Сумма модулей – Модуль числа — Youclever.org

Доказательства свойств модуля — Науколандия

Существуют следующие свойства модуля действительных чисел:

1) |a + b| ≤ |a| + |b|;

2) |ab| = |a| × |b|;

3) , a ≠ 0;

4) |a – b| ≥ |a| – |b|.

Проведем доказательства, рассматривая различные случаи значений a и b.

Доказательство 1) |a + b| ≤ |a| + |b|:

Если a и b – положительные числа, то их модули совпадают с их значениями: |a| = a, |b| = b. Из этого следует, что |a + b| = |a| + |b|.

Если a – отрицательное число, а b – положительное число, то выражение |a + b| можно записать как |b – a|. Выражение же |a| + |b| равно сумме абсолютных значений a и b, что больше, чем b – a. Поэтому |a + b| < |a| + |b|.

Если b – отрицательное число, а a – положительное, то |a + b| принимает вид |a – b|, что также меньше суммы модулей |a| + |b|.

Если a и b – отрицательные числа, то получим |–a – b|. Результат этого выражения равен |a + b| (т. к. |–a – b| = |–(a + b)| = |a + b|). Но уже было доказано, что |a + b| = |a| + |b|, следовательно и |–a – b| = |a| + |b|.

Доказательство 2) |ab| = |a| × |b|:
Здесь, в отличие от сложения, рассматривать все случаи особо не требуется, т. к. абсолютное значение произведения любых чисел (положительных ли, отрицательных ли) не зависит от знаков множителей. В выражении |ab| мы сначала перемножаем числа, а потом «отбрасываем» знак (отрицательный, если он есть), в выражении |a| × |b| сначала избавляемся от знаков, а потом перемножаем. Но от того, в какой момент был взят модуль (до или после умножения), не зависит абсолютное значение произведения.

Доказательство 3) , a ≠ 0:

Если a – положительное число, то |a| = a и, следовательно, доказываемое равенство верно, т. к. и правая и левая части равны 1/a.

Если a – отрицательное число, то имеем . Взятие модуля в обоих выражениях приведет к делению единицы на абсолютное значение a. Значит эти выражения равны друг другу.

Доказательство 4) |a – b| ≥ |a| – |b|:

Если a и b – положительные числа, то их модули совпадают с самими числами. Поэтому |a – b| = |a| – |b|, потому что можно не брать модули вообще и тогда с двух сторон получим a – b.

Если a – положительное число, а b – отрицательное, то выражение |a – b| примет вид |a + b|, что больше, чем |a| – |b|.

Если a – отрицательное число, а b – положительное, то имеем |–a – b| = |–(a + b)| = |a + b|, что больше, чем |a| – |b|.

scienceland.info

Уравнения и неравенства с модулем

Автор Сергей Валерьевич

Суббота, Август 18, 2012

Репетитору по математике часто приходится сталкиваться с отсутствием у старшеклассников навыков решения простейших уравнений и неравенств с модулем. Между тем среди заданий С3 или С5 из ЕГЭ по математике таковые могут встретиться. Даже если их не будет на экзамене в явном виде, в процессе выполнения некоторых задач из ЕГЭ вам, возможно, придется столкнуться с решением того или иного задания с модулем. Поэтому научиться решать уравнения и неравенства с модулем должен каждый выпускник средней школы. В данной статье рассмотрены некоторые способы их решения. Присутствует также видеоразбор решения одного уравнения, содержащего модуль.

Считается, что чем больше способов решения существует у задачи, тем она интереснее с математической точки зрения. Уравнения и неравенства с модулями можно поэтому смело назвать интересными. Рассмотрим пример.

Решите уравнение:

   

Решение. Постараемся найти как можно большее количество решений данного уравнения. Подробное объяснение решений смотрите в видеоуроке.

Способ №1. Решение возведением в квадрат. Просто возводим обе части уравнения в квадрат. При этом не забываем, что подобное преобразование не является равносильным. Из-за этого могут появиться посторонние корни, поэтому полученные решения необходимо будет проверить прямой подстановкой в исходное уравнение.

   

   

   

Путем прямой подстановки полученных решений в исходное уравнение убеждаемся, что посторонних корней среди них нет. На самом деле в данном конкретном задании отсутствует необходимость проверки корней. Возведение обеих частей этого уравнения в квадрат не может привести к приобретению посторонних решений. Подумайте самостоятельно, почему это так.

Способ №2. Метод интервалов. Не совсем верное название, но мы его здесь употребим, поскольку в методической литературе оно встречается. Для решения нам потребуется найти значение переменной при котором подмодульное выражение обращается в ноль:  Наносим эту точку на числовую прямую и определяем знаки подмодульного выражения на полученных промежутках.

Числовая прямая

Далее на каждом промежутке раскрываем знак модуля в соответствии с полученными данными:

yourtutor.info

Модуль — сумма — Большая Энциклопедия Нефти и Газа, статья, страница 1

Модуль — сумма

Cтраница 1

Модуль суммы не может превзойти сумму модулей слагаемых.  [1]

Модуль суммы двух или нескольких комплексных чисел не превосходит суммы модулей этих чисел.  [2]

Модуль суммы двух или нескольких чисел меньше или равен сумме модулей этих чисел.  [3]

Модуль суммы индексов всех особых точек невырожденного векторного поля v степени т ( обозначается Ind v) не превосходит числа Петровского — — Олейник II ( т) и сравним по модулю 2 с числом и. Никаких других ограничений на Irul v не существует.  [4]

Заменим модуль суммы в правой части ( 20) суммой модулей и потребуем выполнения полученного неравенства. В этом случае ( 20) будет выполняться автоматически.  [5]

Докажите, что модуль суммы двух перемещений не превосходит суммы модулей составляющих перемещений. В каком случае модуль суммы равен сумме модулей слагаемых перемещений.  [6]

Известно, что модуль суммы меньше или равен сумме модулей слагаемых.  [7]

Доказать, что модуль суммы двух комплексных чисел не превосходит суммы модулей этих чисел.  [8]

Установим теперь свойства модуля суммы и разности двух комплексных чисел.  [9]

Теорема о том, что модуль суммы не больше суммы модулей слагаемых, легко распространяется на случай абсолютно сходящихся рядов.  [10]

Теорема о том, что модуль суммы не больше суммы модулей слагаемых, легко распространяется на случай абсолютно сходящихся рядов.  [11]

Поскольку разложить в ряд Фурье модуль суммы гармоник в общем виде нельзя, укажем, что при незначительных искажениях несущей выходной сигнал будет подобен детектированному.  [12]

Принципиальный интерес представляет способ выделения модуля суммы и разности входных — величин, предложенный в.  [13]

Установим теперь важные для дальнейшего свойства модуля суммы и разности двух комплексных чисел.  [14]

Такое отображение, фактически представляющее собой натягивание модуля суммы гауссовскнх полей на параболоиды в направлении внешней нормали, переведет гладкие параболоиды в некоторые случайные геометрические тела. Ограничивая эти фигуры снизу плоскостью z Л0, получим математическую модель кучевой облачности, в которой отдельные облака имеют случайную геометрию.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Простейшие уравнения с модулем. Тест

Определение. Геометрический смысл

 

Модуль (или абсолютная величина)   числа   (обозначается как )— неотрицательное число, определение которого зависит от типа числа  

А именно:

Мы будем называть данное правило правилом раскрытия модуля.

Например, так как , попадаем в первую строку (ситуацию)

так как попадаем во вторую ситуацию.

С геометрической точки зрения,  – есть расстояние между числом   и началом координат.

Решением уравнения, например,  являются числа и , потому что расстояние от точки координатной прямой до нуля равно , и расстояние от точки   до нуля также равно 6.

|| с геометрической точки зрения означает расстояние между точками и .

 

Полезные примеры

 

1) Раскрыть модуль:

Так как больше, чем , то , а значит согласно правилу раскрытия модуля.

2) Раскрыть модуль:

Так как больше нуля при всех значениях , то согласно правилу раскрытия модуля.

3) Раскрыть модуль:

Так как , то , а значит, согласно правилу раскрытия модуля.

Решение уравнений

 

1) Решить уравнение .

Модуль – всегда неотрицательная величина, поэтому уравнение решений не имеет.

Ответ: { }

2) Решить уравнение: .

Модуль раскрывается таким образом в случае, когда  .

Ответ:

3) Решить уравнение:

Согласно геометрическому смыслу модуля левая и правая части равенства представляют из себя одно и то же.

Ответ:

4)  Решить уравнение:

Раскрываем модуль согласно правилу раскрытия модуля:

а)

Имеем: ,     

Откуда .

Поскольку мы находимся в ситуации , то подходит только корень .

б)

Имеем: ,    

Откуда или .

Поскольку мы находимся в ситуации , то ни один корень из найденных в пункте (б) нам не подходит.

Ответ: .

Коротко можно было бы решение оформить так:

5) Решить уравнение:

Раскрываем модуль согласно правилу раскрытия модуля:

a) Первый случай:

Что равносильно .

б) Второй случай:

Что равносильно

Ответ:

6) Решить уравнение:

Можно было бы действовать согласно правилу раскрытия модуля, но проще будет в данном случае рассуждать так:

Внутри модуля может «скрываться» как так и .

Поэтому или

или

Из первого уравнения или , а второе уравнение корней не имеет.

Ответ:

 

7) Решить уравнение:

Раскрываем модуль согласно правилу раскрытия модуля:

а) Первый случай:

Рассмотрим отдельно первую строку системы:

Рассмотрим уравнение из системы:

или

Разложим на множители левую часть уравнения способом группировки, предварительно разбив среднее слагаемое на два:

Откуда (трехчлен в скобках корней не имеет).

Данный корень удовлетворяет первой строке системы, он пойдет  в ответ.

б) Второй случай:

Решение неравенства системы:

Корень удовлетворяет решению неравенства системы.

Собираем решения.

Ответ:

 

Также, смотрите «Модуль. Простейшие неравенства с модулем» здесь.

Вы можете пройти тест  по теме «Модуль. Раскрытие модуля. Простешие уравнения с модулем»

egemaximum.ru

Внеклассный урок — Модуль числа

Модуль числа

Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 5 является 5, модулем числа –5 тоже является 5.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |5|, |х|, |а| и т.д.

Правило:

                                                                     |а| = а, если а ≥ 0.

                                                                     |а| = –а, если а < 0.

 

Пояснение:

|5| = 5
Читается так: модулем числа 5 является 5.

|–5| = –(–5) = 5
Читается так: модулем числа –5 является 5.

|0| = 0
Читается так: модулем нуля является ноль.

 

Свойства модуля:

1) Модуль числа есть неотрицательное число:

|а| ≥ 0

2) Модули противоположных чисел равны:

|а| = |–а|

3) Квадрат модуля числа равен квадрату этого числа:

|а|2 = a2

4) Модуль произведения чисел равен произведению модулей этих чисел:

|а · b| = |а| · |b|

6) Модуль частного чисел равен отношению модулей этих чисел:

|а : b| = |а| : |b|

7) Модуль суммы чисел меньше или равен сумме их модулей:

|а + b| ≤ |а| + |b|

8) Модуль разности чисел меньше или равен сумме их модулей:

|аb| ≤ |а| + |b|

9) Модуль суммы/разности чисел больше или равен модулю разности их модулей:

|а ± b| ≥ ||а| – |b||

10) Постоянный положительный множитель можно вынести за знак модуля:

|m · a| = m · |а|, m >0

11) Степень числа можно вынести за знак модуля:

|аk| = |а|k, если аk существует

12) Если |а| = |b|, то a = ± b

 

Геометрический смысл модуля.

Модуль числа – это величина расстояния от нуля до этого числа.

