10 000 долл. США U |
(CSO: 1C1e; LOS: 1C1k)
3. В производственном процессе, в котором производятся совместные продукты, основным фактором, отличающим совместный продукт от побочного, является
a. относительная общая стоимость продаж продуктов.
б. относительный общий объем продукции.
в. относительная легкость реализации продукции.
д. Метод учета, используемый для распределения совместных затрат.
(CSO: 1D1f; LOS: 1D1j)
Экзамен CMA, часть 2:
4. Финансовый аналитик рассчитал степень финансового рычага компании как 1,5. Если чистая прибыль до вычета процентов увеличится на 5%, прибыль акционеров увеличится на
а. 1,50%.
б. 3,33%.
в. 5,00%.
д. 7,50%.
Степень финансового рычага | = | % изменения чистой прибыли ÷ % изменения EBIT |
1,5 | = | Х ÷ 5% |
Х | = | 7,5% |
5. Чистая приведенная стоимость инвестиционного проекта представляет собой
а. общий фактический приток денежных средств минус общий фактический отток денежных средств.
б. превышение дисконтированных денежных поступлений над дисконтированными денежными оттоками.
в. общий денежный поток после уплаты налогов, включая налоговый щит от амортизации.
д. совокупная бухгалтерская прибыль в течение всего срока реализации проекта.
(CSO: 2E2a; LOS: 2E2a)
Для получения дополнительной информации о сдаче экзамена CMA посетите веб-сайт https://www.imanet.org/cma-certification/taking-the-exam.
модуль 3 ответа everfi — Googlesuche
AlleBilderNewsVideosMapsShoppingBüchersuchoptionen
модуль everfi 3 ответа Flashcards and Study Sets — Quizlet
qui zlet. com › тема › everfi-module-3-answers
Learn everfi module 3 ответы с бесплатными интерактивными карточками. Выберите из 459различные наборы модулей everfi 3 отвечают на карточки на Quizlet.
Everfi Module 3 — Карточки для составления бюджета — Quizlet
quizlet.com › everfi-module-3-flashcards для составления бюджета
Bewertung 4,3 (8)Что из перечисленного НЕ следует рассматривать при установке текущего бюджета? — Ваши финансовые цели — Будущий доход — Потребности и желания — Сбережения. Будущий доход.
Everfi Модуль 3 — Бюджетирование | 76 пьес — Викторина
quizizz.com › admin › викторина › everfi-module-3-budg…
Everfi Module 3 — Бюджетная викторина для учащихся 10-х классов. Найдите другие тесты на жизненные навыки и многое другое на Quizizz бесплатно!
Модуль 3 Everfi: Руководство по составлению бюджета — YouTube
www.youtube.com › смотреть
04.03.2021 · Модуль 3 Everfi: Руководство по составлению бюджета. Лоренцо Аранда … Nishtha 2.0 Модуль 2 ответы || ICT …
Дата: 6:55
Прислан: 04.03.2021
Ключ к ответу — Модуль 3 Playbook для персонажей Предварительная оценка
www.studocu.com › … › Введение в инженерию
Bewertung 4,8 (97)Ключ ответа — Модуль 3 Playbook, предварительная оценка · Доступ ко всем документам · Неограниченное количество загрузок · Улучшение ваши оценки.
Everfi Модуль 3 Вопросы и ответы Оценка A — Stuvia
www.stuvia.com › США › Everfi › Everfi
03.02.2023 · Everfi Модуль 3 Вопросы и ответы Оценка A Что такое денежный перевод? Способ оплаты вперед, чтобы чек не был возвращен Что такое дебетовая карта?
модуль everfi 3 ответа|TikTok Search
www.tiktok.com › Откройте для себя
модуль everfi 3 ответы · 602,8 тыс. просмотров · Найдите видео, связанные с модулем everfi 3 ответы на TikTok.
Everfi модуль 3 (6MNZA6)
qxistatv.
Представить в тригонометрической и показательной формах комплексное число: Комплексные числа онлайн
Читать дальше: сложение и вычитание комплексных чисел.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
404 Cтраница не найдена
Мы используем файлы cookies для улучшения работы сайта МГТУ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом ФГБОУ ВО «МГТУ» и согласны с нашими правилами обработки персональных данных.
Размер:
AAAИзображения Вкл. Выкл.
Обычная версия сайтаК сожалению запрашиваемая страница не найдена.
Но вы можете воспользоваться поиском или картой сайта ниже
|
|
Экспоненциальная форма комплексных чисел: Пример
Еще один день в нашей сложной жизни. {2}}\).
Это можно записать более компактно; в экспоненциальной форме. Но откуда взялась экспоненциальная форма? Ответ: Формула Эйлера .
Формула Эйлера
Неудивительно, что здесь, как и почти в любой другой области математики, мы встречаемся с Леонардом Эйлером. Существует очень элегантное уравнение, которое объединяет экспоненциальные функции, комплексные числа и тригонометрические функции в одной формуле. Она известна как Формула Эйлера 9.{i\theta}\), комплексное число будет исходить из начала координат и наклоняться под углом \(\theta\) к положительной оси \(x-\).
Рис. 1: Комплексное число на плоскости Аргана.
Экспоненциальная форма — это очень краткий способ записи комплексных чисел, а также очень полезный, поскольку он отображает аргумент и модуль комплексного числа.
В отношении комплексных чисел в этой форме важно отметить, что комплексное число вида \(z=a+ib\) может быть записано не единицей, а 92} \\ \следовательно r&=5\sqrt{3} \end{aligned}$$
Теперь нам нужно вычислить главный аргумент \(z\):
$$\begin{aligned} \tan \theta &=\frac{b}{a} \\ \tan \theta &=\frac{\sqrt{3}}{1} \\ \tan \theta &=\sqrt{3} \\ \следовательно \ theta &=\frac{\pi}{3}\end{aligned}$$
Обратите внимание, что мы не учли \(\frac{5\sqrt{3}}{2}\), так как это отменит в конце концов. {i \theta}\): 9{i\theta}=\cos\theta+i\sin\theta\).
Полярные и экспоненциальные формы комплексных чисел
Прежде чем перейти к обсуждению различных форм комплексных чисел и преобразования между ними, мы должны знать о комплексных числах. Комплексные числа — это часть математики, представленная в виде комбинации действительной и мнимой частей. Комплексное число содержит действительную часть, а также мнимую часть, где действительная часть является постоянным числом, а мнимая часть содержит переменную «i» с постоянным коэффициентом. Пусть a+ib — комплексное число, тогда a называется действительной частью, а b — мнимым коэффициентом.
Существуют три формы комплексных чисел.
- Общая форма
- Полярная форма
- Экспоненциальная форма
Общая форма комплексного числа
Общая форма комплексного числа представляется как z = a + ib, где a называется действительной частью и b называется мнимой частью комплексного числа. Его также можно представить в виде диаграммы ниже.
Схематическое изображение комплексного номера
Представление комплексных чисел в полярной форме
Полярная форма комплексного числа представляется как z = r(cos∅ + i sin∅), где rcos∅ называется действительной частью, а rsin∅ называется мнимой частью комплексного числа . Его также можно представить в декартовой форме ниже.
Диаграмма полярной формы комплексных чисел
На приведенной выше диаграмме a = rcos∅ и b = rsin∅. В общем виде a + ib, где a = действительная часть и b = мнимая часть, но в полярной форме есть угол, включенный в декартово выражение, где a=rcos∅ и b=rsin∅ . Здесь r — квадратный корень из суммы квадратов a и b, а также ∅ также может иметь формулу tan -1 (мнимая часть/действительная часть). Следовательно, r можно представить как Квадратный корень (a 2 + b 2 ). Следовательно, ∅ можно представить как tan -1 (b/a) , где b — мнимая часть, , а a — действительная часть.
Представление комплексных чисел в экспоненциальной форме
Экспоненциальная форма комплексного числа представляется как z = r exp(i∅), где exp(i∅) также представляется как cos∅ + i sin∅. Исходя из этого, я могу сказать, что экспоненциальная форма, полярная форма и общая форма тесно связаны.
Z = r(cos∅ + i sin∅)
Z = r e i ∅
Z = r angle(∅) [Это векторное представление экспоненциальной формы]
Различное представление комплексных чисел
- В общей форме Z = a + ib
- В полярной форме Z = r(cos∅ + i sin∅)
- В экспоненциальной форме Z = r e i ∅
Преобразование комплексных чисел
Комплексные числа могут быть преобразованы в удобную полярную форму или экспоненциальную форму или общую форму. Как это было преобразовано, показано ниже.
Преобразование общей формы в полярную форму
- Перед преобразованием общей формы в полярную форму проверьте, имеет ли общая форма форму a+ib и значения a и b уже известны в общей форме.
- Полярная форма имеет вид Z = r(cos∅ + i sin∅).
- Чтобы преобразовать в приведенную выше структуру полярной формы, нам нужно знать, как значения a и b в общей форме соотносятся с r, ∅.
- Формулы r,∅ таковы: r = √(a 2 + b 2 ), ∅ = тангенс -1 (б/а).
- Приведенные выше формулы для a и b получены для преобразования общей формы в полярную форму, чтобы мы могли заменить r, ∅ в полярной форме Z = r(cos∅ + i sin∅).
Преобразование общей формы в экспоненциальную
- Перед преобразованием общей формы в экспоненциальную проверьте, имеет ли общая форма вид Z = a + ib и значения a и b уже известны в общая форма.
- Экспоненциальная форма выглядит так: Z = r e i ∅ .
- Чтобы преобразовать в приведенную выше структуру экспоненциальной формы, нам нужно знать, как значения a и b в общей форме соотносятся с r, ∅.
- Формулы r, ∅ таковы: r = √(a 2 + b 2 ), ∅ = tan -1 (b/a).
- Приведенные выше формулы в терминах a и b получены для преобразования общей формы в полярную форму, чтобы мы могли заменить r, ∅ в полярной форме Z = r e я ∅ .
Преобразование полярной формы в общую форму
- Перед преобразованием полярной формы в общую форму проверьте, имеет ли полярная форма вид Z = r(cos∅ + i sin∅) и значения r, ∅, который известен уже в полярной форме.
- Общая форма имеет вид Z = a + ib.
- Чтобы преобразовать в приведенную выше структуру общего вида, нам нужно знать, как значения r,∅ в общем виде соотносятся с a, b.
- Формулы a,b таковы: a = rcos∅, b = rsin∅ , где r,∅ уже известно в полярной форме.
- Приведенные выше формулы в терминах r,∅ получены для преобразования полярной формы в общую форму, чтобы мы могли заменить a, b в общей форме Z = a + ib.
Преобразование полярной формы в экспоненциальную
- Перед преобразованием полярной формы в экспоненциальную проверьте, соответствует ли полярная форма форме Z = r(cos∅ + i sin∅) и значения r, ∅, которые известны уже в полярной форме.
- Экспоненциальная форма выглядит так: Z = re i∅ .
- Чтобы преобразовать в приведенную выше структуру экспоненциальной формы, нам нужно знать значения r,∅ только потому, что экспоненциальная форма также требует значений r,∅.
- Замените значение r,∅ на Z = re i∅ , чтобы преобразовать полярную форму в экспоненциальную.
Преобразование экспоненциальной формы в общую форму
- Перед преобразованием экспоненциальной формы в общую форму проверьте, имеет ли экспоненциальная форма вид Z = re i∅ и значения r,∅ уже известны в экспоненциальной форме.
- Общая форма имеет вид Z = a + ib.
- Чтобы преобразовать в вышеуказанную структуру общей формы, нам нужно знать, как значения r, ∅ в общей форме соотносятся с a, b.
- Формулы для a,b, полученные из Z = re i∅ = r(cos∅ + isin∅) , где а = rcos∅, b = rsin∅. Так как e i∅ = cos∅ + isin∅ мы знаем это уже в тригонометрии.
- Приведенные выше формулы в терминах r,∅ получены для преобразования экспоненциальной формы в общую, чтобы мы могли заменить a, b в общей форме Z = a + ib.
Преобразование экспоненциальной формы в полярную
- Перед преобразованием экспоненциальной формы в полярную проверьте, соответствует ли экспоненциальная форма Z = re i∅ , а значения r, ∅ известны уже в экспоненциальной форме.
- Полярная форма имеет вид Z = r(cos∅ + isin∅).
- Чтобы преобразовать в приведенную выше структуру полярной формы, нам нужно знать значения r,∅ только потому, что полярная форма также требует значений r,∅.
- Замените значение r, ∅ на Z = r(cos∅ + isin∅) , чтобы преобразовать экспоненциальную форму в полярную.
Примеры вопросов
Вопрос 1: Преобразуйте 2 + i 9 в полярную форму.
Решение:
Пусть Z = 2 + i 9
Z имеет вид a + ib
Где a = 2 и b = 9
Полярная форма комплекса число Z = r (cos ∅ + i sin∅)
Сравните a + ib с полярной формой r cos∅ + i rsin∅
Здесь r = √(a 2 + b 2 )
r = √(2 2 + 9 2 )
r = √(4+81)
r = квадратный корень (85)
r = 9,2
И ∅ имеет формулу tan(b/a)
∅ = tan -1 (b/a) = tan -1( 9/2)
∅ = 77°
Из этого r,∅ мы можем представить общую форму 2 + i9 в p полярный форма Z = 9,2(cos 77° + i sin 77°)
Вопрос 2: Преобразовать полярную форму (r, ∅) = (-1,0) в общую форму.
Решение:
Учитывая, что координаты полярной формы (r, ∅) = (-1, 0)
Общая форма или прямоугольная форма комплексного числа Z = a + ib
Где a = rcos∅, b = r sin∅
Из рассматриваемой полярной формы a = -1 × cos(0) и b = -1 × sin(0)
a = -1, b = 0 [cos(0) = 1 и sin(0) = 0]
Общая форма Z = a + ib = -1 + i 0.
Вопрос 3: Преобразование экспоненциальной формы 2e i80 в общая форма, а также полярная форма.
Решение:
Учитывая, что экспоненциальная форма 2e i90
2 e i80 представлен в виде r e i∅
r e i∅ представлен в полярной форме как r(cos∅ + isin∅)
Где r=2 и ∅=80 путем сравнения 90 005
Замена г ,∅ в полярной форме r(cos∅+isin∅) мы получаем полярную форму как 2(cos80+i sin80)
В приведенной выше полярной форме a=2 cos80 и b=2 sin80 путем сравнения общей формы и полярной формы
a = 2 cos80 = 0,17 и b = 2 sin80 = 0,98
Общий вид a + ib = 0,17 + i 0,98.