Для примера возьмем снова число 5. Расстояние от 0 до 5 такое же, что и от 0 до –5 (рис.1). И когда нам важно знать только длину отрезка, то знак не имеет не только значения, но и смысла. Впрочем, не совсем верно: расстояние мы измеряем только положительными числами – или неотрицательными числами. Пусть цена деления нашей шкалы составляет 1 см. Тогда длина отрезка от нуля до 5 равна 5 см, от нуля до –5 тоже 5 см.

На практике часто расстояние отмеряется не только от нуля – точкой отсчета может быть любое число (рис.2). Но суть от этого не меняется. Запись вида |a – b| выражает расстояние между точками а и b на числовой прямой.

 

Пример 1. Решить уравнение |х – 1| = 3.

Решение.

Смысл уравнения в том, что расстояние между точками х и 1 равно 3 (рис.2). Поэтому от точки 1 отсчитываем три деления влево и три деления вправо – и наглядно видим оба значения х:
х1 = –2, х2 = 4.

Можем и вычислить.

х – 1 = 3
х – 1 = –3

х = 3 + 1
х = –3 + 1

х = 4
х = –2.

Ответ: х1 = –2; х2 = 4.

 

Пример 2. Найти модуль выражения:

3√5 – 10.

Решение.

Сначала выясним, является ли выражение положительным или отрицательным. Для этого преобразуем выражение так, чтобы оно состояло из однородных чисел. Не будем искать корень из 5 – это довольно сложно. Поступим проще: возведем в корень 3 и 10. Затем сравним величину чисел, составляющих разность:

3 = √9. Следовательно, 3√5 = √9 · √5 = √45

10 = √100.

Мы видим, что первое число меньше второго. Значит, выражение отрицательное, то есть его ответ меньше нуля:

3√5 – 10 < 0.

Но согласно правилу, модулем отрицательного числа является это же число с противоположным знаком. У нас отрицательное выражение. Следовательно, надо поменять его знак на противоположный. Выражением, противоположным 3√5 – 10, является –(3√5 – 10). Раскроем в нем скобки – и получим ответ:

–(3√5 – 10) = –3√5 + 10 = 10 – 3√5.

Ответ:

|3√5 – 10| = 10 – 3√5.

 

raal100.narod.ru

Модуль числа и свойства модуля

Определение модуля

Определение: Модулем положительного числа называется само это число, модулем отрицательного числа называется число, ему противоположное, модуль нуля равняется нулю.

Примеры нахождения модуля

Геометрический смысл модуля

Задан отрезок .

Определение: На координатной прямой модуль — это расстояние от начала координат до точки, изображающей данное число.

Определение: Модуль разности двух чисел i — это расстояние между точками и на координатной прямой.

Свойства модуля

  1. (Модуль любого числа — неотрицательное число)
  2. (Модули противоположных чисел равны)
  3. (Величина числа не превышает величина его модуля)
  4. (Модуль произведения дорівнєю произведению модулей сомножителей)
  5. (Модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю))
  6. (Модуль суммы не превышает суммы модулей слагаемых)

cubens.com

Модуль — сумма — Большая Энциклопедия Нефти и Газа, статья, страница 2

Модуль — сумма

Cтраница 2

Для обнаружения такого переполнения, учитывая, что модуль суммы двух таких чисел всегда меньше двух, используют один дополнительный разряд. Код ( прямой, дополнительный, обратный), в котором имеется такой пополнительный разряд, азываются модифицированным. Правила пере-оса из разрядов знака остаются прежними в зависимости от того, в каком коде ( обратном или дополнительном) представлены числа. Q 2, указывает несовпадение цифр в знаковых разрядах. В этом случае комбинации 01 соответствует положительное, а 10 — отрицательное число.  [16]

При сложении двух рациональных чисел с разными знаками модуль суммы равен разности модулей слагаемых.  [17]

При записи правой части учтено, что квадрат модуля суммы двух комплексов равен сумме квадратов модулей этих комплексов плюс произведение первого комплекса на сопряженный комплекс второго и плюс произведение второго на сопряженный комплекс первого.  [18]

Неравенство Минковского очевидно при р 1, так как модуль суммы двух чисел не превосходит суммы их модулей. Кроме этого, оно заведомо выполняется, если хотя бы один из векторов х, у равен нулю.  [19]

Это сразу вытекает из определения абсолютной непрерывности и свойств модуля суммы и произведения.  [20]

Это сразу вытекает из определения абсолютной непрерывности и свойств модуля суммы и произведения.  [21]

Сумма двух отрицательных чисел есть число отрицательное; чтобы найти модуль суммы, надо сложить модули слагаемых.  [22]

Первый из них является од нополу пер йодным прецизионным формирователем модуля суммы с раздельными выходами для положительных и отрицательных полуволн напряжений, второй — сумматором, обеспечивающим двухполупериодное выпрямление рабочего сигнала, суммирование его с тормозным обратной полярности и устранение этой суммы.  [23]

Они позволяют оценивать сверху модули коэффициентов степенного ряда через максимум модуля суммы ряда на окружности z — z0 p и радиус этой окружности.  [24]

Напомним еще, что аналогичное неравенство имеет место и для сумм: модуль суммы не превосходит суммы модулей.  [25]

А — максимум модулей остальных коэффициентов, модуль старшего члена многочлена больше модуля суммы всех остальных членов, а поэтому никакое значение х, удовлетворяющее неравенству ( 1), не может служить корнем этого многочлена.  [26]

Поскольку количество центров облаков фиксировано, а их средние горизонтальные размеры при добавлении модуля суммы гауссовскнх полей увеличиваются, то реальный балл облачности N NO п определяется численно. Значение D2 рассчитывается, исходя из следующих соображений.  [27]

Сущность суммирования по модулю — mh заключается в том, что результат равен модулю суммы разрядов, если этот модуль меньше tnh. Если модуль суммы больше т то результат получают вычитанием mft из суммы.  [29]

Принцип действия ИПФ основан на сравнении модуля емкостного тока каждого из фазных вводов с модулем суммы комплексных амплитуд емкостных токов вводов двух других фаз.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Калькулятор возведения в степень – Онлайн калькулятор степеней. Возведение в степень онлайн.

Калькулятор степеней — возвести в степень онлайн

Калькулятор помогает быстро возвести число в степень онлайн. Основанием степени могут быть любые числа (как целые, так и вещественные). Показатель степени также может быть целым или вещественным, и также как положительным, так и отрицательным. Следует помнить, что для отрицательных чисел возведение в нецелую степень не определено и потому калькулятор сообщит об ошибке в случае, если вы всё же попытаетесь это выполнить.

Что такое натуральная степень числа?

Число p называют n-ой степенью числа a, если p равно числу a, умноженному само на себя n раз: p = an = a·...·a
n — называется показателем степени, а число aоснованием степени.

Как возвести число в натуральную степень?

Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:

Пример 1. Возвести число три в четвёртую степень. То есть необходимо вычислить 34
Решение: как было сказано выше, 34 = 3·3·3·3 = 81.
Ответ: 34 = 81.

Пример 2. Возвести число пять в пятую степень. То есть необходимо вычислить 55
Решение: аналогично, 55 = 5·5·5·5·5 = 3125.
Ответ: 55 = 3125.

Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n раз.

Что такое отрицательная степень числа?

Отрицательная степень -n числа a — это единица, поделённая на a в степени n: a-n = .

При этом отрицательная степень существует только для отличных от нуля чисел, так как в противном случае происходило бы деление на ноль.

Как возвести число в целую отрицательную степень?

Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.

Пример 1. Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2-4

Решение: как было сказано выше, 2-4 = = = 0.0625.

Ответ: 2-4 = 0.0625.

programforyou.ru

показатель и основание степени. Онлайн калькулятор

Степень с натуральным показателем

Произведение, в котором все множители одинаковые, можно записывать короче:

4 · 4 · 4 = 43

Выражение 43 (а также результат его вычисления) называется степенью.

Степень – это краткая запись произведения одинаковых сомножителей.

Число, показывающее количество одинаковых сомножителей, называют показателем степени. Возводимое в степень число называют основанием степени:

Запись 43 читается так: четыре в степени три или четыре в третьей степени.

Степенью числа a с натуральным показателем n (где n > 1) называют произведение n множителей, каждый из которых равен a.

Пример 1. Вычислим 24:

Пример 2. Вычислим 37:

Если какое-нибудь число берётся сомножителем 2 раза, то произведение называется второй степенью этого числа, если какое-нибудь число берётся сомножителем 3 раза, то произведение называется третьей степенью этого числа и т. д. Например, произведение 16 из первого примера – это четвёртая степень числа 2.

Первой степенью числа называют само это число. Например, 21 = 2, 51 = 5, 1001 = 100, т. е. первая степень любого числа равна самому числу:

a1 = a

Вторую степень числа называют иначе квадратом числа. Например, запись 52 читают пять в квадрате. Третью степень числа называют иначе кубом числа. Например, запись 53 читают пять в кубе. Эти названия заимствованы из геометрии.

Возведение в степень – это вычисление значения степени. Например, если стоит задача вычислить значение степени 35, то её можно переформулировать так: возвести число 3 в пятую степень.

Пример: вычислить значение степени 35.

Решение: данная степень равна произведению: 3 · 3 · 3 · 3 · 3. Перемножаем сомножители и получаем ответ: 243.

Ответ: 35 = 243.

Степень часто используют для записи очень больших или очень малых чисел. Например, скорость света, которая примерно равна 300 000 000 (триста миллионов) метров в секунду удобнее записывать так: 3 · 108 м/с.

Степень можно использовать для представления разрядной единицы в виде степени:

399 = 3 · 100 + 9 · 10 + 9 · 1 = 3 · 102 + 9 · 101 + 9 · 1

Также степень часто используют в записи разложения числа на простые множители:

1000 = 23 · 53

Калькулятор возведения в степень

Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить.

naobumium.info

Калькулятор степеней онлайн: формула, примеры с решением

Возведение в степень — это арифметическая операция повторяющегося умножения. Если требуется перемножить число n-ное количество раз, то достаточно возвести его в n-ную степень.

Основные действия со степенями

В первую очередь степень — это повторяющееся умножение. Число 134 — это 13 × 13 × 13 × 13, где перемножаются четыре одинаковых сомножителя. Если умножить 134 на 132, то мы получим (13 × 13 × 13 × 13) × (13 × 13), что логично превращается в 136. Это и есть первое правило возведения в степень, которое гласит: при умножении чисел, возведенных в степень, их показатели суммируются. Математически это записывается как:

am × an = a(m+n).

Если разделить 134 на 132, то нам потребуется вычислить дробь вида:

(13 × 13 × 13 × 13) / (13 × 13).

Мы можем просто сократить числа в числителе и знаменателе, и в результате останется 13 × 13 = 132. Очевидно, деление чисел, возведенных в степень, соответствует вычитанию их показателей. Второе правило действий со степенями математически выглядит так:

am / an = a(m – n).

Теперь давайте возведем 114 в куб, то есть в третью степень. Для этого нам потребуется вычислить выражение (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11) × (11 × 11 × 11 × 11). Получилось 12 сомножителей, следовательно, при возведении в n-ную степень числа в степени m, показатели перемножаются. Третье правило записывается так:

(am)n = a(m × n).

Это основные правила работы со степенными выражениями. Однако число можно возвести в отрицательную степень, дробную и нулевую. Какой результат даст выражение 150? Давайте воспользуемся вторым правилом действий степенями и попробуем разделить 154 на 154, что запишется как дробь:

154 / 154.

Очевидно, что в числителе и знаменателе стоят одни и те же числа, а когда число делится само на себя, оно превращается в единицу. Но согласно правилу действий со степенными числами это будет эквивалентно 150. Следовательно:

154 / 154 = 150 = 1.