Вопрос 4: Преобразуйте полярную форму (r, ∅) = (1, 90) в общую форму.
Решение:
Учитывая, что координаты полярной формы (r, ∅) = (1, 89)
Общая форма или прямоугольная форма комплексного числа Z = a + ib
Где a = rcos ∅, б = r sin∅
Из рассматриваемой полярной формы a = 1 × cos(89) и b = 1 × sin(89)
a = 0,017, b = 0,99 [cos(89) = 0,017 и sin(89) ) = 0,99]
Общий вид Z = a + ib = 0,017 + i 0,99
Вопрос 5.
Степень окисления углерода ca hco3 2: Найти степень окисления: (NH4)2CO3, Ca(HCO3)2
9 класс. Химия. Неорганические соединения углерода — Неорганические соединения углерода
Комментарии преподавателяОксид углерода (II)
Оксид углерода (II), или, как его еще можно назвать, монооксид углерода, а также угарный газ – это несолеобразующий оксид. По своим физическим свойствам оксид углерода (II) – бесцветный газ, без запаха, плохо растворимый в воде. Угарным газом это вещество называют потому, что оно очень ядовито.
Монооксид углерода образуется при неполном сгорании угля или органических веществ:
2С + О2 = 2СО.
В лаборатории его легче всего получить, действуя на муравьиную кислоту концентрированной серной кислотой, которая связывает воду:
h3SO4, t
НСООН → СО↑ + Н2О
Оксид углерода (II) – сильный восстановитель, его широко используют в металлургии для восстановления металлов из их оксидов:
СО + CuO = Cu + CO2
В кислороде и на воздухе оксид углерода (II) горит голубоватым пламенем, выделяя много теплоты, при этом образуется оксид углерода (IV):
2СО + О2 = 2СО2 + 577 кДж
Оксид углерода (IV)
Оксид углерода (IV), или диоксид углерода, а также углекислый газ является типично кислотным оксидом, в котором углерод находится в степени окисления +4. Этот оксид способен взаимодействовать с водой с образованием угольной кислоты, с основными оксидами и щелочами.
Углекислый газ не имеет цвета и запаха, в 1,5 раза тяжелее воздуха и неплохо растворим в воде. Всем известная газированная вода – это раствор оксида углерода (IV) в воде. При обычной температуре и высоком давлении диоксид углерода сжижается. При его испарении поглощается так много теплоты, что часть оксида углерода (IV)превращается в снегообразную массу – «сухой лед» (Рис. 1).
Рис. 1. Сухой лед
Благодаря тому, что оксид углерода (IV) не поддерживает горения, им заполняют огнетушители.
Угольная кислота
При растворении оксида углерода (IV) в воде образуется угольная кислота:
СО2 + Н2О ↔ Н2СО3
Эта кислота относится к слабым кислотам и в водном растворе подвергается ступенчатой диссоциации:
Для угольной кислоты характерно образование кислых солей.
ОПЫТ 1. Пропустим через раствор гидроксида кальция углекислый газ, получаем нерастворимый карбонат кальция (Рис. 2).
Ca(OH)2 + CO2 = CaCO3 ↓ + h3O
Рис. 2. Карбонат кальция
Карбонаты – соли угольной кислоты, в которых замещены оба иона водорода. Когда замещен только один ион водорода, получаются гидрокарбонаты. Большинство карбонатов – нерастворимые соединения, все гидрокарбонаты – растворимые. Нерастворимый карбонат превращается в растворимый гидрокарбонат при пропускании через раствор с осадком углекислого газа.
CaCO3 + CO2 + h3O ↔ Ca(HCO3)2
При нагревании раствора гидрокарбоната выделяется углекислый газ, и вновь образуется нерастворимый карбонат кальция.
Ca(HCO3)2 = CaCO3↓ + CO2 + h3O
Разложение гидрокарбонатов при небольшом нагревании нашло свое применение. Например, гидрокарбонат натрия (в быту он называется пищевой содой) начинает разлагаться уже при 50°С:
2NaHCO3 = Na2CO3 + h3O + CO2↑
Пищевую соду используют, например, при выпечке хлеба. При нагревании она разлагается с образованием диоксида углерода, благодаря чему хлеб становится пышным.
Для всех солей угольной кислоты характерна обменная реакция с кислотами, признаком которой является выделение углекислого газа, так как в результате этой реакции образуется угольная кислота, которая сразу разлагается на воду и углекислый газ. Например, при взаимодействии карбоната кальция с соляной кислотой образуются хлорид кальция, вода и углекислый газ:
СаСО3 + 2HCl = CaCl2 + h3O + CO2↑
Источник
http://www. youtube.com/watch?v=GSpjM5XSxwE
источник презентации — http://journal-bipt.info/load/127-1-0-2331
Для скачивания — Кафедра химии
- Главная
- Университет
- Для скачивания
- Кафедра химии
Лекция. Растворы неэлектролитов
Размер файла:
638.79 kB
Автор:
Апанович, З.В.
Дата:
26.12.2016 12:03
Растворы неэлектролитов. Лекция по курсу «Общая химия» для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ , 2016. – 33 с.
Учебно-методическое пособие включает лекцию по теме «Растворы неэлектролитов» курса «Общая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета. Использование пособия, в котором рассмотрены важнейшие теоретические вопросы в доступной и сжатой форме, позволит студентам быстрее и эффективнее изучить материал.
Скачать
Лекция. Окислительно-восстановительные реакции
Размер файла:
609.98 kB
Автор:
Апанович, З.В.
Дата:
26.12.2016 12:03
Окислительно – восстановительные реакции. Лекция по курсу «Общая химия » для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ, 2016. – 31 с.
Учебно-методическое пособие включает лекцию по теме «Окислительно – восстановительные реакции» и предназначено для контролируемой самостоятельной работы студентов инженерно–технологического факультета. Использование такого пособия, в котором рассмотрены важнейшие вопросы в доступной и сжатой форме, позволит студентам быстрее и эффективнее изучить материал.
Скачать
Лекция. Комплексные соединения
Размер файла:
531.46 kB
Автор:
Апанович, З.В.
Дата:
26.12.2016 12:03
Лекция «Комплексные соединения» по курсу «Общая химия» для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ, 2016. – 26 с.
Учебно-методическое пособие включает лекцию по теме «Комплексные соединения» курса «Общая химия». Комплексные соединения играют важную роль в природе и технике, прежде всего, это ферментативные и фотохимические процессы, перенос кислорода в биологических системах, тонкая технология редких металлов, каталитические реакции и т.д. Координационные свойства проявляются всеми элементами периодической системы.
Скачать
Лекция. Кинетика химических реакций. Химическое равновесие
Размер файла:
768.32 kB
Автор:
Апанович, З.В.
Дата:
26.12.2016 12:03
Кинетика химических реакций. Химическое равновесие. Лекции по курсу «Общая химия» для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ, 2016. – 44 с.
Учебно-методическое пособие включает лекции по отдельным темам курса «Общая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета. Использование таких пособий, в которых рассмотрены важнейшие теоретические вопросы в доступной и сжатой форме, позволит студентам быстрее и эффективнее изучить материал.
Скачать
Предэкзаменационные тесты по органической и биологической ХИМИИ
Размер файла:
1.30 MB
Автор:
Макарчиков А.Ф., Колос И.К.
Дата:
26.12.2016 12:02
Предэкзаменационные тесты по органической и биоло-гической химии для студентов биотехнологического факультета / А.Ф. Макарчиков, И.К. Колос – Гродно: ГГАУ, 2016. – 205 с.
В пособии приведен перечень вопросов для проведения предэкзаменационного тестирования студентов, обучающихся на биотехнологическом факультете, по предмету «Химия (органическая и биологическая)»
Скачать
Лекция. Электролиз. Коррозия металлов и методы защиты металлов от коррозии
Размер файла:
758.87 kB
Автор:
Апанович, З.В.
Дата:
26.12.2016 12:02
Электролиз. Коррозия металлов и методы защиты металлов от коррозии. Лекция по курсу «Общая химия» для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ, 2016. – 31 с.
Учебно-методическое пособие включает лекции по отдельным темам курса «Общая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета. Использование таких пособий, в которых рассмотрены важнейшие теоретические вопросы в доступной и сжатой форме, позволит студентам быстрее и эффективнее изучить материал.
Скачать
Лекция. Энергетика химических процессов.
Размер файла:
604.00 kB
Автор:
Апанович, З.В.
Дата:
26.12.2016 12:02
Энергетика химических процессов. Лекция по курсу «Общая химия» для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ, 2016. – 25 с.
Учебно-методическое пособие включает лекцию по теме «Энергетика химических процессов» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета. Использование такого пособия, в котором рассмотрены важнейшие вопросы в доступной и сжатой форме, позволит студентам быстрее и эффективнее изучить материал.
Скачать
Лекция. Строение атомов элементов
Размер файла:
789.90 kB
Автор:
Апанович, З.В.
Дата:
26.12.2016 12:02
Строение атомов элементов. Лекция по курсу «Общая химия» для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ , 2016. – 23 с.
Учебно-методическое пособие включает лекцию по теме «Строение атомов элементов» курса «Общая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета. Использование пособия, в котором рассмотрены важнейшие теоретические вопросы в доступной и сжатой форме, позволит студентам быстрее и эффективнее изучить материал.
Скачать
Лекция. Основные понятия и законы химии
Размер файла:
675.23 kB
Автор:
Апанович, З.В.
Дата:
26. 12.2016 12:03
Основные понятия и законы химии. Лекция по курсу «Общая химия» для студентов инженерно-технологического факультета / З.В. Апанович. – Гродно : ГГАУ, 2016. – 30 с.
Учебно-методическое пособие включает лекцию по теме «Основные понятия и законы химии» курса «Общая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета. Использование студентами распечатки лекционной темы значительно сэкономит время для понимания материала, излагаемого лектором, и конспектирования.
Скачать
Предэкзаменационные тесты по химии
Размер файла:
813.02 kB
Автор:
Макарчиков А.Ф., Колос И.К.
Дата:
14.11.2016 11:47
Предэкзаменационные тесты по химии для студентов, обучающихся на агробиологических специальностях / А.Ф. Макарчиков, И.К. Колос – Гродно: ГГАУ, 2016. – 201 с.
В пособии приведен перечень вопросов для проведения предэкзаменационного тестирования студентов, обучающихся на агробиологических специальностях, по предмету «Химия».
Скачать
Методическое пособие для лабораторных работ по аналитической химии
Размер файла:
544.41 kB
Автор:
Апанович З.В., Тараненко Т.В., Томашева Е.В., Кулеш И.В., Цветницкая Э.В.
Дата:
28.12.2015 12:22
В пособие излагается материал по аналитической химии в объеме соответствующих программ по специальностям: «Ветеринарная медицина», «Аграномия», «Биотехналогия». Содержатся методические указания по технике выполнения лабораторных работ по качественному и количественному анализу.
Скачать
Комментарии для работы с рабочими тетрадями по химии элементов
Размер файла:
655.75 kB
Дата:
28.12.2015 12:22
Комментарии для работы с рабочими тетрадями по химии элементов / З.В. Апанович, Ю.А. Лукашенко.
Учебно-методическое пособие включает лекции по отдельным темам курса «Неорганическая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета, для которых введен отдельный курс по химии элементов, а также может быть использовано студентами других факультетов.
Скачать
Практикум по физической химии
Размер файла:
1.03 MB
Дата:
01.04.2013 04:24
Учебно-методическое пособие (для проведения лабораторных занятий) для студентов инженерно-технического факультета
Практикум по физической химии: учеб.-мет. пособие / О. И. Валентюкевич.- Гродно: ГГАУ, 2008 – 88с.
Данное пособие предназначено для студентов технологических специальностей аграрного университета. Целью данного пособия является оказание помощи в изучении теоретического материала, а также выработка навыков экспериментальной работы.
Скачать
Коллоидная химия
Размер файла:
834.37 kB
Дата:
01.04.2013 04:09
Учебно-методическое пособие (для проведения лабораторных занятий) для студентов инженерно-технического факультета
К-60 Практикум по физической химии: учеб.-мет. пособие / И. В. Кулеш, О. И. Валентюкевич.- Гродно: ГГАУ, 2013 – 94с.
Данное пособие предназначено для студентов технологических специальностей аграрного университета. Целью данного пособия является оказание помощи в изучении теоретического материала, а также выработка навыков экспериментальной работы.
Скачать
Курс лекций по дисциплине «Неорганическая химия»
Размер файла:
1.33 MB
Дата:
28.12.2015 12:22
Лекции по курсу «Неорганическая химия »для студентов инженерно – технологического факультета / З.В. Апанович.
Скачать
Рабочая тетрадь и методические указания по неорганической химии
Размер файла:
701.32 kB
Дата:
28.12.2015 12:23
Рабочая тетрадь и методические указания по неорганической химии. Для студентов технологических специальностей / З.В. Апанович.
Скачать
Ионные равновесия и обменные реакции в растворах электролитов
Скачать
Лабораторные работы по химии элементов для студентов технологических специальностей
Скачать
Университет
1 | Найдите количество нейтронов | Х | |
2 | Найдите массу 1 моля | Н_2О | |
3 | Баланс | H_2(SO_4)+K(OH)→K_2(SO_4)+H(OH) | |
4 | Найдите массу 1 моля | Х | |
5 | Найдите количество нейтронов | Фе | |
6 | Найдите количество нейтронов | ТК | |
7 | Найдите электронную конфигурацию | Х | |
8 | Найдите количество нейтронов | Са | |
9 | Баланс | CH_4+O_2→H_2O+CO_2 | |
10 | Найдите число нейтронов | С | |
11 | Найдите число протонов | Х | |
12 | Найдите количество нейтронов | О | |
13 | Найдите массу 1 моля | СО_2 | |
14 | Баланс | C_8H_18+O_2→CO_2+H_2O | |
15 | Найдите атомную массу | Х | |
16 | Определить, растворимо ли соединение в воде | Н_2О | |
17 | Найдите электронную конфигурацию | Нет | |
18 | Найдите массу отдельного атома | Х | |
19 | Найдите количество нейтронов | № | |
20 | Найдите количество нейтронов | Золото | |
21 | Найдите количество нейтронов | Мн | |
22 | Найдите количество нейтронов | Ру | |
23 | Найдите электронную конфигурацию | О | |
24 | Найдите массовые проценты | Н_2О | |
25 | Определить, растворимо ли соединение в воде | NaCl | |
26 | Найдите эмпирическую/простейшую формулу | Н_2О | |
27 | Найти степени окисления | Н_2О | |
28 | Найдите электронную конфигурацию | К | |
29 | Найдите электронную конфигурацию | Мг | |
30 | Найдите электронную конфигурацию | Са | |
31 | Найдите количество нейтронов | Рх | |
32 | Найдите количество нейтронов | Нет | |
33 | Найдите количество нейтронов | Пт | |
34 | Найдите количество нейтронов | Быть | Быть |
35 | Найдите количество нейтронов | Кр | |
36 | Найдите массу 1 моля | Н_2SO_4 | |
37 | Найдите массу 1 моля | HCl | |
38 | Найдите массу 1 моля | Фе | |
39 | Найдите массу 1 моля | С | |
40 | Найдите количество нейтронов | Медь | |
41 | Найдите количество нейтронов | С | |
42 | Найдите степени окисления | Х | |
43 | Баланс | CH_4+O_2→CO_2+H_2O | |
44 | Найдите атомную массу | О | |
45 | Найдите атомный номер | Х | |
46 | Найдите количество нейтронов | Пн | |
47 | Найдите количество нейтронов | ОС | |
48 | Найдите массу 1 моля | NaOH | |
49 | Найдите массу 1 моля | О | |
50 | Найдите электронную конфигурацию | Фе | |
51 | Найдите электронную конфигурацию | С | |
52 | Найдите массовые проценты | NaCl | |
53 | Найдите массу 1 моля | К | |
54 | Найдите массу отдельного атома | Нет | |
55 | Найдите число нейтронов | Н | |
56 | Найдите количество нейтронов | Ли | |
57 | Найдите количество нейтронов | В | |
58 | Найдите число протонов | № 92О | |
60 | Упростить | ч*2р | |
61 | Определить, растворимо ли соединение в воде | Х | |
62 | Найдите плотность на STP | Н_2О | |
63 | Найти степени окисления | NaCl | |
64 | Найдите атомную массу | Он | Он |
65 | Найдите атомную массу | Мг | |
66 | Найдите количество электронов | Х | |
67 | Найдите число электронов | О | |
68 | Найдите число электронов | С | |
69 | Найдите число нейтронов | Пд | |
70 | Найдите количество нейтронов | рт. ст. | |
71 | Найдите количество нейтронов | Б | |
72 | Найдите массу отдельного атома | Ли | |
73 | Найдите эмпирическую формулу | Н=12%, С=54%, N=20 | , , |
74 | Найдите число протонов | Быть | Быть |
75 | Найдите массу 1 моля | На | |
76 | Найдите электронную конфигурацию | Со | |
77 | Найдите электронную конфигурацию | С | |
78 | Баланс | C_2H_6+O_2→CO_2+H_2O | |
79 | Баланс | Н_2+О_2→Н_2О | |
80 | Найдите электронную конфигурацию | Р | |
81 | Найдите электронную конфигурацию | Пб | |
82 | Найдите электронную конфигурацию | Ал | |
83 | Найдите электронную конфигурацию | Ар | |
84 | Найдите массу 1 моля | О_2 | |
85 | Найдите массу 1 моля | Н_2 | |
86 | Найдите количество нейтронов | К | |
87 | Найдите количество нейтронов | Р | |
88 | Найдите число нейтронов | Мг | |
89 | Найдите количество нейтронов | Вт | |
90 | Найдите массу отдельного атома | С | |
91 | Упростить | н/д+кл | |
92 | Определить, растворимо ли соединение в воде | Н_2SO_4 | |
93 | Найдите плотность на STP | NaCl | |
94 | Найти степени окисления | C_6H_12O_6 | |
95 | Найти степени окисления | Нет | |
96 | Определить, растворимо ли соединение в воде | C_6H_12O_6 | |
97 | Найдите атомную массу | Кл | |
98 | Найдите атомную массу | Фе | |
99 | Найдите эмпирическую/самую простую формулу | СО_2 | |
100 | Найдите количество нейтронов | Мт |
ACP — Отношения — Новый метод генерации аэрозолей Ca(HCO3)2 и CaCO3 и первое определение активационных свойств гигроскопических и облачных ядер конденсации
Al-Hosney, H. A. и Grassian, V.H. : Угольная кислота: важное промежуточное соединение в химии поверхности карбоната кальция, J. Am. хим. Soc., 126, 8068–8069, https://doi.org/10.1021/ja04, 2004.
Аллан, Дж. Д., Делия, А. Э., Коу, Х., Бауэр, К. Н., Альфарра, М. Р., Хименес, Дж. Л., Миддлбрук, А. М., Древник, Ф., Онаш, Т. Б., Канагаратна, М. Р., Джейн, Дж. Т., и Уорсноп, DR : Обобщенный метод извлечения масс-спектров с химическим разрешением из данных аэрозольного масс-спектрометра, J. Aerosol Sci., 35, 9.09–922, 2004.
Brecevic, L. and Kralj, D. : О карбонатах кальция: от фундаментальных исследований к применению, Croat. хим. Acta, 80, 467–484, 2007.
Buchholz, A. : Entwicklung eines Geräts zur Untersuchung des hygroskopischen Wachstums von organischen Aerosolen, дипломная работа, химический факультет Кельнского университета, Кельн, 2007.
Клакен Т., Шульц М. и Балкански Ю. Дж. : Моделирование минералогии источников атмосферной пыли, J. Geophys. Рез., 104, 22243–22256, 1999.
ДеКарло, П.Ф., Словик, Дж.Г., Уорсноп, Д.Р., Давидовиц, П., и Хименес, Дж.Л. : Морфология частиц и характеристика плотности путем комбинированных измерений подвижности и аэродинамического диаметра. Часть 1: Теория, Aerosol Sci. техн., 38, 1185–1205, 2004.
Динар Э., Ментель Т. Ф. и Рудич Ю. : Плотность гуминовых кислот и гуминоподобных веществ (HULIS) в результате сжигания свежей и состаренной древесины и аэрозольных частиц загрязнения, Atmos. хим. Phys., 6, 5213–5224, https://doi.org/10.5194/acp-6-5213-2006, 2006.
Фэйрчайлд, И. Дж., Смит, К. Л., Бейкер, А., Фуллер, Л., Спотл, К., Матти, Д., и Макдермотт, Ф. : Модификация и сохранение сигналов окружающей среды в образованиях, Earth-Science Rev. 2006. Т. 75. С. 105–153.
Гибсон Э.Р., Хадсон П.К. и Грассиан В.Х. : Физико-химические свойства нитратных аэрозолей: последствия для атмосферы, J. Phys. хим. А, 110, 11785–11799, 2006.
Гибсон, Э.Р., Гирлус, К.М., Хадсон, П.К., и Грассиан, В.Х. Технологии, 41, 914–924, 2007.
Gmelin : Das System CaO – CO 2 – H 2 O, Gmelins Handbuch der anorganischen Chemie 8, System Number 28, Calcium, Teil B, Weinheim, Verlag Chemie, 928–935, 1961.
Херих Х., Тричер Т., Виачек А., Гизель М., Вайнгартнер Э., Ломанн У., Балтеншпергер У. и Чицо Д. Дж. частиц в условиях недо- и пересыщенного водяного пара // Физ. хим. хим. Phys., 11, 7804–7809, https://doi.org/10.1039/b5j, 2009.
Хингс С. С., Врубель В. К., Кросс Э. С., Уорсноп Д. Р., Давидовиц П. и Онаш Т. Б. : Эксперименты по активации CCN адипиновой кислотой: влияние фазы частиц и покрытий из адипиновой кислоты на растворимые и нерастворимые частицы, Atmos. хим. Phys., 8, 3735–3748, https://doi.org/10.5194/acp-8-3735-2008, 2008.
House, WA : Кинетика кристаллизации кальцита из растворов бикарбоната кальция, J. Chem. соц. Фарада. Транс. I, 77, 341–359, 1981.
Джейн, Дж. Т., Лирд, Д. К., Чжан, X. Ф., Давидовиц, П., Смит, К. А., Колб, К. Э., и Уорсноп, Д. Р. : Разработка аэрозольного масс-спектрометра для анализа размера и состава субмикронных частиц, Aerosol Sci. техн., 33, 49–70, 2000.
Джонас, П.Р., Чарлсон, Р.Дж., и Родл, Х. : Изменение климата 1994: радиация изменения климата и оценка изменений, Издательство Кембриджского университета, Кембридж, 1995.
Keiser, E.H. and Leavitt, S. : О получении и составе кислых карбонатов кальция и бария, J. Am. хим. Соц., 30, 1711–1714, 1908.
Келер, К. А., Крайденвейс, С. М., ДеМотт, П. Дж., Пренни, А. Дж., и Петтерс, М. Д. : Потенциальное влияние пыли озера Оуэнс (сухого) на формирование теплых и холодных облаков, J. Geophys. Рез., 112, D12210, https://doi.org/10.1029/2007jd008413, 2007.
Koehler, K.A., Kreidenweis, S.M., DeMott, P.J., Petters, M.D., Prenni, A.J., и Carrico, C.M. : Гигроскопичность и активация облачных капель аэрозоля минеральной пыли, Geophys. Рез. Письма, 36, L08805, https://doi.org/10.1029/2009gl037348, 2009.
Крюгер, Б.Дж., Грассиан, В.Х., Ласкин, А., и Коуин, Дж.П. : Преобразование твердых атмосферных частиц в жидкие капли с помощью гетерогенной химии: лабораторные исследования обработки аэрозоля минеральной пыли, содержащего кальций, в тропосфере, Geophys. Рез. Lett., 30(4), L1148, https://doi.org/10.1029/2002GL016563, 2003.
Ласкин А., Иедема М. Ю., Ичкович А., Грабер Э. Р., Таранюк И., Рудич Ю. 909:12: Прямое наблюдение за полностью обработанными частицами пыли карбоната кальция, Фарада. Обсудить., 130, 453–468, 2005.
Лю Ю., Гибсон Э. Р., Каин Дж. П., Ван Х., Грассиан В. Х. и Ласкин А. : Кинетика гетерогенной реакции частиц CaCO3 с газообразной HNO 3 в широком диапазоне влажности, Дж. Физ. хим. А, 112, 1561–1571, 2008а.
Лю, Ю. Дж., Чжу, Т., Чжао, Д. Ф., и Чжан, З. Ф. : Исследование гигроскопических свойств частиц Ca(NO 3 ) 2 и внутренне смешанных частиц Ca(NO 3 ) 2 /CaCO 3 с помощью микро-рамановской спектрометрии, атмос. хим. Phys., 8, 7205–7215, https://doi.org/10.5194/acp-8-7205-2008, 2008b.
Marquardt, A., Hackfort, H., Borchardt, J., Schober, T. , and Friedrich, J. : TEM-Untersuchungen der Mikrostrukturen von Verbrennungsaerosolen, Berichte des Forschungszentrums Jülich; JUEL-2700, ISSN 0366-0885, 1992.
Мэтью, Б.М., Миддлбрук, А.М., и Онаш, Т.Б. : Эффективность сбора в аэрозольном масс-спектрометре Aerodyne в зависимости от фазы частиц для аэрозолей, созданных в лаборатории, Aerosol Sci. Техн., 42, 884–898, https://doi.org/10.1080/02786820802356797, 2008.
Максвелл-Мейер, К., Вебер, Р., Сонг, К., Орсини, Д., Ма, Ю., Кармайкл, Г. Р., и Стритс, Д. Г. : Неорганический состав мелких частиц в смешанных шлейфах минеральной пыли и загрязнения наблюдения с воздуха во время ACE-Asia, J. Geophys. Рез.-Атм., 109(20) D19s07, https://doi.org/10.1029/2003jd004464, 2004.
Mensah, A.A., Buchholz, A., Mentel, Th. Ф., Тиллманн Р. и Киндлер-Шарр А. : Определение относительной эффективности ионизации воды в аэрозольном масс-спектрометре Aerodyne, J. Aerosol Sci., обзор, 2010 г.
Ментель, Т. Ф., Блейлебенс, Д., и Ванер, А. : Исследование окисления оксида азота в ночное время в большой реакционной камере – Судьба NO 2 N 2 O 5 , HNO 3 и O 3 при различной влажности, атм. Окружающая среда, 30, 4007–4020, 1996.
Miller, J. P. : часть системы карбонат кальция-диоксид углерода-вода с геологическими последствиями, Am. J. Sci., 250, 161–203, 1952.
Murray, JW : Отложение кальцита и арагонита в пещерах, J. Geol., 62, 481–492, 1954.
Окада, К., Цинь, Ю. и Кай, К. : Элементный состав и свойства смешения атмосферных минеральных частиц, собранных в Хух-Хото, Китай, Атмос. рез., 73, 45–67, 2005.
Petters, MD и Kreidenweis, S.M. : Однопараметрическое представление гигроскопического роста и активности ядер конденсации облаков, Atmos. хим. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Prince, A.P., Grassian, VH, Kleiber, P., and Young, M.A. : Гетерогенная конверсия аэрозоля кальцита азотной кислотой, Phys. хим. хим. Phys., 9, 622–634, 2007.
Сандерс, Дж. П. и Галлахер, П. К. : Кинетический анализ с использованием одновременных измерений ТГ/ДСК. Часть I: разложение карбоната кальция в аргоне, Thermochim. Acta, 388, 115–128, 2002.
Санчи, К. и Росси, М. Дж. : Поглощение CO 2 , SO 2 , HNO 2 и HCl на кальците (CaCO3) при 300 K: Механизм и роль адсорбированной воды, J. Phys. хим. А, 110, 6789-6802, https://doi.org/10.1021/jp056312b, 2006.
Сонг, С. Х., Максвелл-Мейер, К., Вебер, Р. Дж., Капустин, В., и Кларк, А. : Состав пыли и состояние смешивания, полученные на основе измерений состава воздуха во время полета ACE-Asia C130 {#} 6, Atmos . Окружающая среда, 39, 359–369, 2005.