Таким образом, четвертое правило гласит, что любое положительное число в нулевой степени равняется единице. Выглядит это правило так:

a0 = 1.

При помощи второго правила легко объяснить и работу с отрицательными степенями. К примеру, давайте разделим 82 на 84 и запишем выражение в виде дроби.

(8 × 8) / (8 × 8 × 8 × 8).

Мы можем сократить две восьмерки в числителе и знаменателе и преобразовать дробь в 1 / (8 × 8). Но согласно правилу в ответе мы должны получить 8-2. В знаменателе у нас как раз стоит восьмерка в квадрате. Таким образом:

a-m = 1 / am

При этом для значения -1 правило трансформируется в элегантную формулу:

a-1 = 1 / a.

И последнее правило, которое пригодится вам при работе со степенными функциями, гласит о дробных степенях. Что мы можем сделать с выражением 7(1/2). Очевидно, что возвести его в квадрат, и тогда по третьему правилу в результате у нас останется только семерка. Степень 1/2 — это извлечение квадратного корня, так как при возведении его в квадрат мы получаем целое число. Степень 1/3 соответствует извлечению кубического корня, но как быть с показателем 2/3? Логично, что это кубический корень из числа, возведенного в квадрат. Последнее правило гласит, что знаменатель дробного показателя означает извлечение корня, а числитель — возведение в степень. Математически это выглядит как:

a(m/n) есть корень n-ной степени из am.

Теперь вы знаете, как проводить любые арифметические операции со степенными выражениями.

Вы можете использовать наш калькулятор для вычисления степенных функций. Программа позволяет определить основание, показатель и результат операции. Кроме того, калькулятор сопровождается иллюстрацией графика функций: параболы, кубической параболы и параболы в n-ной степени. Рассмотрим пару примеров.

Примеры из реальной жизни

Депозит в банке

Если мы положим на банковский депозит $1 000 под годовую ставку в размере 9% годовых, то сколько денег на счету будет через 20 лет? Рост с течением времени рассчитываются по экспоненциальной формуле вида:

Рост = a × e(kt),

где a – начальное значение, e – константа, равная 2,718; k – коэффициент роста; t – время.

Для решения банковской задачи нам потребуется возвести 2,718 в степень, равную 20 × 0,09 = 1,8. Воспользуемся нашим калькулятором и введем в ячейку «Число, x =» значение 2,718, а в ячейку «Степень, n =» значение 1,8. Мы получим ответ, равный 6,049. Теперь, для подсчета суммы на банковском счету нам необходимо умножить начальное значение $1 000 на прирост в размере 6,049. В итоге, через 20 лет на депозите будет $6 049.

Школьная задача

Пусть в школьной задаче требуется построить график функции y = x2,5. Это алгебраическая задача, для решения которой требуется задаться тремя значениями «x» и вычислить соответствующие ему значения «y». После чего по найденным точкам построить график функции. Введите в ячейку «Степень, n =» значение 2,5. После этого последовательно рассчитайте значения «y», вводя в «Число, x =» аргументы 1, 2, 3. Вы получите соответствующие значения функции 1; 5,657; 15,588. Вам останется только нарисовать кривую по найденным точкам.

Заключение

Возведение в степень — арифметическая операция последовательного умножения. Степени имеют больше значение в прикладных науках, так как большинство реальных процессов описываются при помощи степенных функций. Используйте наш калькулятор для расчетов любых практических или школьных задач.

bbf.ru

Возведение в степень онлайн

Предлагаемый нами бесплатный калькулятор включает такую нужную для многих функцию, как калькулятор степеней. С его помощью выполнить возведение числа в степень проще простого, задайте выражение — получите результат. Калькулятор производит возведение в степень онлайн, как и любые другие функции, прямо на нашем сайте.

Как возвести число в степень в калькуляторе?

Возведение в степень — это действие умножения числа самого на себя n раз, где число xy — степень, x — основание степени, y=n — показатель степени. Чтобы возвести в степень на калькуляторе, используйте соответствующие кнопки на панели управления. Если вам нужна более подробная информация по работе с цифровой панелью калькулятора, перейдите на страницу кнопки онлайн калькулятора.

Функция возведения в степень в калькуляторе представлена пятью кнопками: возведение в квадрат, возведение в куб, возведение в n степень произвольного числа, возведение в степень основания равного 10-ти и возведение в степень экспоненты.

Кнопки калькулятора, отвечающие за возведение в степень:

Возведение в квадрат и в куб

Первой степенью числа является само число. Любое число в нулевой степени равно 1. Возведение в квадрат — вторая степень, куб — третья. Квадрат числа всегда имеет положительное значение, за исключением квадрата комплексных чисел.

Эти кнопки калькулятора упрощают ввод операции: х2 — возведение в квадрат, х3 — в куб. Одним нажатием в поле ввода вставляется запись вида ^2 или ^3.

Пример возведение в квадрат и куб:

Возведение в n степень

Используйте эту кнопку, когда нужно рассчитать какое-либо число в степени n. Кнопка xy выводит в строке ввода выражения знак степени (циркумфлекс).

Наш онлайн калькулятор возведение в степень обозначает обычной «двухэтажной» записью на дисплее, а вот в поле ввода выражения нужно, конечно, использовать циркумфлекс.

Пример возведение чисел в степень:

Вычисление степени числа 10

Нажатие этой кнопки вставляет в поле ввода запись вида: 10^(), т.е. основанием степени записывается число 10. Удобно применять, когда нужно написать возведение в какую-нибудь степень именно числа 10.

Пример, как найти степень числа 10:

Экспонента в степени

Нажав на кнопку, увидите в строке запись exp(). Чтобы посчитать число е в степени, нужно возвести число Эйлера в степень ex = exp(x). Кому интересно знать, чему равно число е: его значение 2.71828182845905.

Пример, как возвести е в степень:

Возведение в дробную степень

Допустим, нас интересует дробная степень числа xy1/y2. Так как возведение в степень — действие, обратное к извлечению корня, расчёт сводится к нахождению корня степени y2 из числа x в степени y1. Если значение y2 чётное, то дробную степень можно вычислить только при положительном основании, так как корень отрицательного числа не существует и калькулятор в подобной ситуации выдаст вам ошибку!

При возведении в дробную степень не забывайте закрывать основание в скобки, иначе знаменатель дроби в показателе степени уйдет в знаменатель основания!

Этот пример показывает, как возвести в дробную степень на калькуляторе:

Наш онлайн калькулятор позволяет возвести как в положительную, так и в отрицательную степень. При отрицательном значении показателя, основание должно принять вид (1/x), другими словами, числитель и знаменатель основания степени должны поменяться местами и только после этого можно начинать возведение. Калькулятор позволяет возвести число в отрицательную степень автоматически, опуская все промежуточные преобразования и выдавая сразу окончательный ответ.

При возведении в отрицательную степень всевозможных функций, в том числе тригонометрических, онлайн калькулятор автоматически учитывает их четность/нечетность по правилу знаков.

Этот пример показывает, как возвести в отрицательную степень на калькуляторе:

Дробное число в степени калькулятор тоже рассчитает.

Возведение дроби в степень с помощью калькулятора:

В калькуляторе можно рассчитать и корень в степени.

Возведение корня в степень с помощью калькулятора:

Все функции нашего бесплатного калькулятора собраны в одном разделе. Функции онлайн калькулятора >>

Возведение в степень онлайн was last modified: Март 3rd, 2016 by Admin

compuzilla.ru

Возведение в степень и извлечение корня из числа онлайн.

Корень нечётной степени из положительного числа

В результате вычисления корня нечётной степени из положительного числа будет положительное число: .

Пример Вычислим корни нечётной степени из 8, 27, 125, 243

Корни 3 степени также называют кубическими корнями.

В результате вычисления корней 5-ой степени из положительных чисел, получили также положительные числа.

Корень нечётной степени из отрицательного числа

В результате вычисления корня нечётной степени из отрицательного числа будет отрицательное число: .

Пример Найдем корни 3 и 5 степеней из отрицательных чисел.
Корень четной степени из положительного числа

Корень чётной степени из положительного числа имеет два значения, положительное и отрицательное: .

Пример Вычислим корни 2 и 4 степени.

Корень 2-й степени называют квадратный корнем.

Корень четной степени из отрицательного числа

Корень четной степени из отрицательного числа не существует для вещественных чисел.

Корень любой степени из нуля

calcs.su

Возведение в степень — онлайн калькулятор, секретные примеры, игры

Возведение в степень – операция, тесно связанная с умножением, это операция – результат многократного умножения какого-либо числа на само себя. Изобразим формулой: a1 * a2 * … * an = an.

Например, а=2, n=3: 2 * 2 * 2=2^3 = 8.

Вообще возведение в степень часто используется в различных формулах по математике и физике. Эта функция имеет более научное предназначение, чем четыре основные: Сложение, Вычитание, Умножение, Деление.

Возведение числа в степень

Возведение числа в степень – операция не сложная. Оно связано с умножением подобно связи умножения и сложения. Запись an – краткая запись n-ого количество чисел «а» умноженных друг на друга.

Рассмотри возведение в степень на самых простых примерах, переходя к сложным.

Например, 42. 42 = 4 * 4 = 16. Четыре в квадрате (во второй степени) равно шестнадцати. Если вам не понятно умножение 4 * 4, то читайте нашу стать об умножении.

Рассмотрим еще одни пример: 5^3. 5^3 = 5 * 5 * 5 = 25 * 5 = 125. Пять в кубе (в третьей степени) равно ста двадцати пяти.

Еще один пример: 9^3. 9^3 = 9 * 9 * 9 = 81 * 9 = 729. Девять в кубе равняется семи сотням двадцати девяти.

Формулы возведения в степень

Чтобы грамотно возводить в степень нужно помнить и знать формулы, указанные ниже. В этом нет ничего сверх естественного, главное понять суть и тогда они не только запомнятся, но и покажутся легкими.

Возведение одночлена в степень

Что из себя представляет одночлен? Это произведение чисел и переменных в любом количестве. Например, двух – одночлен. И вот именно о возведении в степень таких одночленов данная статья.

Пользуясь формулами возведения в степень вычислить возведение одночлена в степень будет не трудно.

Например, (3x^2y^3)^2= 3^2 * x^2 * 2 * y^(3 * 2) = 9x^4y^6; Если возводить одночлен в степень, то в степень возводится каждая составная одночлена.

Возводя в степень переменную уже имеющую степень, то степени перемножаются. Например, (x^2)^3 = x^(2 * 3) = x^6;

Возведение в отрицательную степень

Отрицательная степень – обратное число. Что такое обратное число? Любому числу Х обратным будет 1/X. То есть Х-1=1/X. Это и есть суть отрицательной степени.

Рассмотрим пример (3Y)^-3:

(3Y)^-3 = 1/(27Y^3).

Почему так? Так как в степени имеется минус, то просто переносим в знаменатель данное выражение, а затем возводим в его в третью степень. Просто не так ли?

Возведение в дробную степень

Начнем рассмотрение вопрос на конкретном примере. 43/2. Что означает степень 3/2? 3 – числитель, означает возведение числа (в данном случае 4) в куб. Число 2 – знаменатель, это извлечение корня второй степени из числа (в данном случае 4).

Тогда получаем квадратный корень из 43 = 2^3 = 8. Ответ: 8.

Итак, знаменатель дробной степени может быть, как 3, так и 4 и до бесконечности любым числом и это число определяет степень квадратного корня, извлекаемого из заданного числа. Конечно же, знаменатель не может быть равным нулю.