Салливан, Р. К., Гуаццотти, С. А., Содеман, Д. А., и Пратер, К. А. : Прямые наблюдения за атмосферной переработкой азиатской минеральной пыли, Atmos. хим. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
Sullivan, R.C., Moore, MJK, Petters, M.D., Kreidenweis, S.M., Roberts, G.C., and Prather, K.A. хим. хим. Phys., 11, 7826–7837, 2009.а.
Салливан, Р. К., Мур, М. Дж. К., Петтерс, М. Д., Крайденвейс, С. М., Робертс, Г. К., и Пратер, К. А. : Влияние состояния химического смешения на гигроскопичность и свойства образования облачных зародышей частиц минеральной пыли кальция, Atmos. хим. Phys., 9, 3303–3316, https://doi.org/10.5194/acp-9-3303-2009, 2009б.
Салливан, Р. К., Мур, М. Дж. К., Петтерс, М. Д., Крайденвейс, С. М., Кафоку, О., Ласкин, А., Робертс, Г. К., и Пратер, К. А. : Влияние метода генерации частиц на кажущуюся гигроскопичность нерастворимых минеральных частиц, Aerosol Sci. Технологии, 44, 830–846, 2010.
Usher, C.R., Michel, A.E., и Grassian, VH. : Реакции на минеральной пыли, Chem. Rev., 103, 4883–4939, 2003.
Власенко А., Шегрен С., Вайнгартнер Э., Штеммлер К., Геггелер Х.В. и Амманн М. : Влияние влажности на поглощение азотной кислоты аэрозольными частицами минеральной пыли, Atmos. хим. Phys., 6, 2147–2160, https://doi.org/10.5194/acp-6-2147-2006, 2006.
Власенко А., Хутвелкер Т., Гаггелер Х.В. и Амманн М. : Кинетика гетерогенной реакции азотной кислоты с частицами минеральной пыли: исследование аэрозольного расходомера, Phys. хим. хим. Phys., 11, 7921–7930, 10.1039/b0n, 2009.
Ванер А., Ментель Т. Ф. и Зон М. : Газофазная реакция N 2 O 5 с водяным паром: важность гетерогенного гидролиза N 2 O 5 и поверхностной десорбции HNO 3 в большой тефлоновой камере // Геофиз.
Html в word конвертер: Конвертировать HTML в DOC (WORD) / URL в DOC (WORD) онлайн — Convertio
Конвертировать HTML В ВОРД Бесплатно
HTML в Ворд
Разработано на базе программных решений от aspose.com а также aspose.cloud
Выберите HTML файлы или перетащите HTML файлы мышью
Google Drive Dropbox
Использовать пароль
Этот пароль будет применяться ко всем документамИспользовать распознавание текста Использовать распознавание текста
АнглийскийАрабскийИспанскийИтальянскийКитайский упрощенныйНемецкийПерсидскийПольскийПортугальскийРусскийФранцузскийЕсли вам нужно преобразовать несколько HTML в один Ворд, используйте Merger
Загружая свои файлы или используя наш сервис, вы соглашаетесь с нашими Условиями обслуживания и Политикой конфиденциальности.
Сохранить какDOCXTXTDOCDOTDOCMDOTXDOTMRTFODTOTT
КОНВЕРТИРОВАТЬ Ваши файлы были успешно сконвертированы СКАЧАТЬЗагрузить в Google Загрузить в Dropbox
Конвертация других документов Отправить на электронную почтуОтправьте нам свой отзыв Удалить файлы
Хотите сообщить об этой ошибке на форуме Aspose, чтобы мы могли изучить и решить проблему? Когда ошибка будет исправлена, вы получите уведомление на email. Форма отчета
Google Sheets
Mail Merge
Облачный API
Конвертировать HTML в Ворд онлайн
Используйте конвертер HTML в Ворд для экспорта файлов HTML в Ворд формат онлайн. Наш конвертер файлов проанализирует содержимое исходного HTML файла до мельчайших деталей и воссоздаст содержимое в целевом Ворд формате.
Вы можете использовать конвертер из HTML в Ворд совершенно бесплатно, в любое время и с любого устройства.
Онлайн Конвертер HTML в Ворд
Конвертация HTML файлов в Ворд формат — одна из самых распространенных операций. Нам часто нужны обе функции, предоставляемые форматами HTML и Ворд. HTML и Ворд в определённых случаях дополняют друг друга.
Конвертировать файл HTML в Ворд онлайн
Чтобы конвертировать HTML в Ворд формат, просто перетащите HTML файл в область загрузки данных, укажите параметры преобразования, нажмите кнопку ‘Конвертировать’ и получите выходной Ворд файл за считанные секунды.
Бесплатный онлайн конвертер HTML в Ворд основан на продуктах компании Aspose, которые широко используются во всем мире для программной обработки HTML и Ворд с высокой скоростью и профессиональным качеством результата.
Как преобразовать HTML в Ворд
- Загрузите HTML файлы, чтобы преобразовать их в Ворд формат онлайн.
- Укажите параметры преобразования HTML в Ворд.
- Нажмите кнопку, чтобы конвертировать HTML в Ворд онлайн.
- Загрузите результат в Ворд формате для просмотра.
- Вы можете отправить ссылку для скачивания по электронной почте, если хотите получить результаты позже.
Вопросы-Ответы
Как конвертировать HTML в Ворд бесплатно?
Просто используйте наш HTML в Ворд Converter. Вы получите выходные Ворд файлы одним кликом мыши.
Сколько HTML файлов я могу конвертировать в Ворд формат за раз?
Вы можете конвертировать до 10 HTML файлов за раз.
Каков максимально допустимый размер HTML файла?
Размер каждого HTML файла не должен превышать 10 МБ.
Какие есть способы получить результат в Ворд формате?
После завершения преобразования HTML в Ворд вы получите ссылку для скачивания. Вы можете скачать результат сразу или отправить ссылку на скачивание Ворд на свой e-mail позже.
Как долго мои файлы будут храниться на ваших серверах?
Все пользовательские файлы хранятся на серверах Aspose в течение 24 часов. По истечении этого времени они автоматически удаляются.
Можете ли вы гарантировать сохранность моих файлов? Все безопасно?
Aspose уделяет первостепенное внимание безопасности и защите пользовательских данных. Будьте уверены, что ваши файлы хранятся на надежных серверах и защищены от любого несанкционированного доступа.
Почему конвертация HTML в Ворд занимает немного больше времени, чем я ожидал?
Конвертация больших HTML файлов в Ворд формат может занять некоторое время, поскольку эта операция включает перекодирование и повторное сжатие данных.
Конвертировать HTML В DOC Бесплатно
HTML в DOC
Разработано на базе программных решений от aspose.com а также aspose.cloud
Выберите HTML файлы или перетащите HTML файлы мышью
Google Drive Dropbox
Использовать пароль
Этот пароль будет применяться ко всем документамИспользовать распознавание текста Использовать распознавание текста
АнглийскийАрабскийИспанскийИтальянскийКитайский упрощенныйНемецкийПерсидскийПольскийПортугальскийРусскийФранцузский Для корректной работы алгоритма OCR текст и таблицы не должны быть повернуты вниз или вбок.»/>Загружая свои файлы или используя наш сервис, вы соглашаетесь с нашими Условиями обслуживания и Политикой конфиденциальности.
Сохранить какDOCDOCXTXTDOTDOCMDOTXDOTMRTFODTOTT
КОНВЕРТИРОВАТЬ Ваши файлы были успешно сконвертированы СКАЧАТЬЗагрузить в Google Загрузить в Dropbox
Конвертация других документов Отправить на электронную почтуОтправьте нам свой отзыв Удалить файлы
Хотите сообщить об этой ошибке на форуме Aspose, чтобы мы могли изучить и решить проблему? Когда ошибка будет исправлена, вы получите уведомление на email. Форма отчета
Google Sheets
Mail Merge
Облачный API
Конвертировать HTML в DOC онлайн
Используйте конвертер HTML в DOC для экспорта файлов HTML в DOC формат онлайн. Наш конвертер файлов проанализирует содержимое исходного HTML файла до мельчайших деталей и воссоздаст содержимое в целевом DOC формате.
Вы можете использовать конвертер из HTML в DOC совершенно бесплатно, в любое время и с любого устройства.
Онлайн Конвертер HTML в DOC
Конвертация HTML файлов в DOC формат — одна из самых распространенных операций. Нам часто нужны обе функции, предоставляемые форматами HTML и DOC. HTML и DOC в определённых случаях дополняют друг друга.
Конвертировать файл HTML в DOC онлайн
Чтобы конвертировать HTML в DOC формат, просто перетащите HTML файл в область загрузки данных, укажите параметры преобразования, нажмите кнопку ‘Конвертировать’ и получите выходной DOC файл за считанные секунды.
Бесплатный онлайн конвертер HTML в DOC основан на продуктах компании Aspose, которые широко используются во всем мире для программной обработки HTML и DOC с высокой скоростью и профессиональным качеством результата.
Как преобразовать HTML в DOC
- Загрузите HTML файлы, чтобы преобразовать их в DOC формат онлайн.
- Укажите параметры преобразования HTML в DOC.
- Нажмите кнопку, чтобы конвертировать HTML в DOC онлайн.
- Загрузите результат в DOC формате для просмотра.
- Вы можете отправить ссылку для скачивания по электронной почте, если хотите получить результаты позже.
Вопросы-Ответы
Как конвертировать HTML в DOC бесплатно?
Просто используйте наш HTML в DOC Converter. Вы получите выходные DOC файлы одним кликом мыши.
Сколько HTML файлов я могу конвертировать в DOC формат за раз?
Вы можете конвертировать до 10 HTML файлов за раз.
Каков максимально допустимый размер HTML файла?
Размер каждого HTML файла не должен превышать 10 МБ.
Какие есть способы получить результат в DOC формате?
После завершения преобразования HTML в DOC вы получите ссылку для скачивания. Вы можете скачать результат сразу или отправить ссылку на скачивание DOC на свой e-mail позже.
Как долго мои файлы будут храниться на ваших серверах?
Все пользовательские файлы хранятся на серверах Aspose в течение 24 часов. По истечении этого времени они автоматически удаляются.
Можете ли вы гарантировать сохранность моих файлов? Все безопасно?
Aspose уделяет первостепенное внимание безопасности и защите пользовательских данных. Будьте уверены, что ваши файлы хранятся на надежных серверах и защищены от любого несанкционированного доступа.
Почему конвертация HTML в DOC занимает немного больше времени, чем я ожидал?
Конвертация больших HTML файлов в DOC формат может занять некоторое время, поскольку эта операция включает перекодирование и повторное сжатие данных.
Конвертер HTML в WORD Бесплатно. HTML в слово онлайн.
HTML в Word
Питаться от aspose.com и aspose.cloud
Выберите HTML-файлы или перетащите файлы HTML
Google Диск Дропбокс
Использовать пароль
Этот пароль будет применяться ко всем документамИспользовать распознавание текста Использовать распознавание текста
АрабскийКитайский упрощенныйАнглийскийФранцузскийНемецкийИтальянскийПерсидскийПольскийПортугальскийРусскийИспанский For the OCR algorithm to work correctly, text and tables must not be rotated down or sideways.»/>Если вам нужно преобразовать несколько HTML в один Word, используйте Merger
Загружая свои файлы или используя наш сервис, вы соглашаетесь с нашими Условиями обслуживания и Политикой конфиденциальности
Сохранить какDOCXTXTDOCDOTDOCMDOTXDOTMRTFODTOTT
КОНВЕРТИРОВАТЬ Ваши файлы были успешно преобразованы СКАЧАТЬЗагрузить в Google Загрузить в Dropbox
Преобразование других документов Отправить по электронной почтеОтправьте нам свой отзыв Удалить файлы
Вы хотите сообщить об этой ошибке на форум Aspose, чтобы мы могли изучить и решить проблему? Вы получите уведомление по электронной почте, когда ошибка будет исправлена. Форма отчета
Google Sheets
Слияние почты Облачный API
Преобразование HTML в Word Online
Используйте конвертер HTML в Word для экспорта файлов HTML в формат Word онлайн. Наша бесплатная служба преобразования проанализирует содержимое исходного HTML-файла до мельчайших деталей и воссоздаст содержимое в целевом формате Word.
Вы можете использовать конвертер HTML в Word совершенно бесплатно, в любое время и с любого устройства.
Конвертер HTML в Word онлайн
Преобразование из формата HTML в формат Word является одной из наиболее распространенных операций. Нам часто нужны обе функции, которые предоставляют форматы HTML и Word. Форматы HTML и Word в некоторых случаях дополняют друг друга.
Преобразование HTML-файла в Word Online
Чтобы преобразовать HTML-файл в формат Word, просто перетащите HTML-файл в область загрузки данных, укажите параметры преобразования, нажмите кнопку «Преобразовать» и получите выходной файл Word за считанные секунды. .
Бесплатный конвертер HTML в Word основан на программных продуктах Aspose, которые широко используются во всем мире для программной обработки файлов HTML и Word с высокой скоростью и профессиональным качеством результата.
Как преобразовать HTML в Word
- Загрузить файлы HTML, чтобы преобразовать их в формат Word онлайн.
- Укажите параметры преобразования HTML в Word.
- Нажмите кнопку, чтобы преобразовать HTML в Word онлайн.
- Скачать результат в формате Word для просмотра.
- Вы можете отправить ссылку на скачивание по электронной почте, если хотите получить результаты позже.
FAQ
Как бесплатно конвертировать HTML в Word?
Просто воспользуйтесь нашим конвертером HTML в Word. Вы получите выходные файлы Word одним щелчком мыши.
Сколько файлов HTML я могу преобразовать в формат Word за один раз?
Вы можете конвертировать до 10 файлов HTML одновременно.
Каков максимально допустимый размер файла HTML?
Размер каждого файла HTML не должен превышать 10 МБ.
Какими способами можно получить результат в формате Word?
После завершения преобразования HTML в Word вы получите ссылку для скачивания. Вы можете скачать результат сразу или отправить ссылку на скачивание ворда на почту позже.
Как долго мои файлы будут храниться на ваших серверах?
Все пользовательские файлы хранятся на серверах Aspose в течение 24 часов. По истечении этого времени они автоматически удаляются.
Можете ли вы гарантировать сохранность моих файлов? Все безопасно?
Aspose уделяет первостепенное внимание безопасности и защите пользовательских данных. Будьте уверены, что ваши файлы хранятся на надежных серверах и защищены от любого несанкционированного доступа.
Почему преобразование HTML в Word занимает немного больше времени, чем я ожидал?
Преобразование больших файлов HTML в формат Word может занять некоторое время, так как эта операция включает перекодирование и повторное сжатие данных.
Word to HTML — онлайн конвертер и очиститель
Вставьте свой документ и перейдите на вкладку HTML
Бесплатный онлайн-конвертер Word в HTML со встроенными функциями очистки кода и простым переключением между визуальным и исходным редакторами. Он отлично подходит для преобразования любых документов, таких как Microsoft Word, Excel, PowerPoint, PDF, Google Docs, Sheets и многих других. Вы также можете использовать этот инструмент для создания веб-контента с нуля или просто для очистки грязной разметки.
В качестве наследия известного, но снятого с производства онлайн-инструмента WordOff мы хотели максимально упростить пользовательский интерфейс и добавить множество новых функций в соответствии с отзывами наших посетителей.
Как преобразовать документ в HTML?
С помощью этого бесплатного онлайн-инструмента процесс очень прост и требует всего несколько простых шагов:
- Откройте файл с помощью Microsoft Word, WPS Writer или любого другого редактора форматированного текста.
- Скопируйте и вставьте содержимое в область выше.
- Перейдите на вкладку HTML и очистите код.
HTML-редактор WordPress
Word HTML — идеальный инструмент для редактирования исходного кода статей WordPress или любой другой системы управления контентом, когда их встроенный редактор не предоставляет всех необходимых нам функций. Создавайте контент прямо в окне браузера, не устанавливая никаких расширений или плагинов для управления подсветкой синтаксиса и другими функциями редактирования текста.
Как использовать?
Вставьте документ, который вы хотите преобразовать, в редактор Word, затем переключитесь в режим просмотра HTML, используя большие вкладки в верхней части страницы, чтобы сгенерировать код.
Очистите грязную разметку большой кнопкой, которая выполняет активные (отмеченные) опции в списке. Вы также можете применять эти функции по одной с помощью значка. При выполнении чистой операции программа может добавить в текст абзац, содержащий обратную ссылку на один из наших партнерских сайтов. Пожалуйста, оставьте эти изменения без изменений, чтобы поддержать этот бесплатный веб-сайт.
- – удалить атрибуты стиля из каждого тега: выделено
- – удалить пустые теги, которые ничего не содержат: Hello World
- – очистить последовательные неразрывные пробелы и оставить только один экземпляр:
- – избавиться от атрибутов тега (кроме href ссылок и src изображений): png» alt=»icon» />
- – классы и идентификаторы полосы:
- – удалить элементы, содержащие только символ:
- – удалять HTML-комментарии:
- – преобразовать документ в обычный текст:
text
Дополнительные элементы управления редактором
– Отмена, новая страница, разметка с отступом, сжатие, активация кодирования.
Наши спонсоры
Обзоры Omnipapers.com помогут вам выбрать честную компанию для написания эссе.
Моя домашняя работа сделана может помочь с любым предметом, от математики до программирования.
Custom Writings напишет ваше эссе с нуля. Получите профессиональную помощь от академических экспертов.
Rapid Essay Service — лучшая служба написания эссе для колледжей.
Прочитать отзывы о сервисе написания эссе.
Goread.io — лучший сайт для покупки лайков в Instagram.
Общие вопросы
Как преобразовать Word в HTML без грязной разметки?
MS Word позволяет сохранить документ в виде файла .html, но это приведет к большому количеству нежелательной грязной разметки. Это увеличивает размер файла и нарушает стили веб-сайта, если вы в конечном итоге опубликуете его в Интернете. Рекомендуется очистить HTML с помощью этого бесплатного онлайн-инструмента.
Избавьтесь от беспорядка, создаваемого редакторами Word
Как преобразовать любой визуальный текст в HTML?
Редактор WordHTML безупречно работает с любыми визуальными документами и позволяет их конвертировать в пару кликов:
- Продукты Microsoft Office (Word, Excel, Powerpoint)
- Google Docs, Google Sheets
- OpenOffice и другие WYSIWYG редакторы
- …любой другой визуальный текстовый документ (сообщите нам, если обнаружите исключение)
Скопируйте и вставьте документ в онлайн-редакторе, а затем переключитесь в представление HTML в заголовке, чтобы мгновенно получить результат.
Как открыть файл .doc в редакторе?
Для начала нужно открыть документ в читалке, выделить нужный раздел и вставить в веб-браузере на WordHTML.
Как сохранить и опубликовать результаты?
Чтобы опубликовать файл в Интернете, необходимо вставить HTML-код в файл .html и загрузить его в Интернет.
Если на вашем сайте используется CMS , вам необходимо войти в систему с учетными данными редактора и опубликовать статью в своей области администратора.
Как убрать разметку?
Переключитесь в режим просмотра HTML, чтобы увидеть код, просмотрите настройки очистки и нажмите большую кнопку «Очистить».
Автоматически удалять встроенные стили, классы, пустые теги, комментарии и другие ненужные элементы.
Разметку можно убрать одним нажатием кнопки
Можно ли преобразовать код HTML в документ Word?
Обратное преобразование также возможно с WordHTML.
20 тангенс 52 тангенс 142: найдите значение выражения: -20tg(52)*tg(142) — Школьные Знания.com
\begin{align} \text{угол} \end{align} | \begin{align} 0 \end{align} | \begin{align} \frac{\pi}{6} \end{align} | \begin{align} \frac{\pi}{4} \end{align} | \begin{align} \frac{\pi}{3} \end{align} | \begin{align} \frac{\pi}{2} \end{align} | \begin{align} \frac{2\pi}{3} \end{align} | \begin{align} \frac{3\pi}{4} \end{align} | \begin{align} \frac{5\pi}{6} \end{align} | \begin{align} \pi \end{align} |
---|---|---|---|---|---|---|---|---|---|
\begin{align} \sin{x} \end{align} | \begin{align} \frac{\sqrt{0}}{2} \end{align} | \begin{align} \frac{\sqrt{1}}{2} \end{align} | \begin{align} \frac{\sqrt{2}}{2} \end{align} | \begin{align} \frac{\sqrt{3}}{2} \end{align} | \begin{align} \frac{\sqrt{4}}{2} \end{align} | \begin{align} \frac{\sqrt{3}}{2} \end{align} | \begin{align} \frac{\sqrt{2}}{2} \end{align} | \begin{align} \frac{\sqrt{1}}{2} \end{align} | \begin{align} \frac{\sqrt{0}}{2} \end{align} |
\begin{align} \cos{x} \end{align} | \begin{align} \frac{\sqrt{4}}{2} \end{align} | \begin{align} \frac{\sqrt{3}}{2} \end{align} | \begin{align} \frac{\sqrt{2}}{2} \end{align} | \begin{align} \frac{\sqrt{1}}{2} \end{align} | \begin{align} \frac{\sqrt{0}}{2} \end{align} | \begin{align} -\frac{\sqrt{1}}{2} \end{align} | \begin{align} -\frac{\sqrt{2}}{2} \end{align} | \begin{align} -\frac{\sqrt{3}}{2} \end{align} | \begin{align} -\frac{\sqrt{4}}{2} \end{align} |
\begin{align} \text{tg x} \end{align} | \begin{align} \sqrt{\frac{0}{4}} \end{align} | \begin{align} \sqrt{\frac{1}{3}} \end{align} | \begin{align} \sqrt{\frac{2}{2}} \end{align} | \begin{align} \sqrt{\frac{3}{1}} \end{align} | \begin{align} \varnothing \end{align} | \begin{align} -\sqrt{\frac{3}{1}} \end{align} | \begin{align} -\sqrt{\frac{2}{2}} \end{align} | \begin{align} -\sqrt{\frac{1}{3}} \end{align} | \begin{align} -\sqrt{\frac{0}{4}} \end{align} |
\begin{align} \text{ctg x} \end{align} | \begin{align} \varnothing \end{align} | \begin{align} \sqrt{\frac{3}{1}} \end{align} | \begin{align} \sqrt{\frac{2}{2}} \end{align} | \begin{align} \sqrt{\frac{1}{3}} \end{align} | \begin{align} 0 \end{align} | \begin{align} -\sqrt{\frac{1}{3}} \end{align} | \begin{align} -\sqrt{\frac{2}{2}} \end{align} | \begin{align} -\sqrt{\frac{3}{1}} \end{align} | \begin{align} \varnothing \end{align} |
\begin{align} \text{cosec x} \end{align} | \begin{align} \varnothing \end{align} | \begin{align} \frac{2}{\sqrt{1}} \end{align} | \begin{align} \frac{2}{\sqrt{2}} \end{align} | \begin{align} \frac{2}{\sqrt{3}} \end{align} | \begin{align} \frac{2}{\sqrt{4}} \end{align} | \begin{align} \frac{2}{\sqrt{3}} \end{align} | \begin{align} \frac{2}{\sqrt{2}} \end{align} | \begin{align} \frac{2}{\sqrt{1}} \end{align} | \begin{align} \varnothing \end{align} |
\begin{align} \sec{x} \end{align} | \begin{align} \frac{2}{\sqrt{4}} \end{align} | \begin{align} \frac{2}{\sqrt{3}} \end{align} | \begin{align} \frac{2}{\sqrt{2}} \end{align} | \begin{align} \frac{2}{\sqrt{1}} \end{align} | \begin{align} \varnothing \end{align} | \begin{align} -\frac{2}{\sqrt{1}} \end{align} | \begin{align} -\frac{2}{\sqrt{2}} \end{align} | \begin{align} -\frac{2}{\sqrt{3}} \end{align} | \begin{align} -\frac{2}{\sqrt{4}} \end{align} |
Масло MANNOL 8111 TG-1 Universal GL-4 75W-80 20л
Изготовитель
MANNOL
Объём
20л
Рекомендуем посмотреть
Артикул: 3033Трансмисионное масло MANNOL ATF SP-III O. E.M. for Hyundai Kia Mitsubishi 20лДопуски: HYUNDAI ATF SP-III KIA MOTORS ATF-SP-III MITSUBISHI ATF SP3Изготовитель:MANNOL В наличии на складе 9 561 ₽Артикул: 1390Трансмисионное масло MANNOL ATF AG52 20лДопуски: BMW 832 29 407 807 JAGUAR JLM 202 38 MB 236.11 PORSCHE 999.917.547.00 VW TL 52 162 STC4863 MB 236.11 MB A0019892203 PEUGEOT AL4 PR 9736.22 RENAULT DP0 SEAT G 052 162 SKODA G 052 162 AUDI G 052 162 ZF S671 090 170 ПродуктыТрансмиссионные масла и жидкостиСерия O.E.M.MANNOL ATF AG52 Automatic Special MANNOL ATF AG52 Automatic Special 8211 Специальное всесезонное трансмиссионное синтетическое масло (ATF) для современных 4-5 ступенчатых автоматических коробок передач (АКПП) концерна ZF. Не походит для 6-ступенчатых АКПП. Обеспечивает бесперебойную работу АКПП, гарантирует минимальный износ, продолжительный срок службы трансмиссий и экономию топлива даже при максимальных нагрузках. Разработано с учетом специальных требований концерна VW G 052 162.Изготовитель:MANNOL В наличии на складе 9 508 ₽Артикул: 1056Моторное масло MANNOL Diesel TDI 5W-30 20лИнновационное универсальное ester-содержащее полностью синтетическое моторное масло премиум-класса c для современных дизельных и бензиновых и двигателей с турбонаддувом и без. Особенно рекомендовано для турбодизельных двигателей с прямым впрыском. Разработано в соответствии с требованиями концерна VW. Свойства продукта: — Исключительная топливная экономичность за счет оптимальных антифрикционных свойств; — Высокоэффективный пакет присадок и маловязкая синтетическая основа обеспечивают уверенный холодный пуск в любых условиях, благодаря чему значительно снижается пусковой износ двигателя; — За счет превосходных моюще-диспергирующих свойств и высочайшей термоокислительной стабильности эффективно борется со всеми видами отложений и поддерживает в чистоте детали двигателя на протяжении всего интервала между заменами; — Эстеровые компоненты масла обеспечивают отличные противоизносные свойства за счёт исключительной прочности масляной плёнки, что в сочетании с превосходной прокачиваемостью значительно увеличивает срок службы двигателя даже в режимах движения «Start-stop»; — Совместимо со всеми системами нейтрализации отработавших газов, DPF, TWC, EGR и SCR за счет применения технологии Mid SAPS; — Современный пакет присадок в сочетании с синтетической основой сохраняет мощностные параметры двигателя на протяжении всего интервала между заменами. Предназначено для дизельных и бензиновых двигателей легковых автомобилей, легких внедорожников, микроавтобусов и легких грузовиков, где требуется уровень эксплуатационных свойств API SN/CH-4 и ACEA C2/C3 данного класса вязкости. Масло не предназначено для использования в тяжелых грузовиках и иной подобной технике! Допуски: API SN/SM/CFИзготовитель:MANNOL В наличии на складе 10 974 ₽Артикул: 3038Трансмисионное масл MANNOL 8208 O.E.M. for Toyota Lexus ATF T-IV 20лF Type T-IV ПродуктыТрансмиссионные масла и жидкостиСерия O.E.M.MANNOL O.E.M. ATF Type T-IV MANNOL O.E.M. ATF Type T-IV 8208 Специальное трансмиссионное синтетическое масло (ATF) для автоматических коробок передач (АКПП) автомобилей TOYOTA/LEXUS c коробками TOYOTA и AISIN AW нового поколения. Обеспечивает бесперебойную работу АКПП, гарантирует минимальный износ, продолжительный срок службы трансмиссий и экономию топлива. Разработано на основании требований компании AISIN WARNER. Свойства продукта: — Синтетическая основа высочайшего качества со стабильно высоким индексом вязкости в комбинации с многофункциональным пакетом присадок сохраняет все свои свойства в широком диапазоне температур: обеспечивает хорошие смазочные свойства при низких (-45°C) температурах зимой и обеспечивает стабильную масляную плёнку при экстремальных нагрузках и температурах летом; — Высокотехнологичная комбинация присадок обеспечивает хорошие антифрикционные свойства для зубчатых зацеплений и необходимые фрикционные свойства для фрикционных элементов, что обеспечивает существенную экономию топлива, плавное без рывков переключение передач и увеличение срока службы всех элементов трансмиссии. Обеспечивает слаженную и плавную работу сцеплений; — Обладает повышенной термоокислительной и химической стабильностью и стойкостью к высокотемпературной термической деградации на протяжении всего срока эксплуатации. Это позволяет снизить образование шлама, лака, нагара и других углеродистых отложений, увеличить интервал замены масла и обеспечить долговечность деталей трансмиссии, что снижает затраты на обслуживание техники; — Защищает от коррозии металлические детали из черных и цветных сплавов как в процессе работы, так и в нерабочем состоянии; — Эффективно противостоит аэрации и пенообразованию; — Обеспечивает совместимость со всеми материалами уплотнений, предотвращает их разбухание, затвердевание и усадку, что позволяет снизить затраты на запчасти и предотвращает утечки; — Снижает шум. Рекомендуется для АКПП Toyota и Aisin AW где требуется соответствие требованиям TOYOTA TYPE-IV. Может заменять жидкости T, T-II T-III.