Возведение корня в степень

Если корень возводится в степень, равной степени самого корня, то ответом будет подкоренное выражение. Например, (√х)2 = х. И так в любом случае равенства степени корня и степени возведения корня.

Если (√x)^4. То (√x)^4=x^2. Чтобы проверить решение переведем выражение в выражение с дробной степенью. Так как корень квадратный, то знаменатель равен 2. А если корень возводится в четвертую степень, то числитель 4. Получаем 4/2=2. Ответ: x = 2.

В любом случае лучший вариант просто перевести выражение в выражение с дробной степенью. Если не будет сокращаться дробь, значит такой ответ и будет, при условии, что корень из заданного числа не выделяется.

Возведение в степень комплексного числа

Что такое комплексное число? Комплексное число – выражение, имеющее формулу a + b * i; a, b – действительные числа. i – число, которое при возведение в квадрат дает число -1.

i^2=-1.

Рассмотрим пример. (2 + 3i)^2.

(2 + 3i)^2 = 22 +2 * 2 * 3i +(3i)^2 = 4+12i^-9=-5+12i.

Запишитесь на курс «Ускоряем устный счет, НЕ ментальная арифметика», чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.


Возведение в степень онлайн

С помощью нашего калькулятора, Вы сможете посчитать возведение числа в степень:

Загрузка калькулятора…

Возведение в степень 7 класс

Возведение в степень начинают проходить школьники только в седьмом классе.

Возведение в степень – операция, тесно связанная с умножением, это операция – результат многократного умножения какого-либо числа на само себя. Изобразим формулой: a1 * a2 * … * an=an.

Например, а=2, n=3: 2 * 2 * 2 = 2^3 = 8.

Примеры для решения:

Возведение в степень презентация

Презентация по возведению в степень, рассчитанную на семиклассников. Презентация может разъяснить некоторые непонятные моменты, но, вероятно, таких моментов не будет благодаря нашей статье.

Скачать презентацию

Итог

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

cepia.ru

Возведение в степень | Формулы с примерами

Формула возведения в степень

Степенью числа a с показателем n, называется произведение n сомножителей, каждый из которых равен a.
a — действительное число,
n — натуральное число.

Калькулятор возведения в степень онлайн


Правило возведения в степень

Степень показывает количество раз, которое некое число умножается на себя. Она обозначается малой цифрой (показателем степени) справа вверху от основного числа (основани степени).

Возведение в степень — действие нахождения степени:

Умножение числа на себя один раз называется возведением числа в квадрат.

Умножение числа на себя два раза называется возведением в куб.

Свойства возведения в степень

1. Если отрицательно число возвести в четную степень, то получим положительное число.

Пример
(-2)22 > 0;

(-3)34 > 0;

(-5)88 > 0.

2.Если отрицательное число возвести в нечетную степень, то получим отрицательное число.

! Возведение в степень — действие третьей ступени, его выполняют перед действиями второй ступени (умножением и делением) и первой ступени (сложением и вычитанем).

Возведение в степень примеры

1. x3 = x • x • x ;
a = x ;

2. k5 = k • k • k • k • k ;
a = k ;

3. 181 = 18 ;
a = 18;

4. 118 = 1;
a = 1 ;

5. 0 7 = 0;
a = 0;

6. 53 = 5 • 5 • 5 = 125 ;
a = 5 ;

7. 74 = 7 • 7 • 7 • 7 = 2 401 ;
a = 5 ;

formula-xyz.ru

Количество сочетаний без повторений – Сочетания без повторений.

Сочетания без повторений.

Поиск Лекций

Основные формулы комбинаторики


Задачи, в которых речь идет о тех или иных комбинациях объектов, их называют комбинаторными задачами. Область математики, в которой рассматриваются комбинаторные задачи, называют комбинаторикой.

Комбинаторика – область математики, в которой рассматриваются задачи о тех или иных комбинациях объектов.

 

Правило суммы


Пусть имеется n попарно непересекающихся множеств A1, A2,…An, содержащих m1, m2,…, mn элементов соответственно. Число способов, которыми можно выбрать один элемент из всех этих множеств, равно

m1 m2 … mn.

Пример. На курсе имеется 3 группы. В первой – 25 человек, во второй – 30, в третьей – 20. Сколькими способами из них можно выбрать одного студента?

Решение. Из первой группы одного человека можно выбрать 25 способами, из второй – 30, из третьей – 20. Чтобы найти ответ, нужно сложить все эти способы:

25 30 20=75.

Ответ: выбрать одного студента из трех групп можно 75 способами.

 

Правило произведения


Пусть имеется .n множеств A1, A2,…An,содержащих m1, m2,,…, mn элементов соответственно. Число способов, которыми можно выбрать по одному элементу из каждого множества

m1ּm2 ּ…ּmn.

Пример. На курсе имеется 3 группы. В первой – 25 человек, во второй – 30, в третьей – 20. Сколькими способами из каждой из них можно выбрать по одному студенту?

Решение. Из первой группы одного человека можно выбрать 25 способами, из второй – 30, из третьей – 20. Чтобы найти ответ, нужно перемножить эти числа:

25ּ30ּ20=15000.

Ответ: для того, чтобы из каждой группы выбрать по одному студенту, существует 15000 способов.

^ Если выбираем один элемент из нескольких множеств, то применяем правило суммы.

Если выбираем по одному элементу из нескольких множеств, то применяем правило произведения.

Факториаломчислаn называется последовательное произведение натуральных чисел от единицы до самого числа n:

Примечание: 0!=1.

 

Перестановки без повторений


Перестановками из n различных элементов называются размещения из этих n элементов по n. Перестановки — частный случай размещений.

Пример. Сколькими способами можно расставить в шеренгу студентов группы из 25 человек?

Решение. Число способов есть число перестановок из 25 элементов, то есть:

P25 = 25ּ24ּ23ּ…ּ1=25!=1,55ּ1025.

Ответ: расставить в шеренгу студентов группы из 25 человек можно 1,55ּ1025 способами.

 

Размещения без повторений


Различные упорядоченные подмножества по m элементов данного множества, содержащего n элементов, называются размещениями из n по m. Их число равно:

В частности: .

Пример. Из группы, состоящей из 25 человек, надо выбрать шахматную команду из четырех человек на I, II, III и IV доски. Сколькими способами это можно сделать?

Решение. Так как из 25 человек выбираются 4 и порядок важен, то число способов есть число размещений из 25 по 4, то есть:

.

Ответ: выбрать из 25 человек шахматную команду из четырех человек на I, II, III и IV доски можно 303600 способами.

Сочетания без повторений.


Различные неупорядоченные подмножества по m элементов из данного множества, содержащего n элементов, называются сочетаниями из n по m. Их число равно:

В частности, .

Пример. Сколькими способами из группы в 25 человек можно выбрать баскетбольную команду из пяти человек?

Решение. Так как из 25 человек выбираются 5 и порядок не важен, то число способов есть число сочетаний из 25 по 5, то есть:

Ответ: из группы в 25 человек можно выбрать баскетбольную команду 53130 способами.

Рекомендуемые страницы:

poisk-ru.ru

Число размещений без повторений

Число размещений без повторений из n по k – это число способов, сколькими можно из n различных элементов построить векторов с k различными координатами.

Число размещений без повторений находится по формуле:

.

Пример: Сколькими способами можно построить 3-значное число с различными цифрами, не содержащее цифры 0?

Количество цифр , размерность вектора с различными координатами

Число размещений с повторениями

Число размещений с повторениями из n по k – это число способов, сколькими можно из n различных элементов построить векторов с k координатами, среди которых могут быть одинаковые.

Число размещений с повторениями находится по формуле:

.

Пример: Сколько слов длины 6 можно составить из 26 букв латинского алфавита?

Количество букв , размерность вектора

Число перестановок без повторений

Число перестановок без повторений из n элементов – это число способов, сколькими можно расположить на n различных местах n различных элементов.

Число перестановок без повторений находится по формуле:

.

Замечание: Мощность искомого множества А удобно искать по формуле: , гдех – число способов выбрать нужные места; у – число способов расположить на них нужные элементы; z – число способов расположить остальные элементы на оставшихся местах.

Пример. Сколькими способами можно расставить на книжной полке 5 различных книг? В скольких случаях две определенные книги А и В окажутся рядом?

Всего способов расставить 5 книг на 5-ти местах – равно = 5! = 120.

В задаче х – число способов выбрать два места рядом, х = 4; у – число способов расположить две книги на двух местах, у = 2! = 2; z – число способов расположить остальные 3 книги на оставшихся 3-х местах,  = 3! = 6. Значит = 48.

Число сочетаний без повторений

Число сочетаний без повторений из n по k – это число способов, сколькими можно из n различных элементов выбрать k штук без учета порядка.

Число сочетаний без повторений находится по формуле:

.

Свойства:

1) ; 2); 3);

4) ; 5); 6).

Пример. В урне 7 шаров. Из них 3 белых. Наугад выбирают 3 шара. Сколькими способами это можно сделать? В скольких случаях среди них будет ровно один белый.

Всего способов . Чтобы получить число способов выбрать 1 белый шар (из 3-х белых) и 2 черных шара (из 4-х черных), надо перемножитьиТаким образом искомое количество способов

Упражнения

1. Из 35 учащихся класс по итогам года имели “5” по математике – 14 человек; по физике – 15 человек; по химии – 18 человек; по математике и физике – 7 человек; по математике и химии – 9 человек; по физике и химии – 6 человек; по всем трем предметам – 4 человек. Сколько человек имеют “5” по указанным предметам? Сколько человек не имеет “5” по указанным предметам? Имеет “5” только по математике? Имеет “5” только по двум предметам?

2. В группе из 30 студентов каждый знает, по крайней мере, один иностранный язык – английский или немецкий. Английский знают 22 студента, немецкий – 17. Сколько студентов знают оба языка? Сколько студентов знают немецкий язык, но не знают английский?

3. В 20 комнатах общежития института Дружбы Народов живут студенты из России; в 15 – из Африки; в 20 – из стран Южной Америки. Причем в 7 – живут россияне и африканцы, в 8 – россияне и южноамериканцы; в 9 – африканцы и южноамериканцы; в 3 – и россияне, и южноамериканцы, и африканцы. В скольких комнатах живут студенты: 1) только с одного континента; 2) только с двух континентов; 3) только африканцы.

4. Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике и астрономии. Три спецкурса посещают 10 студентов, по математике и физике – 30 студентов, по математике и астрономии – 25; спецкурс только по физике – 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике – 145, по астрономии – 100 студентов. Сколько студентов посещают спецкурс только по астрономии? Сколько студентов посещают два спецкурса?

5. Староста курса представил следующий отчет по физкультурной работе. Всего – 45 студентов. Футбольная секция – 25 человек, баскетбольная секция – 30 человек, шахматная секция – 28 человек. При этом, 16 человек одновременно посещают футбольную и баскетбольную секции, 18 – футбольную и шахматную, 17 – баскетбольную и шахматную, 15 человек посещают все три секции. Объясните, почему отчет не был принят.

6. В аквариуме 11 рыбок. Из них 4 красных, остальные золотые. Наугад выбирают 4 рыбки. Сколькими способами это можно сделать? Найти число способов сделать это так, чтобы среди них будет: 1) ровно одна красная; 2) ровно 2 золотых; 3) хотя бы одна красная.

7. В списке 8 фамилий. Из них 4 – женские. Сколькими способами их можно разделить на две равные группы так, чтоб в каждой была женская фамилия?

8. Из колоды в 36 карт выбирают 4 . Сколько способов сделать это так, чтобы: 1) все карты были разных мастей; 2) все карты были одной масти; 3) 2 красные и 2 черные.

9. На карточках разрезной азбуки даны буквы К, К, К, У, У, А, Е, Р. Сколько способов сложить их в ряд так, что бы получилось «кукареку».