Изготовитель:MANNOL В наличии на складе 9 263 ₽Артикул: 1934Масло компрессорное MANNOL Compressor Oil ISO 100 20лДопуски: DIN 51 506 VBL, VCL & VDL ISO 100 ISO L DAA, DAB, DAG & DAHИзготовитель:MANNOL В наличии на складе 9 188 ₽Артикул: 1382Трансмисионное масло MANNOL 8103 Extra Getriebeoel 75W-90 20лДопуски: SAE 75W-90 API GL 4/GL 5 LS MAN 342 Type M1/M2/M3 MACK GO-J/GO-J PlusSCANIA STO 1:0 Универсальное энергосберегающее всесезонное синтетическое трансмиссионное масло последнего поколения для всех типов механических коробок передач. Рекомендуется для использования во всех типах синхронизированных механических коробок передач (включая тяжелые), в дифференциалах (включая LS с избыточным трением), в рулевом оборудовании и других деталях трансмиссии, где встречаются чрезмерное давление и ударная нагрузка и в которых использование Стандарты GL-4 и / или GL-5 предписаны.Изготовитель:MANNOL В наличии на складе 11 388 ₽Артикул: 3074Трансмисионное масло MANNOL 8219 O.E.M. ATF SP-IV 20лACURA DW-1, тип ATF 3.0, тип ATF 3.1 BENTLEY PY112995PA BMW 83 22 0 142 516, 83 22 0 397 114, 83 22 2 152 426, CHRYSLER 05127382AA, 68043742AA, 68157995AA DODGE 05127382AA, 68043742AA, 68157995AA FORD XT-10-QLVC, XT-6-QSP, XT-6-DSP HONDA DW-1, тип ATF 3.0, тип ATF 3.1 HYUNDAI NWS-9638 T-5, SP-IV, SPH-IV, SP-IV-RR INFINITI Matic S, Matic W JAGUAR Fluid 8432 JEEP 05127382AA, 68043742AA, 68157995AA KIA NWS-9638 T-5, SP-IV, SPH-IV, SP-IV-RR LAND ROVER TYK500050, LR0022460 LEXUS Scion FZ, тип WS, JWS 3324 LINCOLN XT-10-QLVC, XT-6-QSP, XT-6-DSP MASERATI 231603 MAZDA FZ, FW 6A EL, FW 6AX EL MB 236,12, 236,14, 236,15, 236,41 MERCURY XT-10-QLVC, XT-6-QSP, XT-6-DSP MINI 83 22 0 142 516, 83 22 0 397 114, 83 22 2 152 426, MITSUBISHI ATF-J3, Dia Queen ATF-PA NISSAN Matic S / W OPEL GM SATURN GMC AW1 / VI, GM SATURN GMC 88863400, GM SA ПОРШЕ 000 043 304 00 SAAB 93 165 147 AW-1 TOYOTA Scion FZ, тип WS, JWS 3324 ZF Lifeguardfluid 6/8Изготовитель:MANNOL В наличии на складе 11 612 ₽0ИзбранноеТовар в избранных
0СравнениеТовар в сравнении
0Просмотренные
0КорзинаТовар в корзине
Этот веб-сайт использует cookie-файлы. При использовании данного сайта вы даете свое согласие на использование cookie-файлов.
1 | Найти точное значение | грех(30) | |
2 | Найти точное значение | грех(45) | |
3 | Найти точное значение | грех(30 градусов) | |
4 | Найти точное значение | грех(60 градусов) | |
5 | Найти точное значение | загар (30 градусов) | |
6 | Найти точное значение | угловой синус(-1) | |
7 | Найти точное значение | грех(пи/6) | |
8 | Найти точное значение | cos(pi/4) | |
9 | Найти точное значение | грех(45 градусов) | |
10 | Найти точное значение | грех(пи/3) | |
11 | Найти точное значение | арктан(-1) | |
12 | Найти точное значение | cos(45 градусов) | |
13 | Найти точное значение | cos(30 градусов) | |
14 | Найти точное значение | желтовато-коричневый(60) | |
15 | Найти точное значение | csc(45 градусов) | |
16 | Найти точное значение | загар (60 градусов) | |
17 | Найти точное значение | сек(30 градусов) | |
18 | Найти точное значение | cos(60 градусов) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | грех(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | загар (45 градусов) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 градусов) | |
25 | Найти точное значение | сек(45 градусов) | |
26 | Найти точное значение | csc(30 градусов) | |
27 | Найти точное значение | грех(0) | |
28 | Найти точное значение | грех(120) | |
29 | Найти точное значение | соз(90) | |
30 | Преобразовать из радианов в градусы | пи/3 | |
31 | Найти точное значение | желтовато-коричневый(30) | |
32 | 92|||
35 | Преобразовать из радианов в градусы | пи/6 | |
36 | Найти точное значение | детская кроватка(30 градусов) | |
37 | Найти точное значение | арккос(-1) | |
38 | Найти точное значение | арктический(0) | |
39 | Найти точное значение | детская кроватка(60 градусов) | |
40 | Преобразование градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2 шт. )/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | тан(пи/2) | |
45 | Найти точное значение | грех(300) | |
46 | Найти точное значение | соз(30) | |
47 | Найти точное значение | соз(60) | |
48 | Найти точное значение | соз(0) | |
49 | Найти точное значение | соз(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | сек(60 градусов) | |
53 | Найти точное значение | грех(300 градусов) | |
54 | Преобразование градусов в радианы | 135 | |
55 | Преобразование градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5 дюймов)/6 | |
57 | Преобразовать из радианов в градусы | (5 дюймов)/3 | |
58 | Преобразование градусов в радианы | 89 градусов | |
59 | Преобразование градусов в радианы | 60 | |
60 | Найти точное значение | грех(135 градусов) | |
61 | Найти точное значение | грех(150) | |
62 | Найти точное значение | грех(240 градусов) | |
63 | Найти точное значение | детская кроватка(45 градусов) | |
64 | Преобразовать из радианов в градусы | (5 дюймов)/4 | |
65 | Найти точное значение | грех(225) | |
66 | Найти точное значение | грех(240) | |
67 | Найти точное значение | cos(150 градусов) | |
68 | Найти точное значение | желтовато-коричневый(45) | |
69 | Оценить | грех(30 градусов) | |
70 | Найти точное значение | сек(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | КСК(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | загар((5pi)/3) | |
75 | Найти точное значение | желтовато-коричневый(0) | |
76 | Оценить | грех(60 градусов) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3 пи)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | угловой синус(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | КСК(45) | |
83 | Упростить | арктан(квадратный корень из 3) | |
84 | Найти точное значение | грех(135) | |
85 | Найти точное значение | грех(105) | |
86 | Найти точное значение | грех(150 градусов) | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | загар((2pi)/3) | |
89 | Преобразовать из радианов в градусы | пи/4 | |
90 | Найти точное значение | грех(пи/2) | |
91 | Найти точное значение | сек(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | Найти точное значение | угловой синус(0) | |
95 | Найти точное значение | грех(120 градусов) | |
96 | Найти точное значение | желтовато-коричневый ((7pi)/6) | |
97 | Найти точное значение | соз(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразование градусов в радианы | 88 градусов |
Как найти величину и направление вектора
Авторы: Стивен Хольцнер и
Обновлено: 29 октября 2021 г. Рабочая тетрадь для чайников с онлайн-практикой Explore Book Купить на Amazon.
Например, взгляните на вектор на изображении.
Предположим, вам известны координаты конца вектора и вы хотите найти его величину v и угол тета. Благодаря вашим познаниям в тригонометрии вы знаете
Где тангенс тета — тангенс угла. Это значит, что
тета = тангенс –1 ( y / x )Предположим, что координаты вектора равны (3, 4). Вы можете найти угол тета как тангенс –1 (4/3) = 53 градуса.
Вы можете использовать теорему Пифагора, чтобы найти гипотенузу — модуль, v — треугольника, образованного x, y, и v:
Подставьте числа для этого примера, чтобы получить
Итак, если у вас есть вектор, заданный координатами (3, 4), его величина равна 5, а его угол равен 53 градусам.
Пример вопроса
Преобразование вектора, заданного координатами (1. 0, 5.0), в формат величина/угол.
Правильный ответ: звездная величина 5,1, угол 79 градусов.
Примените теорему Пифагора, чтобы найти величину. Подставьте числа, чтобы получить 5.1.
Примените уравнение тета = тангенс –1 ( y / x ), чтобы найти угол. Подставьте числа, чтобы получить тангенс –1 (5,0/1,0) = 79 градусов.
Практические вопросы
Преобразование вектора (5.0, 7.0) в форму величины/угла.
Преобразование вектора (13.0, 13.0) в форму величины/угла.
Преобразование вектора (–1,0, 1,0) в форму величины/угла.
Преобразование вектора (–5,0, –7,0) в форму величины/угла.
Величина 8,6, угол 54 градуса
Применить уравнение
, чтобы найти звездную величину, которая равна 8,6.
Примените уравнение тета = тангенс –1 ( y / x ), чтобы найти угол: тангенс –1 (7,0/5,0) = 54 градуса.
Величина 18,4, угол 45 градусов
Применить уравнение
, чтобы найти звездную величину, которая равна 18,4.
Примените уравнение theta = tan –1 ( y / x ), чтобы найти угол: tan –1 (13,0/13,0) = 45 градусов.
Величина 1,4, угол 135 градусов
Применить уравнение
, чтобы найти звездную величину, которая равна 1,4.
Примените уравнение тета = тангенс –1 ( y / x ), чтобы найти угол: тангенс –1 (1,0/–1,0) = –45 градусов.
Однако обратите внимание, что на самом деле угол должен быть между 90 и 180 градусами, поскольку первая составляющая вектора отрицательна, а вторая положительна.
За два часа машинистка печатает а страниц рукописи: одна машинистка печатает 10страниц за 1 час, а другая за 5 часов печатает столько же, сколько первая за 4 часа. сколько с — Спрашивалка
за 2 часа машинистка печатает а страниц рукописи за сколько часов она напечатает m страниц,работая с той же производительностью — Знания.site
1. Определите, какое причастие употреблено в предложении: к каждой позиции из первого столбца подберите соответствующую позицию из второго столбца, обозначенную цифрой. ПРЕДЛОЖЕНИЕ ПРИЧАСТИЕ A) Замёрзшие за ночь цветы оживали. Б) Не закрытая тучей заря освещала окна. В) Мы опускаем руки в воду, струящуюся между пальцев. Г) Облака, гонимые ветром, быстро неслись по небу 1) действительное причастие настоящего времени 2) действительное причастие прошедшего времени 3) страдательное причастие настоящего времени 4) страдательное причастие прошедшего времени Запишите в таблицу выбранные цифры под соответствующими буквами. А Б В Г 2. Укажите варианты ответов, в которых в обоих словах одного ряда пропущена одна и та же буква. 1) вяж_щий, держ_щийся 2) обтека_мый, реша_мый, 3) потрач_нный, развеш_нный, 4) улаж_нный, услыш_нный. 5) ищ_щий, караул_щий 3. Выпишите слово, в суффиксе которого пишется буква Е: раста..в постав…в развес…в прикле..в обид…в 4. Выпишите наречие, в суффиксе которого пишется буква О. 1) изредк… интересоваться 2) начать занов…, 3) засидеться допоздн… 4) вылизать дочист… 5. Укажите варианты ответов, в которых выделенные слова пишутся слитно. 1) (на)отрез отказался 2) ушли (по)одиночке, 3) поговорить (с)глазу(на)глаз, 4) уйти (по)добру (по)здорову, 6. Укажите цифры, на месте которых пишется НН. В тума(1)ой дали песча(2)ого берега тускло светились огни стари(3)ого дома. В гости(4)ой на полу, украше(5)ом затейливым орнаментом, стоял мастерски сдела(6)ый стол с цветами в стекля(7)ой вазе. 7. Определите словосочетание, в котором НЕ с выделенным словом пишется СЛИТНО. Раскройте скобки и выпишите это слово. (не)сомневающийся в успехе, абсолютно (не)возмутимый; (не)далёкий, а близкий; работа (не)сделана; ещё (не)снятый фильм, 8. Расставьте знаки препинания: укажите цифру(-ы), на месте которой(-ых) должна(- ы) стоять запятая(-ые). 1. Смотритель выпросил отпуск (1) и (2)не сказав никому ни слова о своём намерени.. пешком(3) отправ..лся за своей дочерью. 2. Подр..стая (4)ребёнок сам читает стихи о зелёном дубе (5) выр..сш..м у лукоморья. 9. Укажите предложение, в котором допущена грамматическая ошибка. 1) Это рассказ о человеке, возвратившемся после войны в родной город. 2) Приготовленные мамой оладьи были необыкновенно вкусны. 3) Изображая любой предмет, художник передает его собственное мироощущение. 4) Пользуясь автомобильными справочниками, требуется много времени на ремонт машины. 10. В каком ряду все предлоги пишутся слитно? 1) (на)подобие пирамиды, (из)под сугроба, (от)лени 2) (во)преки желанию, (в)следствие урагана, (на)встречу мечте 3) (ко)мне, (под)ле скамейки, (из)под стола 4) (в)течение занятия, (в)продолжение триместра (не)смотря на угрозы 11. Укажите правильный вариант объяснения написания выделенного слова (выделенных слов) в предложении «Мы чувствовали, что отцу не хочется разговаривать. Инна (то)же молчала». 1) тоже — всегда пишется слитно; 2) то же — всегда пишется раздельно; 3) тоже — здесь сочинительный союз, поэтому пишется слитно; 4) то же — здесь местоимение то с частицей же, поэтому пишется раздельн 12. Укажите предложение, в котором частица пишется через дефис. 1) Всё те(же) мы, но время уже не то. 2) На безлюдной барже не слишком(то) уютно. 3) Всё вроде(бы) отлично и здорово.
Производительность
Продолжаем изучать элементарные задачи по математике. Сегодня мы рассмотрим очень интересную физическую величину — производительность.
Что такое сила?
Сила — это физическое явление, способное изменять форму материальных тел, вызывать их движение, менять направление и скорость движения этих тел или приводить тело в состояние покоя.
Примеры сил:
- ребята слепили снеговика, а хулиганы его разрушили. Получается, что хулиганы приложили к снеговику свою силу, тем самым вызвали изменение формы снеговика;
- на дворе стояла тележка. Прохожий случайно задел её и тележка сдвинулась с места. Получается, что прохожий применил силу к тележке и вызвал её движение;
- далее тот же прохожий остановил тележку, чтобы она далеко не уехала. Получается, что прохожий применил силу, тем самым привел тележку в состояние покоя.
Сила является физической величиной — мерой воздействия на тело других тел. Сила обозначается заглавной латинской буквой F.
Что такое работа?
Работа — это количественная мера действия силы на тело. Работа зависит от количества силы, приложенной на тело и от направления этой силы, а также от перемещения данного тела.
Например, если мы попробуем сдвинуть шкаф с места и он сдвинется, то можно сказать, что мы совершили работу, поскольку сила, которую мы приложили, привела к тому, что шкаф совершил перемещение на некоторое расстояние.
Если же мы, к примеру, попробуем толкнуть стену, то стена с места не сдвинется, а значит и работа не будет совершена, поскольку сила была приложена, но эта сила не вызвала никакого перемещения стены.
Работа обозначается заглавной латинской буквой A.
Производительность
Производительностью называют работу, выполненную за единицу времени. Под единицей подразумевается 1 час, 1 минута или 1 секунда. Производительность обозначается латинской буквой v
Рассмотрим следующий пример. Два пекаря пекли булочки. Первый пекарь испёк 40 булочек за 10 минут, а второй 15 булочек за 5 минут. Как узнать, кто из пекарей работал быстрее, первый или второй?
Работал быстрее тот, кто за одну минуту выпекает больше булочек. Говорят, что у него производительность больше. Для нахождения производительности предусмотрено следующее правило:
Чтобы найти производительность, надо выполненную работу разделить на время работы.
Также, можно воспользоваться формулой:
где v — производительность, A — выполненная работа, t — время работы.
Вернемся к нашей задаче. Зная правило или формулу нахождения производительности, можно определить сколько булочек приходится на одну минуту.
Найдём производительность первого пекаря. Разделим работу, которую он выполнил, на время которое он на нее затратил. Выполненная работа это количество испеченных им булочек, то есть 40, а время — 10 минут
40 : 10 = 4 булочки в минуту
Аналогично найдём производительность второго пекаря. Разделим 15 на 5
15 : 5 = 3 булочки в минуту
4 > 3
Первый пекарь в минуту выпекает больше булочек чем второй, значит его производительность выше. Отсюда делаем вывод, что работает он быстрее второго пекаря.
Также можно воспользоваться формулой нахождения производительности. В этом случае решение принимает следующий вид:
Под буквой v можно делать метки, указывающие для кого/чего мы находим производительность.
Задача 2. Тому нужно за 2 дня прочитать книгу, в которой 100 страниц. В первый день он читал 4 часа со скоростью 12 страниц в час. С какой скоростью ему надо читать оставшуюся часть книги, если у него есть на это 4 часа?
Узнаем сколько страниц Том прочитал в первый день. Он читал 12 страниц в час. Чтению в первый день он посвятил 4 часа, поэтому для нахождения количества прочитанных страниц в первый день, нужно 12 умножить на 4
12 × 4 = 48 страниц прочитано в первый день
Узнаем сколько страниц осталось прочесть. Вычтем из общего количества страниц (100) количество прочитанных страниц (48)
100 − 48 = 52 страницы осталось прочесть
Осталось прочесть 52 страницы. Теперь найдем такую производительность, при которой Том сможет прочесть 52 страницы за 4 часа. Раскидаем 52 страницы на 4 часа поровну
52 : 4 = 13 страниц в час
Ответ: чтобы прочитать оставшуюся часть книги за 4 часа, Том должен читать ее со скоростью 13 страниц в час.
Замечание. В некоторых источниках слово «производительность» может быть заменено на слова «скорость», «эффективность», «продуктивность», «плодотворность».
Задача 3. Один насос работал 4 часа, выкачивая 158 вёдер воды в час, а другой — 3 часа, выкачивая 169 вёдер воды в час. Определить какой из насосов выкачал больше вёдер.
Решение
Определим сколько всего вёдер выкачал каждый насос по отдельности. Для этого умножим их производительность на время их работы:
158 в/ч × 4 = 632 вёдер выкачал первый насос
169 в/ч × 3 = 507 вёдер выкачал второй насос
632 > 507
Ответ: первый насос выкачала больше вёдер, чем второй.
Задача 4. За 2 часа насос выкачал 80 литров воды. Определить сколько литров он выкачает за 5 часов.
Решение
Сначала нужно определить сколько литров воды насос выкачивает за час. Для этого 80 литров разделим на 2 часа — получим 40 литров
80 : 2 = 40 литров в час
За один час насос выкачивает 40 литров воды. За 5 часов выкачает в пять раз больше
40 × 5 = 200 литров
Ответ: за 5 часов насос выкачает 200 литров воды.
Если известны производительность и время работы, то можно найти выполненную работу. Выполненная работа равна производительности умноженной на время работы:
A = v × t
Например, если производительность пекаря составляет 50 булочек в час, и он проработал 4 часа, то можно найти всю выполненную работу за эти четыре часа. Для этого производительность (50 бул/ч) нужно умножить на время его работы (4ч)
50 × 4 = 200 булочек
Если известны работа и производительность, то можно найти время работы. Время работы равно отношению выполненной работы к производительности:
Например, если в неделю бригада отстраивает 2 этажа, то можно узнать сколько недель потребуется для отстройки 8 этажей. Чтобы определить время отстройки восьми этажей, нужно выполненную работу (8 этажей) разделить на производительность (2 эт./нед):
8 : 2 = 4 нед.
Либо с помощью формулы, приведенной выше:
Если в неделю строится 2 этажа, то 8 этажей будет отстроено за четыре недели. В данном случае вся работа была равна восьми. Производительность была равна двум, поскольку по определению производительность есть работа, выполненная за единицу времени – в нашем случае два этажа за неделю.
Задача 6. Принтер работает с производительностью 70 стр./ч. Сколько страниц он напечатает за 5 часов?
Решение
Если в час принтер печатает 70 страниц, то за 5 часов он напечатает в 5 раз больше:
70 × 5 = 350 страниц
Также, решение можно записать с помощью формулы нахождения работы. В данном случае, количество напечатанных страниц являются выполненной работой:
A = v × t = 70 × 5 = 350 страниц
A = 350 страниц
Задача 7. Принтер напечатал 350 страниц за 5 часов. С какой производительностью он работал?
Решение
Если в течении пяти часов принтер напечатал 350 страниц, то в течении часа он печатал . То есть работал с производительностью 70 страниц в час:
350 : 5 = 70 стр./ч.
Либо с помощью формулы нахождения производительности:
Задача 8. Принтер работал с производительностью 70 страниц в час и напечатал 350 страниц. Определить время работы принтера.
Решение
Выражение «работал с производительностью 70 страниц в час» означает, что в каждом часе принтер печатал по 70 страниц. И это продолжалось до тех пор, пока он не напечатал 350 страниц. Очевидно, что разделив 350 страниц по 70, мы определим время работы принтера, то есть узнаем сколько часов он работал
350 : 70 = 5 ч.
Либо с помощью формулы нахождения времени:
Задача 9. Машинистка в первый день напечатала 48 страниц рукописи, а во второй день — на 12 страниц больше, чем в первый. На всю работу в эти 2 дня она затратила 9 часов. Сколько часов работала она в каждый из этих дней, если производительность её не менялась ?
Решение
Определим сколько страниц напечатала машинистка во второй день. В условии сказано, что напечатала она на 12 страниц больше, чем в первый:
48 + 12 = 60 страниц во второй день.
Определим сколько страниц машинистка напечатала за два дня:
48 + 60 = 108 страниц за два дня.
На эту работу машинистка затратила 9 часов. Также сказано, что производительность её не менялась. Если мы разделим выполненную работу (108) на время выполнения (9), то определим производительность машинистки:
108 : 9 = 12 страниц в час.
Теперь мы можем определить сколько часов работала машинистка в каждый из двух дней. Для этого поочередно разделим выполненные работы в каждом из двух дней на производительность:
48 : 12 = 4 часа работала машинистка в первый день
60 : 12 = 5 часов работала машинистка во второй день.
Задача 10. Джон решил 10 примеров за 5 минут. С какой производительностью он решал эти примеры?
10 примеров это выполненная Джоном работа. 5 минут — время работы. Разделим выполненную работу на время работы и определим производительность Джона:
10 : 5 = 2 примера в минуту.
Производительность Джона равна двум примерам в минуту.
Задача 11. Джон решил несколько примеров за 5 минут. С какой производительностью он решил эти примеры?
Это та же самая задача, что и предыдущая, но в ней работа не выражена каким-либо числом. Сказано лишь то, что Джон выполнил эту работу за 5 минут. Поэтому, конкретную производительность в такой задаче узнать нельзя. Но можно воспользоваться дробями. Обозначим выполненную работу через единицу. Тогда производительность работы Джона будет выражаться дробью – частью примеров, решенных за единицу времени. Если вы изучили задачи на дроби, то должны понимать о чем идёт речь.
Итак, обозначим выполненную работу через единицу:
A = 1
Мы знаем, что для нахождения производительности, выполненную работу нужно разделить на время. Время работы у нас равно пяти минутам. Поэтому, единицу делим на пять минут:
Дробь выражает часть работы, выполненную Джоном за единицу времени. Если мы вернемся к предыдущей задаче, где выполненная работа была равна десяти примерам и найдем одну пятую от этой работы, то получим 2
Выражать выполненную работу через единицу часто приходится при решении задач на совместную работу.
Задачи на совместную работу
Задача 1. Первый мастер за 2 часа изготавливает 64 детали, а второй за 3 часа – 72 детали. За сколько часов они изготовят 336 деталей?
В данной задаче речь идет о совместной работе. Необходимо определить производительность обоих мастеров и найти время за которое они изготовят 336 деталей.
Для начала определим производительность первого мастера:
64 : 2 = 32 дет./час
Определим производительность второго мастера:
72 : 3 = 24 дет./час
Определим совместную производительность мастеров. Для этого сложим количество деталей, которые они изготавливают по отдельности за единицу времени. То есть сложим их производительности:
32 дет./час + 24 дет./час = 56 дет./час
Вместе за один час мастера изготавливают 56 деталей. Чтобы узнать за сколько часов они изготовят 336 деталей, нужно определить сколько раз 336 содержит по 56
336 : 56 = 6 часов
Задача 2. Первый мастер может покрасить забор за 20 минут, а второй мастер – за 30 минут. За сколько минут, работая вместе, они могут покрасить забор?
Решение
В данной задаче, в отличие от предыдущей, работа не выражена каким-либо числом. Сказано лишь то, что эту работу первый мастер может выполнить за 20 минут, а второй за 30 минут.
В такой ситуации можно воспользоваться дробями. Мы можем обозначить всю работу (покраску забора) через единицу.
Итак, обозначим работу (покраску забора) через единицу:
A = 1
Производительность первого мастера будет выражáться дробью . То есть за одну минуту он покрасит одну двадцатую часть забора. Единица это вся работа, а двадцать минут это время работы. Запишем производительность первого мастера с помощью формулы нахождения производительности:
А производительность второго мастера будет выражáться дробью . То есть за одну минуту он покрасит одну тридцатую часть забора:
Определим общую производительность мастеров. Для этого сложим дроби, выражающие производительность первого и второго мастеров:
это дробь, выражающая общую производительность обоих мастеров. То есть за одну минуту мастера вместе покрасят часть забора.
Определим время за которое мастера покрасят забор вместе. Для этого воспользуемся формулой нахождения времени: разделим выполненную работу на общую производительность мастеров. Выполненная работа у нас выражена единицей, а производительность — дробью
Ответ: работая вместе, мастера покрасят забор за 12 минут.
Задача 3. Первый рабочий может выполнить заказ за 8 часов, а второй за 6 часов. Два часа они работали вместе, а заканчивал работу один второй рабочий. Сколько времени потребовалось для выполнения этого заказа?
Решение
Обозначим всю работу через единицу
A = 1
Тогда первый рабочий за один час может выполнить часть работы, а второй рабочий часть работы. А вместе за один час они могут выполнить часть работы
Рабочие работали вместе два часа, поэтому умножим часть работы, выполняемую ими за один час на 2:
Остальную часть работы, а именно работы заканчивал один второй рабочий:
Второй рабочий за один час мог выполнить часть работы. Чтобы определить время за которое он завершил оставшуюся часть работы, воспользуемся формулой нахождения времени.
Переменная A теперь равна , переменная v —
Теперь определим общее время заказа. Первые два часа рабочие работали вместе, остальную часть работы второй рабочий выполнил за два с половиной часа, отсюда имеем 4,5 ч.
2 + 2,5 = 4,5 ч.
Ответ: для выполнения заказа потребовалось 4,5 ч.
Задача 4. Одна труба наполняет бассейн за 6 ч, а другая – за 4 ч. За
сколько часов наполняют бассейн обе трубы, работая вместе?