10. Даны карточки разрезанной азбуки с буквами О, Т, О, Л, О, Р, И, Н, Г, О, Л, О, Г. Сколько способов сложить их так, что бы получилось слово «отолоринголог».

11. Даны карточки нарезной азбуки с буквами Л, И, Т, Е, Р, А, Т, У, Р, А. Сколько способов сложить их в ряд так, что бы получилось слово «литература».

12. 8 человек становятся в очередь. Сколько способов сделать это так, что бы два определенных человека А и Б оказались: 1) рядом; 2) на краях очереди;

13. 10 человек садятся за круглый стол на 10 мест. Сколькими способами это можно сделать так, чтоб рядом оказались: 1) два определенных человека А и Б; 2) три определенных человека А, Б и С.

14. Из 10 арабских цифр составляют 5-значный код. Сколькими способами это можно сделать так, чтобы: 1) все цифры были разными; 2) на последнем месте четная цифра.

15. Из 26 букв латинского алфавита (среди них 6 гласных) составляется шестибуквенное слово. Сколькими способами это можно сделать так, чтобы в слове были: 1) ровно одна буква «а»; 2) ровно одна гласная буква; ровно две буквы «а»; в) ровно две гласные.

16. Сколько четырехзначных чисел делятся на 5?

17. Сколько четырехзначных чисел с различными цифрами делятся на 25?

19. Брошены 3 игральные кости. В скольких случаях выпала: 1) ровно 1 «шестерка»; 2) хотя бы одна «шестерка».

20. Брошены 3 игральные кости. В скольких случаях будет: 1) все разные; 2) ровно два одинаковых числа очков.

21. Сколько слов с различными буквами можно составить из алфавита а, в, с, d. Перечислить их все в лексикографическом порядке: abcd, abcd….

studfiles.net

Число сочетаний без повторений

Число сочетаний без повторений из n по k – это число способов, сколькими можно из n различных элементов выбрать k штук без учета порядка.

Число сочетаний без повторений находится по формуле:

.

Свойства:

1) ; 2); 3);

4) ; 5); 6).

Пример. В урне 7 шаров. Из них 3 белых. Наугад выбирают 3 шара. Сколькими способами это можно сделать? В скольких случаях среди них будет ровно один белый.

Всего способов . Чтобы получить число способов выбрать 1 белый шар (из 3-х белых) и 2 черных шара (из 4-х черных), надо перемножитьиТаким образом искомое количество способов

Упражнения

1. Из 35 учащихся класс по итогам года имели “5” по математике – 14 человек; по физике – 15 человек; по химии – 18 человек; по математике и физике – 7 человек; по математике и химии – 9 человек; по физике и химии – 6 человек; по всем трем предметам – 4 человек. Сколько человек имеют “5” по указанным предметам? Сколько человек не имеет “5” по указанным предметам? Имеет “5” только по математике? Имеет “5” только по двум предметам?

2. В группе из 30 студентов каждый знает, по крайней мере, один иностранный язык – английский или немецкий. Английский знают 22 студента, немецкий – 17. Сколько студентов знают оба языка? Сколько студентов знают немецкий язык, но не знают английский?

3. В 20 комнатах общежития института Дружбы Народов живут студенты из России; в 15 – из Африки; в 20 – из стран Южной Америки. Причем в 7 – живут россияне и африканцы, в 8 – россияне и южноамериканцы; в 9 – африканцы и южноамериканцы; в 3 – и россияне, и южноамериканцы, и африканцы. В скольких комнатах живут студенты: 1) только с одного континента; 2) только с двух континентов; 3) только африканцы.

4. Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике и астрономии. Три спецкурса посещают 10 студентов, по математике и физике – 30 студентов, по математике и астрономии – 25; спецкурс только по физике – 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике – 145, по астрономии – 100 студентов. Сколько студентов посещают спецкурс только по астрономии? Сколько студентов посещают два спецкурса?

5. Староста курса представил следующий отчет по физкультурной работе. Всего – 45 студентов. Футбольная секция – 25 человек, баскетбольная секция – 30 человек, шахматная секция – 28 человек. При этом, 16 человек одновременно посещают футбольную и баскетбольную секции, 18 – футбольную и шахматную, 17 – баскетбольную и шахматную, 15 человек посещают все три секции. Объясните, почему отчет не был принят.

6. В аквариуме 11 рыбок. Из них 4 красных, остальные золотые. Наугад выбирают 4 рыбки. Сколькими способами это можно сделать? Найти число способов сделать это так, чтобы среди них будет: 1) ровно одна красная; 2) ровно 2 золотых; 3) хотя бы одна красная.

7. В списке 8 фамилий. Из них 4 – женские. Сколькими способами их можно разделить на две равные группы так, чтоб в каждой была женская фамилия?

8. Из колоды в 36 карт выбирают 4 . Сколько способов сделать это так, чтобы: 1) все карты были разных мастей; 2) все карты были одной масти; 3) 2 красные и 2 черные.

9. На карточках разрезной азбуки даны буквы К, К, К, У, У, А, Е, Р. Сколько способов сложить их в ряд так, что бы получилось «кукареку».

10. Даны карточки разрезанной азбуки с буквами О, Т, О, Л, О, Р, И, Н, Г, О, Л, О, Г. Сколько способов сложить их так, что бы получилось слово «отолоринголог».

11. Даны карточки нарезной азбуки с буквами Л, И, Т, Е, Р, А, Т, У, Р, А. Сколько способов сложить их в ряд так, что бы получилось слово «литература».

12. 8 человек становятся в очередь. Сколько способов сделать это так, что бы два определенных человека А и Б оказались: 1) рядом; 2) на краях очереди;

13. 10 человек садятся за круглый стол на 10 мест. Сколькими способами это можно сделать так, чтоб рядом оказались: 1) два определенных человека А и Б; 2) три определенных человека А, Б и С.

14. Из 10 арабских цифр составляют 5-значный код. Сколькими способами это можно сделать так, чтобы: 1) все цифры были разными; 2) на последнем месте четная цифра.

15. Из 26 букв латинского алфавита (среди них 6 гласных) составляется шестибуквенное слово. Сколькими способами это можно сделать так, чтобы в слове были: 1) ровно одна буква «а»; 2) ровно одна гласная буква; ровно две буквы «а»; в) ровно две гласные.

16. Сколько четырехзначных чисел делятся на 5?

17. Сколько четырехзначных чисел с различными цифрами делятся на 25?

19. Брошены 3 игральные кости. В скольких случаях выпала: 1) ровно 1 «шестерка»; 2) хотя бы одна «шестерка».

20. Брошены 3 игральные кости. В скольких случаях будет: 1) все разные; 2) ровно два одинаковых числа очков.

21. Сколько слов с различными буквами можно составить из алфавита а, в, с, d. Перечислить их все в лексикографическом порядке: abcd, abcd….

studfiles.net

Сочетания с повторением

Пусть имеется множество N из n элементов. Всевозможные неупорядоченные подмножества из m элементов, составленные так, что любой элемент множества N может входить в эти подмножества от 1 до m раз, либо вообще отсутствовать, называются сочетаниями с повторением. Их число подсчитывают по формуле:

Пример 4. Сколько существует различных прямоугольных параллелепипедов, длина каждого ребра которых есть любое число от 1 до 10?

Решение: Всякий параллелепипед определяется тремя взаимно перпендикулярными ребрами и не зависит от их порядка. Тогда применима формула числа сочетаний с повторением: .

Перестановки с повторением

Пусть дано множество X = {x1, x2, …, xr}. Составим кортеж длиной n, в который элемент x1 входит n1 раз, x2n2 раза,…, xr nr раз. Назовем составом этого кортежа новый кортеж (n1, n2, …, nr). Кортежи данного состава называют перестановками с повторением из n1 элементов х1, n2 элементов х2,…, nr элементов xr. Их число выражается формулой

,

где .

Лекция 2. Пространство элементарных событий. Классическое определение вероятности

Реализация некоторой совокупности условий называется испытанием, а результат испытания – событием. События будем обозначать большими латинскими буквами A, B, C, D,… Все события делят на три вида: достоверные, невозможные и случайные.

Достоверным называется событие, которое обязательно произойдет при выполнении данного комплекса условий.

Пример 1. При бросании игральной кости выпало число очков не более 6 – есть достоверное событие.

Невозможным называется событие, которое заведомо не произойдет, если будут выполнены данные условия.

Пример 2. При бросании игральной кости выпало число очков равное 8 – есть событие невозможное.

Случайным называется событие, которое может произойти или не произойти при выполнении данного комплекса условий.

Пример 3. При бросании игральной кости выпало 5 очков – это случайное событие.

Каждое случайное событие зависит от многих причин, но законы воздействия некоторых из них на конечный результат, как правило, неизвестны. Так, результат бросания монеты зависит от силы бросания, вращающего момента, ровности поверхности и т. д.

Поэтому заранее предугадать исход отдельного испытания невозможно, да этого и не требуется на практике. Например, для анализа деятельности предприятия неважно, является ли конкретная деталь стандартной или нет. Гораздо важнее знать, как часто встречается брак в выпускаемых изделиях. Или, при посеве семян, важно знать какой процент семян взойдет. Результат отдельного испытания для отдельного зернышка никакой практической ценности не имеет.

В рассмотренных примерах, во-первых, мы имеем дело с так называемыми массовыми испытаниями, которые состоят из повторения большого числа подобных между собой единичных испытаний, при соблюдении определенных условий их проведения. Во-вторых, в этих массовых однородных испытаниях мы не пытаемся предсказать исход отдельного испытания.

Массовые однородные случайные события, наступающие в результате описанных испытаний, подчиняются определенным закономерностям, которые называют вероятностными законами.

Предметом теории вероятностей является изучение закономерностей массовых, однородных, случайных событий.

studfiles.net

§2. Комбинаторика без повторений.

Для построения соответствующих математических моделей комбинаторных задач будем использовать математический аппарат теории множеств. Может случиться, что в данном множестве порядок следования элементов не важен, а важен только состав множества. Но есть задачи, в которых прядок элементов является существенным.

Определение 1: Порядок во множестве изэлементов – это нумерация его элементов натуральными числами, т.е. отображение множествана множество.

Определение 2: Множество с заданным на нем порядком называется упорядоченным множеством.

Очевидно, что множество, содержащее более одного элемента, можно упорядочить не единственным способом.

Например, из двух букв иможно построить упорядоченное множество двумя различными способами:

и .

Три буквы ,иможно расположить в виде последовательности шестью способами:

, ,,,,.

Для четырех букв путем перебора получим уже 24 различных упорядоченных последовательностей.

Упорядоченные последовательности элементов некоторого множества можно рассматривать как распределения или расстановки этих элементов в последовательности.

Определение 3: Пусть дано конечное множество изэлементов. Всякий набор изэлементов данного множества (при этом элементы в наборе могут и повторяться) будем называтьрасстановками.

Через понятие расстановки вводятся основные определения комбинаторики: сочетания, размещения и перестановки. При этом каждое из этих понятий может быть с повторениями и без повторений. В данном параграфе будут рассмотрены комбинаторные формулы без повторений.

Перестановки без повторений.

Определение 4: Пусть — конечное множество изэлементов.Перестановками из различных элементов множестваназываются все расположенияэлементов в определенном порядке. Обозначается:(от французского словаpermutation — перестановка).

Упорядоченные множества считаются различными, если они отличаются либо своими элементами, либо их порядком.

Определение 5: Различные упорядоченные множества, которые отличаются лишь порядком элементов, называются перестановками этого множества.

Последнее определение сформулировано с позиции теории множеств.

Определение 6: Произведение последовательных натуральных чисел в математике обозначаюти называютфакториалом.

Выбор для обозначения восклицательного знака, возможно, связан с тем, что даже для сравнительно небольших значенийчислоочень велико. Например,,,,,,,и т.д.

Теорема 1: Число перестановок из различных элементов вычисляется по формуле:

(1)

Доказательство. Рассмотрим произвольное множество из элементов. Построим всевозможные расстановки из этихэлементов. На первое место расстановки можно поставить любой из элементов (способов выбора первого элемента). После того, как первый элемент выбран и независимо как он выбран, второй элемент можно выбратьспособом. Для выбора третьего элемента остаетсяспособа и т.д. Последний элемент выбирается соответственно одним способом. Тогда, в силу комбинаторного принципа умножения, количество таких расстановок будет равно:

Теорема доказана.

Пример 1: Сколькими способами трое друзей могут занять в кинотеатре места с номерами 1, 2 и 3.

Решение. Количество искомых способов будет равно числу перестановок без повторений из трех элементов: способов. При необходимости эти способы можно перебрать.

Перестановки букв некоторого слова называют анаграммами. Открытые еще в ІІІ веке до нашей эры греческим грамматиком Ликофроном анаграммы до сих пор привлекают внимание языковедов, поэтов и любителей словесности. Мастера словесных игр помимо эрудиции и большого запаса слов знают много секретов, связанных с комбинаторными навыками, один из которых – анаграммы. Часто требуется среди всех перестановок выбрать те, которые обладают определенным свойством. Например, среди анаграмм слова «крот», которых всего , только одна, не считая самого слова«крот», имеет смысл в русском языке – «корт».

Кроме линейных перестановок, можно рассматривать перестановки круговые (или циклические). В этом случае перестановки, переходящие друг в друга при вращении, считаются одинаковыми и не должны засчитываться.

Теорема 2: Число круговых перестановок из различных элементов равно

Пример 2: Сколькими способами 7 детей могут стать в хоровод?

Решение. Число линейных перестановок 7 детей будет равно . Если хоровод уже сформирован, тогда для него существует 7 круговых перестановок, переходящих друг в друга при повороте. Эти перестановки не должны быть засчитаны, поэтому круговых перестановок из 7 элементов будет.

Размещения без повторений.

Определение 7: Пусть имеется различных предметов. Расстановки изэлементов поэлементов () называютсяразмещениями без повторений. Обозначают: . Здесь имеется в виду, что элементы в расстановках не повторяются.

В данном определении существенной является следующая позиция: две расстановки различны, если они отличаются хотя бы одним элементом или порядком элементов.

Приведем еще одно определение размещений, эквивалентное исходному, более простое для понимания.

Определение 8: Конечные упорядоченные множества называются размещениями.

Теорема 3: Количество всех размещений из элементов поэлементов без повторений вычисляется по формуле:

. (2)

Доказательство. Пусть имеется произвольное множество , состоящее изэлементов. Необходимо выбрать из этого множестваразличных элементов. Причем, важен порядок выбора.

Выбор элементов осуществляется поэтапно. Первый элемент расстановки можно выбрать различными способами. Тогда из оставшихся элементов множествавторой элемент расстановки выбираетсяспособом. Для выбора третьего элемента возможноспособа и т.д. Тогда для выбора— го элемента имеемспособ. Следовательно, согласно правилу умножения, количество таких расстановок будет равно:

.

По определению, такие расстановки являются размещениями. Что и требовалось доказать.

Пример 3: Собрание из 25 человек выбирает президиум из 3 человек: 1) председатель, 2) заместитель, 3) секретарь. Сколько возможно вариантов выбора президиума?

Решение. Выбирая трех человек из 25, замечаем, что важен порядок выбора, поэтому количество президиумов будет равно:

.

Замечание: Число размещений без повторений можно также находить по формуле:

. (3)

Если в знаменателе дроби из формулы (3) , то принято считать.

Замечание: Формула (3) отличается компактностью, но при решении задач удобнее использовать формулу (2). Дробь, стоящая в правой части формулы (3), может быть сокращена до целого числа. Это число равно числу из правой части формулы (2).

Пример 4: Сколько можно составить двухбуквенных слов (буквы не повторяются) из 33 букв русского алфавита?

Решение. В данном случае мы имеем дело не со словами в лингвистическом понимании, а с буквенными комбинациями произвольного состава.

Тогда количество различных комбинаций из 2 букв, выбранных из 33 букв алфавита, будет равно:

.

В данном случае важен порядок букв. Если поменять 2 буквы в слове, то получим новое слово.

Замечание: Перестановка без повторений – это частный случай размещений без повторений при . Можно сказать, что перестановка изэлементов – это размещение изэлементов поэлементов:

В некоторых задачах по комбинаторике не имеет значения порядок расположения объектов в той или иной совокупности. Важно лишь то, какие именно элементы ее составляют. В таких ситуациях мы имеем дело с сочетаниями.

Сочетания без повторений.

Определение 9: Сочетания без повторений из элементов некоторого множества поэлементов () – это расстановки, отличающиеся друг от другасоставом, но не порядком элементов. Обозначают: (от французского словаcombinaison – сочетание).

В данном случае в расстановках важен состав, а не порядок элементов в подмножестве. Если две расстановки отличаются только порядком следования элементов, то с точки зрения сочетаний они не различимы. Элементы в этих расстановках не повторяются.

С точки зрения теории множеств определение сочетаний можно сформулировать иначе.

Определение 10: Конечные неупорядоченные множества называются сочетаниями.

Таким образом, сочетания – это такая выборка элементов, при которой их порядок совершенно не важен.

Сочетаний из элементов поэлементов должно быть меньше, чем соответствующих размещений. Это следует из того, что не надо засчитывать расстановки одинакового состава.

Теорема 4: Число сочетаний находится по следующей формуле:

. (4)

Доказательство. Если из произвольного -элементного множества выбраныэлементов, то их можно пронумеровать номерамичислом способов, равным. Оставшиесяэлементов можно занумеровать номерами,, …,всегоспособами. Кроме того, сам отборэлементов изэлементов можно осуществитьспособами. Таким образом, мы получили вариантов нумерации полного множества из элементов, которых всего. Поэтому имеем, откуда получаем:

.

Теорема доказана.

Замечание: Дробь, стоящая в правой части (4), может быть сокращена до целого числа.

Из формулы числа сочетаний следует:

, ,.

Формула (4) может быть преобразована к виду: . Отсюда видно, что число размещенийвраз больше числа соответствующих сочетаний. Другими словами, чтобы посчитать все сочетания, нужно исключить из всех размещенийподмножества, отличающиеся порядком (их будетштук), т.е.делят на.

Пример 5: Сколькими способами можно выбрать 3 различные краски из имеющихся пяти.

Решение. Порядок выбора красок не важен. Важно только какие краски выбраны. Поэтому количество вариантов равно: .

Пример 6: Сколькими способами можно пошить трехцветные полосатые флаги, если имеется материал пяти различных цветов.

Решение. Порядок выбора полос важен, поэтому количество таких флагов равно: .

studfiles.net

Число сочетаний без повторений

Поиск Лекций

КОМБИНАТОРИКА

1. Правило суммы.Классическая формулировка

Если элемент можно выбрать k способами, а элемент можно выбрать m способами.

Тогда или можно выбрать k +m способами.

Теорема о мощности объединения множеств (современная формулировка)

Количество элементов объединения двух множеств равно сумме количества элементов в первом и во втором множестве, за вычетом количества элементов их пересечения: .

Причем, если множества не пересекаются, то теорема приобретает вид, аналогичный классической формулировке: .

Для трех множеств теорема имеет вид: .

Пример: Из 35 учащихся класс по итогам года имели “5” по математике – 14 человек; по физике – 15 человек; по химии – 18 человек; по математике и физике – 7 человек; по математике и химии – 9 человек; по физике и химии – 6 человек; по всем трем предметам – 4 человек.

Сколько человек имеют “5” по указанным предметам? Сколько человек не имеет “5” по указанным предметам? Имеет “5” только по математике? Имеет “5” только по двум предметам?

2. Правило произведения. Классическая формулировка

Если элемент можно выбрать k способами, а элемент можно выбрать m способами.

Тогда и можно выбрать km способами.

Теорема о мощности прямого произведения множеств (современная формулировка)

Количество элементов прямого произведения двух множеств равно произведению количества элементов первого и второго множества: .

Пример: Из 3 экземпляров учебника алгебры, 7 экземпляров учебника геометрии и 6 экземпляров учебника физики, надо выбрать комплект, содержащий все учебники по одному разу. Сколькими способами это можно сделать?

Число размещений без повторений

Число размещений без повторений из n по k – это число способов, сколькими можно из n различных элементов построить векторов с k различными координатами.

Число размещений без повторений находится по формуле: .

Пример: Сколькими способами можно построить 3-значное число с различными цифрами, не содержащее цифры 0?

Число размещений с повторениями

Число размещений с повторениями из n по k – это число способов, сколькими можно из n различных элементов построить векторов с k координатами, среди которых могут быть одинаковые.

Число размещений с повторениями находится по формуле: .

Пример: Сколько слов длины 6 можно составить из 26 букв латинского алфавита?

Число перестановок без повторений

Число перестановок без повторений из n элементов – это число способов, сколькими можно расположить на n различных местах n различных элементов.

Число перестановок без повторений находится по формуле: .

Пример: Сколькими способами можно расставить на книжной полке 5 различных книг? В скольких случаях две определенные книги А и В окажутся рядом?

Замечание: , где х – число способов выбрать нужные места; у- число способов расположить на них нужные элементы; z- число способов расположить остальные элементы на оставшихся местах.

Число сочетаний без повторений

Число сочетаний без повторений из n по k – это число способов, сколькими можно из n различных элементов выбрать k штук без учета порядка.

Число сочетаний без повторений находится по формуле: .

Свойства: 1) ; 2) ; 3) ; 4) ; 5) ; 6) .

Пример:В урне 7 шаров. Из них 3 белых. Наугад выбирают 3 шара. Сколькими способами это можно сделать? В скольких случаях среди них будет: 1) один белый; 2) два белых; 3) все белые.

 

 

Задачи

1) В аквариуме 11 рыбок. Из них 4 красных, остальные золотые. Наугад выбирают 4 рыбки. Сколькими способами это можно сделать? Найти число способов сделать это так, чтобы среди них будет: а) ровно одна красная; б) ровно 2 золотых; в) хотя бы одна красная.

2) В списке 8 фамилий. Из них 4 – женские. Сколькими способами их можно разделить на две равные группы так, чтоб в каждой была женская фамилия?

3) Из колоды в 36 карт выбирают 4 . Сколько способов сделать это так, чтобы: а) все карты были разных мастей; б) все карты были одной масти; в) 2 красные и 2 черные.

4) На карточках разрезной азбуки даны буквы К, К, К, У, У, А, Е, Р. Сколько способов сложить их в ряд так, что бы получилось « кукареку ».

5) Даны карточки разрезанной азбуки с буквами О, Т, О, Л, О, Р, И, Н, Г, О, Л, О, Г. Сколько способов сложить их так, что бы получилось слово « отолоринголог ».

6) Даны карточки нарезной азбуки с буквами Л, И, Т, Е, Р, А, Т, У, Р, А. Сколько способов сложить их в ряд так, что бы получилось слово « литература ».

7) 8 человек становятся в очередь. Сколько способов сделать это так, что бы два определенных человека А и Б оказались: а) рядом; б) на краях очереди;

8) 10 человек садятся за круглый стол на 10 мест. Сколькими способами это можно сделать так, чтоб рядом оказались: а) два определенных человека А и Б; б) три определенных человека А, Б и С.