Решение
Обозначим работу (наполнение бассейна) через единицу
A = 1
Тогда первая труба за один час выполнит часть работы, а вторая труба — часть работы. Работая вместе за один час они выполнят часть работы:
Определим время за которое обе трубы наполняют бассейн, работая вместе:
2,4 это два целых часа и четыре десятых часа
2,4 = 2 ч + 0,4 ч
А четыре десятых часа это 24 минуты
60 мин. × 0,4 = 24 мин.
Ответ: работая вместе обе трубы наполнят бассейн за 2 ч 24 мин.
Задачи для самостоятельного решения
Задача 1. Первая бригада может выполнить некоторое задание за 12 часов, вторая – за 4 часа. За сколько часов они выполнят задание, если будут работать вместе?
Решение
Обозначим работу через единицу:
A = 1
Тогда первая бригада за один час выполнит часть работы, а вторая за один час часть работы. Их общая производительность равна сумме дробей и :
Определим время за которое обе бригады выполнят задание, работая вместе:
Ответ: обе бригады выполнят задание за 3 часа.
Показать решение
Задача 2. Лошадь съедает копну сена за 1 сутки, корова может съесть такую же копну за 3 суток, а овца за 6 суток. За какое время съедят эту копну лошадь, корова и овца вместе.
Решение
Работа в данном случае это съедание копны сена. Обозначим её через единицу:
A = 1
Тогда производительность лошади будет выражáться единицей, производительность коровы — дробью , производительность овцы — дробью . Их совместная производительность равна следующей сумме:
Определим время, за которое лошадь, корова и овца съедят 1 копну сена:
Ответ: лошадь, корова и овца съедят 1 копну сена за суток или 16 часов.
Показать решение
Задача 3. Сосуд наполняется шлангом за 12 мин, а полный сосуд опорожняется при открытии крана за 20 мин. За какое время наполнится пустой сосуд, если одновременно открыть кран и вливать в него воду через шланг?
Решение
Работа в данном случае это наполнение сосуда. Обозначим эту работу через единицу:
A = 1
В условии сказано, что сосуд наполняется шлангом за 12 минут. Значит в минуту будет наполняться часть сосуда. При этом сказано, что одновременно открыт кран сосуда и из него вытекает вода, которой наполняется сосуд. Вода, которая вытекает равна части сосуда, поскольку в условии сказано, что полный сосуд опорожняется за 20 минут.
В сосуд поступает воды больше, чем вытекает. Дробь больше, чем .
Несмотря на то, что часть поступающей в сосуд воды будет вытекать, с каждой минутой сосуд будет пополняться на определенную часть. Узнаем, что эта за часть. Для этого из поступающей части вычтем ту часть, которая вытекает:
Каждую минуту сосуд будет наполняться на .
Определим время за которое наполнится пустой сосуд, если одновременно открыть кран и вливать в него воду через шланг:
Ответ: если одновременно открыть кран и вливать в пустой сосуд воду через шланг, то он наполнится за 30 минут.
Показать решение
Задача 4. Через первую трубу бассейн можно заполнить за 20 ч, через вторую за 30 ч. Какая часть бассейна заполнится через обе трубы за 1 ч?
Решение
Работа в данном случае это заполнение бассейна. Обозначим эту работу через единицу:
A = 1
Производительность заполнения бассейна через первую трубу будет выражáться дробью , через вторую трубу — дробью . Совместная производительность будет выражáться дробью
Производительность по определению есть работа, выполненная за единицу времени. Значит дробь является ответом к задаче, поскольку нас интересовало какая часть бассейна заполнится через обе трубы за 1 час. Это можно проверить, воспользовавшись формулой нахождения работы. Переменная v у нас имеет значение , а переменная t равна единице (одному часу). Формула нахождения работы позволит нам определить какая часть работы будет выполнена за 1 час:
Ответ: за один час заполнится часть бассейна.
Показать решение
Задача 5. На прокладку траншеи требуется затратить 10 ч. Экскаватор проработал 8 ч, после чего ему осталось пройти 50 м. Найти общую длину траншеи.
Решение
В задаче подразумевается, что экскаватор работал с одинаковой производительностью на протяжении всей работы. На работу требовалось затратить 10 ч. Проработано было 8 ч. Значит осталось еще 2 часа. На 2 часа приходятся оставшиеся 50 метров траншеи. Если разделить 50 метров на 2, то можно определить сколько метров экскаватор прокладывает за один час:
50 : 2 = 25 м./ч
В час экскаватор прокладывал 25 метров. Работал он 10 часов. Умножим 25 на 10, мы определим общую длину траншеи:
25 × 10 = 250 м
Ответ: общая длина траншеи составляет 250 м.
Показать решение
Задача 6. Ванна заполняется холодной водой за 6 мин 40 с, горячей – за 8 мин. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 мин 20 с. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?.
Решение
Для удобства переведем время данное в задаче в секунды
6 мин 40 с = 400 с
8 мин = 480 с
13 мин 20 с = 800 с
Обозначим заполнение ванны через единицу:
A = 1
Производительность первого крана будет выражáться дробью , производительность второго крана — дробью . Совместная производительность обоих кранов равна сумме дробей и
Одновременно с открытыми двумя кранами, вынута пробка из ванны. Поэтому часть поступающей в ванну воды сразу выходит через слив. Эта часть будет выражáться дробью .
С каждой секундой ванна будет пополняться на определенную часть воды. Узнаем какая это часть. Для этого из поступающей части воды вычтем ту часть, которая вытекает через слив.
Определим сколько времени понадобится, чтобы наполнить ванну:
Ванна наполнится за 300 секунд. Поскольку задача завершена, секунды можно обратно перевести в минуты. Триста секунд это пять минут:
300 : 60 = 5 мин
Ответ: ванна заполнится за 5 мин.
Показать решение
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Q5 Машинистке требуется 80 минут, чтобы напечатать 24 страницы Сколько времени ему понадобится, чтобы напечатать 87 страниц.
..Перейти к
- Упражнение 7 (А)
- Упражнение 7(Б)
- Упражнение 7 (С)
- Целые числа
- Рациональное число
- Фракции (включая задачи)
- Десятичные дроби (десятичные дроби)
- Показатели (включая законы показателей)
- Соотношение и пропорция (включая долю в соотношении)
- Унитарный метод (включая время и работу)
- Процент и процент
- Прибыль, убыток и дисконт
- Простой интерес
- Основные понятия (включая основные операции)
- Простые линейные уравнения (включая текстовые задачи)
- Понятия набора (некоторые простые деления по ведическому методу)
- Линии и углы (включая построение углов)
- Треугольники
- Теорема Пифагора
- Симметрия (включая отражение и вращение)
- Распознавание твердых тел (представление 3D в 2D)
- Конгруэнтность: конгруэнтные треугольники
- Измерение
- Обработка данных
- Вероятность
Главная > Селина Солюшнс Класс 7 Математика > Глава 7 — Унитарный метод (включая время и работу) > Упражнение 7 (А) > Вопрос 5
Вопрос 5 Упражнение 7(A)
В5) Машинистке требуется 80 минут, чтобы напечатать 24 страницы. Сколько времени ему понадобится, чтобы напечатать 87 страниц?
Ответ:
Решение:
Для набора 24 страниц требуется время = 80 минут
Для набора 1 страницы требуется время = \frac{80}{24}\min utes
А для набора 87 страниц требуется время
=\frac{80\times87}{24}=290\min utes
Расшифровка видео
90 002 «Привет ребята. Добро пожаловать в Толедо. Меня зовут Индрасена. Теперь мы собираемся рассмотреть ситуацию с типом файла, которому требуется 80 минут, чтобы напечатать 24 страницы, и сколько времени ему понадобится, чтобы напечатать 87-футовые страницы? Загляните в решение. 24 страницы сделаны за 80 минут, запишу. Тогда 87 страниц равно X. Таким образом, X равно 87 в 280, разделенных на 24. Тогда ответ будет 290 минут. За 290 минут тип завершит 87 страниц. Хорошо. Спасибо за просмотр. »Связанные вопросы
Q1) Вес 8 одинаковых изделий составляет 4,8 кг. Каков вес 11 таких предметов?
Q2) 6 книг весят 1,260 кг. Сколько книг будет весить 3150 кг?
Q3) 8 человек выполняют работу за 6 часов. За сколько часов 12 человек выполнят ту же работу?
В4) Если свеча длиной 25 см горит 45 минут, как долго будет гореть другая свеча из того же материала…
Q6) рупий. 750 поддерживают семью на 15 дней. За сколько дней будет руб. 2500 содержат одну и ту же семью?
Q7) 400 человек имеют провизию на 23 недели. К ним присоединяются 60 человек. Как долго будут действовать положения…
Фейсбук WhatsApp Копировать ссылкуБыло ли это полезно?
Упражнения
Упражнение 7 (a)
Упражнение 7 (b)
Упражнение 7 (c)
Главы
Целые числа
Рациональные номера
Дроби (включая задачи)
Десятичные дроби (десятичные)
Экспоненты (включая законы экспонент)
Отношения и пропорции (включая доли в пропорциях)
Унитарный метод (включая время и работу) 9000 3
Процент и Процент
Прибыль, убыток и дисконт
Простые проценты
Основные понятия (включая основные операции)
Простые линейные уравнения (включая текстовые задачи)
Набор понятий (некоторые простые деления по ведическому методу)
Прямые и углы (включая построение углов)
Треугольники
Теорема Пифагора
Симметрия (включая отражение и вращение)
Распознавание твердых тел (представление 3D в 2D) 9000 3
Конгруэнтность: конгруэнтные треугольники
Измерение
Обработка данных
Вероятность
Курсы
Быстрые ссылки
Условия и политика
Условия и политика
2022 © Quality Tutorials Pvt Ltd Все права защищены
Сколько времени нужно, чтобы написать 1 страницу?
Поиск
Написание 1 страницы займет около 12,5 минут для обычного писателя, печатающего на клавиатуре , и 25 минут для рукописного ввода. Однако, если контент должен включать в себя подробные исследования, ссылки, цитаты или графику, например, для статьи в блоге или школьного эссе, продолжительность может увеличиться до 1,7 часа.
Узнайте, как утроить скорость письма.
Документы, которые обычно содержат 1 страницу, — это школьные и университетские эссе, короткие сообщения в блогах и новостные статьи. Типичная страница с одинарным интервалом содержит 500 слов.
Вы можете писать быстрее или медленнее в зависимости от вашей средней скорости письма. Взрослые обычно печатают со скоростью около 40 слов в минуту при написании для удовольствия и 5 слов в минуту при написании подробных эссе или статей. Они могут писать от руки со скоростью 20 слов в минуту. Студенты колледжей обычно должны уметь писать со скоростью 60-70 слов в минуту, чтобы быстро писать эссе.
Время письма по количеству словВ приведенной ниже таблице указано, сколько времени требуется для написания типичного количества слов. Если вы хотите узнать, сколько времени займет написание эссе или книги, ознакомьтесь с таблицей ниже:
Количество слов | Медленно (5 слов в минуту) | Среднее (40 слов в минуту) | Быстро (60 слов в минуту) |
10 0 слов | 20 минут | 2,5 минуты | 1,7 минуты |
125 слов | 25 минут | 3,1 минуты | 2,1 минуты |
250 слов 9 0198 | 50 минут | 6,3 минуты | 4,2 минуты |
500 слов | 100 минут | 12,5 минут | 8,3 минут |
600 слов | 120 минут | 15,0 минут | 10,0 минут |
750 слов | 150 минут | 18,8 минут | 12,5 минут |
800 слов | 160 минут | 20,0 минут 9019 8 | 13,3 минуты |
1000 слов | 200 минут | 25,0 минут | 16,7 минут |
90 079 1500 слов | 300 минут | 37,5 минут | 25,0 минут |
2000 слов | 9019 7 400 минут50,0 минут | 33,3 минуты | |
2500 слов | 500 минут | 62,5 минут 90 198 | 41,7 минут |
3000 слов | 600 минут | 75,0 минут | 50,0 минут |
3500 слов | 700 минут | 87,5 минут | 58,3 минут |
4000 слов | 800 минут | 100,0 минут | 66,7 минут |
5000 слов | 1000 минут | 125. 0 minutes | 83.3 minutes |
7,500 words | 1,500 minutes | 187.5 minutes | 125.0 minutes |
10,000 words | 33.3 hours | 250.0 minutes | 166.7 minutes |
20 000 слов | 66,7 часа | 8,3 часа | 333,3 минуты |
25,00 0 слов | 83.3 hours | 10.4 hours | 416.7 minutes |
30,000 words | 100.0 hours | 12.5 hours | 8.3 hours |
50,000 words | 166.7 hours | 20.8 hours | 13,9 часа |
75 000 слов | 250,0 часа | 31,3 часа | 20,8 часа | 100 000 слов | 333,3 часа | 41,7 часа | 27,8 часа |
В приведенной ниже таблице указано, сколько времени потребуется для записи типичного количества страниц. Если вы хотите узнать, сколько времени займет написание эссе или книги, ознакомьтесь с таблицей ниже:
Количество страниц | Медленно (5 слов в минуту) | Среднее (40 слов в минуту) | Быстро (60 слов в минуту) |
1 страниц | 100 минут | 12,5 минут | 8,3 минут |
2 страниц | 2 00 минут | 25,0 минут | 16,7 минут |
3 страниц | 300 минут | 37,5 минут | 25,0 минут |
4 страниц | 400 минут | 50,0 минут | 33,3 минуты |
5 страниц | 500 минут | 62,5 минуты | 41,7 минут |
6 страниц | 901 97 600 минут75,0 минут | 50,0 минут | |
7 страниц | 700 минут | 87,5 минут | 58,3 минуты |
8 страниц | 800 минут | 100,0 минут | 66,7 минут |
9 страниц | 900 минут | 112,5 минут | 75,0 минут |
10 страниц 9 0198 | 1000 минут | 125,0 минут | 83,3 минуты |
25 страниц | 41,7 часа | 312,5 минут | 208,3 минут |
50 страниц | 83,3 часа | 10,4 часа | 9 0197 416,7 минут|
100 страниц | 166,7 часов | 20,8 часов | 13,9 часов |
250 страниц | 416,7 часов | 52,1 часов | 34,7 часов |
500 страниц | 833,3 часа | 104,2 часа | 69,4 часа |
750 страниц | 1250,0 часов | 156 . |