9) Сколькими способами можно расположить на 10 путях станции 1 товарный и 2 пассажирских поезда так, чтоб товарный не находился на соседнем пути ни с одним из пассажирских поездов.

10) Из 10 арабских цифр составляют 5-значный код. Сколькими способами это можно сделать так, чтобы: а) все цифры были разными; б) на последнем месте четная цифра.

11) Из 26 букв латинского алфавита( среди них 6 гласных ) составляется шестибуквенное слово. Сколькими способами это можно сделать так, чтобы в слове были: а) ровно одна буква «а»; б) ровно одна гласная буква; ровно две буквы «а»; в) ровно две гласные.

12) Сколько четырехзначных чисел делятся на 5?

13) Сколько четырехзначных чисел с различными цифрами делятся на 25?

14) В скольких десятизначных числах сумма цифр ровна 3?

15) Брошены 3 игральные кости. В скольких случаях выпала: а) ровно 1 « шестерка »; б) хотя бы одна « шестерка ».

16) Брошены 3 игральные кости. В скольких случаях будет: а) все разные; б) ровно два одинаковых числа очков.

17) Сколько слов с различными буквами можно составить из алфавита а, в, с, d. Перечислить их все в лексикографическом порядке: abcd, abcd….

18) Записать прямое произведение множеств А= В= .

19) В классе 8 человек имеют «5» по литературе; 9 человек – по английскому; 10 человек – по истории. Кроме того известно, что 6 человек имеют «5» по литературе и истории; 5 – по литературе и английскому; 5 – по истории и английскому; 3 – по всем предметам. Сколько человек имеют «5»: а) только по литературе; б) только по двум предметам; в) не имеют «5» по английскому.

20) В 20 комнатах общежития института Дружбы Народов живут студенты из России; в 15 – из Африки; в 20 – из стран Южной Амери ки.Причем в 7 – живут россияне и африканцы, в 8 – россияне и южноамериканцы; в 9 – африканцы и южноамериканцы. В 3х комнатах живут и россияне, и южноамериканцы, и африканцы. В скольких комнатах живут студенты:

а) только с одного континента;

б) только с двух континентов;

в) только африканцы.

 

Рекомендуемые страницы:

poisk-ru.ru

Выборки элементов без повторений

Рассмотрим сначала некоторые общие термины.

  • Пусть некоторая совокупность содержит n элементов, из которых выбирают k элементов. Каждый такой набор будем называть выборкой объема k из n элементов.
  • Будем различать выборки с возвращением и без возвращения. Пусть имеется совокупность n пронумерованных элементов:
    • если отобранный элемент после выбора не возвращается в исходную совокупность и не может повторяться в данной выборке больше одного раза, то такая выборка называется выборкой без возвращения или без повторения;
    • если отобранный элемент после фиксации номера снова возвращается в исходную совокупность и, таким образом, может вновь оказаться в данной выборке, то говорят о выборке с возвращением или с повторением.
  • Выборка называется упорядоченной, если порядок следования элементов в ней задан. Если две упорядоченные выборки отличаются только порядком следования элементов, то они считаются разными (например: 12 и 21).
  • Выборка называется неупорядоченной, если порядок элементов в ней не имеет значения (т. е. 12 и 21 неразличимы).

Размещения без повторений.

Размещениями без повторений называются упорядоченные выборки, содержащие k различных элементов из данных n элементов.

Обратим внимание на следующие важные положения:

  1. Любой элемент может оказаться на любом из k мест, но использоваться может в выборке только один раз.
  2. Порядок элементов в выборке важен.

Формула для определения числа размещений без повторений:

Задача. Дана последовательность символов А, Б, С. Сколько вариантов кода, состоящего из двух разных символов, можно составить из заданной последовательности?

Решение.По условию код состоит «из двух разных символов», при этом коды АБ и БА – не одинаковые, поэтому, выборки – размещения без повторений.
Выборка осуществляется из 3 элементов по 2. Значит, n = 3, k = 2.

Действительно, комбинаций, удовлетворяющих условию, всего шесть: {АБ, АС, БА, БС, СА, СБ}

Перестановки без повторений.

Нетрудно заметить, что размещения, в которые входят все n разных элементов заданного множества (т. е. k = n), будут отличаться только порядком следования входящих элементов. Такие размещения называют перестановками.

Перестановками без повторений называются всевозможные упорядоченные выборки, составленные из всех данных n элементов.

Формула для определения числа перестановок без повторений
Pn = n! = n * (n − 1) * (n − 2) *…* 2 * 1

Задача. Сколько вариантов кода длиной 3 символа можно составить из трех букв А, Б, С, если каждая буква входит в последовательность не более одного раза?

Решение. Так как «каждая буква входит в последовательность не более одного раза», то выборки – перестановки без повторений.
Pn = 3! = 3 * 2 * 1 = 6 {АБC, АCБ, БАС, БСА, САБ, СБА}

Сочетания без повторений.

Сочетаниями без повторений называются неупорядоченные выборки, содержащие k различных элементов из данных n элементов.

Отметим, что

  1. …«выборки неупорядоченные», т.е. выборки AB и ВА – это одно и тоже сочетание.
  2. Любой элемент может оказаться на любом из k мест, но использоваться может в выборке только один раз.

Формула для определения числа сочетаний без повторений:

Задача. Из 4-х кандидатов происходят выборы участников конференции. Сколько существует вариантов выбора делегации?

Решение. Очевидно, один и тот же кандидат в данную выборку может быть избран только один раз. При этом набор А, Б и Б, А – это одни те же участники. Поэтому выборки есть сочетания без повторений.

Воспользуемся формулой для расчета числа различных сочетаний без повторений:

informatics-lesson.ru

Калькулятор онлайн обычных дробей – Калькулятор дробей онлайн

Калькулятор дробей

Как перевести смешанную дробь в обыкновенную

Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя: i nd = i · d + nd

Например,

5 34 = 5 · 4 + 34 = 234

Как перевести обыкновенную дробь в смешанную

Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:

  1. Поделить числитель дроби на её знаменатель
  2. Результат от деления будет являться целой частью
  3. Остаток отделения будет являться числителем

Как перевести обыкновенную дробь в десятичную

Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.

Как перевести десятичную дробь в обыкновенную или смешанную

Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

  1. Записать дробь в виде десятичная дробь1
  2. Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
  3. Найти наибольший общий делитель и сократить дробь.

Например, переведем 0.36 в обыкновенную дробь:

  1. Записываем дробь в виде: 0.361
  2. Умножаем на 10 два раза, получим 36100
  3. Сокращаем дробь 36100 = 925

Как перевести дробь в проценты

Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.

Как перевести проценты в дробь

Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.

Сложение дробей

Алгоритм действий при сложении двух дробей такой:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Выполнить сложение дробей путем сложения их числителей.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Умножение дробей

Алгоритм действий при умножении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  3. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  4. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление дробей

Алгоритм действий при делении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
  3. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

calcus.ru

Калькулятор дробей онлайн

Инструкция калькулятора дробей онлайн

С помощью калькулятора дробей вы можете сложить дроби, вычитать дроби, умножить дроби, делить дроби, возвести дроби в целую или дробную степень, преобразовать обыкновенную дробь в смешанное число (дробь с целой частью) и обратно, преобразовать дробь в десятичную дробь (десятичное число), выполнить упрощение дроби.

Если дробь состоит только из целой части, то дробную часть можно оставить пустым. Если знаменатель дроби не вводить, то предполагается, что она равна 1. Если дробь не имеет целую часть, то целую часть можно оставить пустым.

Кнопка в верхем правом углу исходной дроби открывает меню (Рис.1) для преобразования исходной дроби («Строка ввода» — преобразует дробь в виде числитель/знаменатель, «Дробь»- преобразует строку в дробь, и т.д.).

Дробь можно ввести в виде строки. Для этого нужно нажимать на кнопку и в открывающем меню (Рис 1.) выбрать «Строка ввода». В новом окне нужно набрать дробь в виде a/b, где a и b целые или десятичные числа (b>0). Примеры 45/5, 6.6/76.4, -7/6.7, и т.д.

Рис.1

Нажимая на вычисленных дробях открывается меню (Рис.2), что позволяет записать данную дробь в исходные дроби A и B, а также преобразовать на месте дроби в обыкновенную дробь, смешанную дробь или в десятичное число.

Рис.2

 

Функции кнопок
КнопкаДействие
A+B сумма дробей A и B
A-Bразность дробей A и B
A×Bпроизведение дробей A и B
A : Bчастное от деления A на B
A→BЗапись содержания A в B
A←BЗапись содержания B в A
A⇆BЗамена местами значений A и В
Нажатием на данную радиокнопку выбираем дробь
КнопкаДействие
(·) степеньВыбранный дробь возводит в степень
√(·)Вычисляет квадратный корень от выбранной дроби
Обыкновенная дробьПреобразует выбранную дробь к виду числитель/знаменатель
Упрощение дробиПытается упростить выбранную дробь
Смешанная дробьПреобразует выбранный дробь в смешанное число
Десятичная дробьПреобразует выбранный дробь в десятичное число
Удаляет данный блок
Распечатка выражения на принтере

Вычисление суммы, разности, произведения и частного двух дробей онлайн

Онлайн калькулятором дробей можно вычислить сумму, разность, произведение и частное дробей.

Для вычисления суммы, разности, произведения и частного дробей:

  1. Введите элементы дробей A и В.
  2. Нажмите на кнопку «A+B «,»A-B»,»A×B» или «A:B».

Вычисление степени дроби онлайн

Дробь можно возвести в целую или дробную степень. Если дробь отрицательный и степень также является дробью то степень дроби не определен.

Для вычисления степени дроби:

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Заполните значение степени (ячейку возле кнопки «A степень» («B степень»)).
  4. Нажмите на кнопку «A степень» («B степень»).

Вычисление квадратного корня от дроби онлайн

Заметим, что квадратный корень от числа (дроби) это то же, что и возведение числа (дроби) в степень 1/2. Если дробь отрицательный то квадратный корень дроби не определен.

Для вычисления квадратного корня от дроби:

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку √A или √B.

Преобразование дроби к обыкновенному виду онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку «Обыкновенная дробь».

Преобразование дроби в смешанное число онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку «Смешанное число».

Упрощение дроби онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку «Упрощение дроби».

Преобразование дроби в десятичное число онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Выберите число от 1 до 15 в пункте » Число знаков после десятичного разделителя»- для нужной точности вычислений.
  4. Нажмите на кнопку «Десятичная дробь».

 

matworld.ru

Как сложить, вычесть, умножить и разделить дроби

На данной странице калькулятор онлайн для вычисления дробей. Этот калькулятор складывает, вычитает, умножает и делит обычные дроби и десятичные. При вычислении выводится описание решения.

Вычисление дробей


Как сложить или вычесть две дроби
  1. Если в выражении одна десятичная дробь, то переведите в обычную дробь.
  2. Дроби с целой частью переведите в неправильные.
  3. Если у дробей знаменатели не равны, то приведите дроби к общему знаменателю.
  4. Сложите или вычтите числители. Не забывайте! Если при вычитании вторая дробь отрицательная, то минус на минус дает плюс. Т.е. первую дробь нужно сложить со второй! Если при сложении вторая дробь отрицательная, то от первой дроби отнимите вторую!
  5. По возможности сократите дроби.
  6. Если дробь неправильная (числитель больше знаменателя), то выделите целую часть.
Как умножить или разделить две дроби
  1. Если в выражении одна десятичная дробь, то переведите в обычную дробь.
  2. Дроби с целой частью переведите в неправильные.
  3. Если у дробей знаменатели не равны, то приведите дроби к общему знаменателю.
  4. Если одна дробь отрицательная, то в ответе отрицательное число. Если обе дроби отрицательные, то в ответе положительное число.
  5. При умножении двух дробей отдельно умножьте числители и знаменатели. При делении двух дробей числитель первой дроби умножьте на знаменатель второй дроби, а знаменатель первой дроби умножьте на числитель второй дроби.
  6. По возможности сократите дроби.
  7. Если дробь неправильная (числитель больше знаменателя), то выделите целую часть.

www.mozgan.ru

Калькулятор дробей онлайн | umath.ru

Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем дроби называется делимое, а знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

Сложение. Чтобы сложить две дроби, нужно

  1. Привести дроби к общему знаменателю
  2. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

Пример:

   

Вычитание. Чтобы вычесть одну дробь из другой, нужно

  1. Привести дроби к общему знаменателю
  2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

Пример:

   

Умножение. Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели:

   

Деление. Чтобы разделить одну дробь на другую, следует числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй:

   

Онлайн калькулятор дробей с решением

Данный калькулятор помогает вычислить сумму, разность, произведение и частное двух дробей. При этом выводится не только конечный ответ, но и решение с подробными пояснениями.

umath.ru

Калькулятор онлайн — Сложение, сокращение, умножение, деление, вычитание неправильных числовых дробей (с подробным решением)

С помощью данного калькулятора онлайн вы можете умножить, вычесть, поделить, сложить и сократить числовые дроби с разными знаменателями.

Программа работает с правильными, неправильными и смешанными числовыми дробями.

Данная программа (калькулятор онлайн) умеет:
— выполнять сложение смешанных дробей с разными знаменателями
— выполнять вычетание смешанных дробей с разными знаменателями
— выполнять деление смешанных дробей с разными знаменателями
— выполнять умножение смешанных дробей с разными знаменателями
— приводить дроби к общему знаменателю
— преобразовывать смешанные дроби в неправильные
— сокращать дроби

Также можно ввести не выражение с дробями, а одну единственную дробь.
В этом случае дробь будет сокращена и из результата выделена целая часть.

Калькулятор онлайн для вычисления выражений с числовыми дробями не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода выражений с числовыми дробями, рекомендуем с ними ознакомиться.

Правила ввода выражений с числовыми дробями

В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3 + 7/5
Результат: \( -\frac{2}{3} + \frac{7}{5} \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&2/3 * 5&8/3
Результат: \( -1\frac{2}{3} \cdot 5\frac{8}{3} \)

Деление дробей вводится знаком двоеточие: :
Ввод: -9&37/12 : -3&5/14
Результат: \( -9\frac{37}{12} : \left( -3\frac{5}{14} \right) \)
Помните, что на ноль делить нельзя!

При вводе выражений с числовыми дробями можно использовать скобки.
Ввод: -2/3 * (6&1/2-5/9) : 2&1/4 + 1/3
Результат: \( -\frac{2}{3} \cdot \left( 6 \frac{1}{2} — \frac{5}{9} \right) : 2\frac{1}{4} + \frac{1}{3} \)

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Обыкновенные дроби. Деление с остатком

Если нам нужно разделить 497 на 4, то при делении мы увидим, что 497 не делится на 4 нацело, т.е. остаётся остаток от деления. В таких случаях говорят, что выполнено деление с остатком, и решение записывают в таком виде:
497 : 4 = 124 (1 остаток).

Компоненты деления в левой части равенства называют так же, как при делении без остатка: 497 — делимое, 4 — делитель. Результат деления при делении с остатком называют неполным частным. В нашем случае это число 124. И, наконец, последний компонент, которого нет в обычном делении, — остаток. В тех случаях, когда остатка нет, говорят, что одно число разделилось на другое без остатка, или нацело. Считают, что при таком делении остаток равен нулю. В нашем случае остаток равен 1.

Остаток всегда меньше делителя.

Проверку при делении можно сделать умножением. Если, например, имеется равенство 64 : 32 = 2, то проверку можно сделать так: 64 = 32 * 2.

Часто в случаях, когда выполняется деление с остатком, удобно использовать равенство
а = b * n + r ,
где а — делимое, b — делитель, n — неполное частное, r — остаток.

Частное от деления натуральных чисел можно записать в виде дроби.

Числитель дроби — это делимое, а знаменатель — делитель.

Поскольку числитель дроби — это делимое, а знаменатель — делитель, считают, что черта дроби означает действие деление. Иногда бывает удобно записывать деление в виде дроби, не используя знак «:».

Частное от деления натуральных чисел m и n можно записать в виде дроби \( \frac{m}{n} \), где числитель m — делимое, а знаменатель п — делитель:
\( m:n = \frac{m}{n} \)

Верны следующие правила:

Чтобы получить дробь \( \frac{m}{n} \), надо единицу разделить на n равных частей (долей) и взять m таких частей.

Чтобы получить дробь \( \frac{m}{n} \), надо число m разделить на число n.

Чтобы найти часть от целого, надо число, соответствующее целому, разделить на знаменатель и результат умножить на числитель дроби, которая выражает эту часть.

Чтобы найти целое по его части, надо число, соответствующее этой части, разделить на числитель и результат умножить на знаменатель дроби, которая выражает эту часть.

Если и числитель, и знаменатель дроби умножить на одно и то же число (кроме нуля), величина дроби не изменится:
\( \large \frac{a}{b} = \frac{a \cdot n}{b \cdot n} \)

Если и числитель, и знаменатель дроби разделить на одно и то же число (кроме нуля), величина дроби не изменится:
\( \large \frac{a}{b} = \frac{a : m}{b : m} \)
Это свойство называют основным свойством дроби.

Два последних преобразования называют сокращением дроби.

Если дроби нужно представить в виде дробей с одним и тем же знаменателем, то такое действие называют приведением дробей к общему знаменателю.

Правильные и неправильные дроби. Смешанные числа

Вы уже знаете, что дробь можно получить, если разделить целое на равные части и взять несколько таких частей. Например, дробь \( \frac{3}{4} \) означает три четвёртых доли единицы. Во многих задачах предыдущего параграфа обыкновенные дроби использовались для обозначения части целого. Здравый смысл подсказывает, что часть всегда должна быть меньше целого, но как тогда быть с такими дробями, как, например, \( \frac{5}{5} \) или \( \frac{8}{5} \)? Ясно, что это уже не часть единицы. Наверное, поэтому такие дроби, у которых числитель больше знаменателя или равен ему, называют неправильными дробями. Остальные дроби, т. е. дроби, у которых числитель меньше знаменателя, называют правильными дробями.

Как вы знаете, любую обыкновенную дробь, и правильную, и неправильную, можно рассматривать как результат деления числителя на знаменатель. Поэтому в математике, в отличие от обычного языка, термин «неправильная дробь» означает не то, что мы что-то сделали неправильно, а только то, что у этой дроби числитель больше знаменателя или равен ему.

Если число состоит из целой части и дроби, то такие дроби называются смешанными.

Например:
\( 5:3 = 1\frac{2}{3} \) : 1 — целая часть, а \( \frac{2}{3} \) — дробная часть.

Если числитель дроби \( \frac{a}{b} \) делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её числитель разделить на это число:
\( \large \frac{a}{b} : n = \frac{a:n}{b} \)

Если числитель дроби \( \frac{a}{b} \) не делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её знаменатель умножить на это число:
\( \large \frac{a}{b} : n = \frac{a}{bn} \)

Заметим, что второе правило справедливо и в том случае, когда числитель делится на n. Поэтому мы можем его применять тогда, когда трудно с первого взгляда определить, делится числитель дроби на n или нет.

Действия с дробями. Сложение дробей.

С дробными числами, как и с натуральными числами, можно выполнять арифметические действия. Рассмотрим сначала сложение дробей. Легко сложить дроби с одинаковыми знаменателями. Найдем, например, сумму \( \frac{2}{7} \) и \( \frac{3}{7} \). Легко понять, что \( \frac{2}{7} + \frac{2}{7} = \frac{5}{7} \)

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежним.

Используя буквы, правило сложения дробей с одинаковыми знаменателями можно записать так:
\( \large \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \)

Если требуется сложить дроби с разными знаменателями, то их предварительно следует привести к общему знаменателю. Например:
\( \large \frac{2}{3}+\frac{4}{5} = \frac{2\cdot 5}{3\cdot 5}+\frac{4\cdot 3}{5\cdot 3} = \frac{10}{15}+\frac{12}{15} = \frac{10+12}{15} = \frac{22}{15} \)

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства сложения.

Сложение смешанных дробей

Такие записи, как \( 2\frac{2}{3} \), называют смешанными дробями. При этом число 2 называют целой частью смешанной дроби, а число \( \frac{2}{3} \) — ее дробной частью. Запись \( 2\frac{2}{3} \) читают так: «две и две трети».

При делении числа 8 на число 3 можно получить два ответа: \( \frac{8}{3} \) и \( 2\frac{2}{3} \). Они выражают одно и то же дробное число, т.е \( \frac{8}{3} = 2 \frac{2}{3} \)

Таким образом, неправильная дробь \( \frac{8}{3} \) представлена в виде смешанной дроби \( 2\frac{2}{3} \). В таких случаях говорят, что из неправильной дроби выделили целую часть.

Вычитание дробей (дробных чисел)

Вычитание дробных чисел, как и натуральных, определяется на основе действия сложения: вычесть из одного числа другое — это значит найти такое число, которое при сложении со вторым дает первое. Например:
\( \frac{8}{9}-\frac{1}{9} = \frac{7}{9} \) так как \( \frac{7}{9}+\frac{1}{9} = \frac{8}{9} \)

Правило вычитания дробей с одинаковыми знаменателями похоже на правило сложения таких дробей:
чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним.

С помощью букв это правило записывается так:
\( \large \frac{a}{c}-\frac{b}{c} = \frac{a-b}{c} \)

Умножение дробей

Чтобы умножить дробь на дробь, нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе — знаменателем.

С помощью букв правило умножения дробей можно записать так:
\( \large \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \)

Пользуясь сформулированным правилом, молено умножать дробь на натуральное число, на смешанную дробь, а также перемножать смешанные дроби. Для этого нужно натуральное число записать в виде дроби со знаменателем 1, смешанную дробь — в виде неправильной дроби.

Результат умножения надо упрощать (если это возможно), сокращая дробь и выделяя целую часть неправильной дроби.

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства умножения, а также распределительное свойство умножения относительно сложения.

Деление дробей

Возьмем дробь \( \frac{2}{3} \) и «перевернем» ее, поменяв местами числитель и знаменатель. Получим дробь \( \frac{3}{2} \). Эту дробь называют обратной дроби \( \frac{2}{3} \).

Если мы теперь «перевернем» дробь \( \frac{3}{2} \), то получим исходную дробь \( \frac{2}{3} \). Поэтому такие дроби, как \( \frac{2}{3} \) и \( \frac{3}{2} \) называют взаимно обратными.

Взаимно обратными являются, например, дроби \( \frac{6}{5} \) и \( \frac{5}{6} \), \( \frac{7}{18} \) и \( \frac{18}{7} \).

С помощью букв взаимно обратные дроби можно записать так: \( \frac{a}{b} \) и \( \frac{b}{a} \)

Понятно, что произведение взаимно обратных дробей равно 1. Например: \( \frac{2}{3} \cdot \frac{3}{2} =1 \)

Используя взаимно обратные дроби, можно деление дробей свести к умножению.

Правило деления дроби на дробь:
чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю.

Используя буквы, правило деления дробей можно записать так:
\( \large \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \)

Если делимое или делитель является натуральным числом или смешанной дробью, то, для того чтобы воспользоваться правилом деления дробей, его надо предварительно представить в виде неправильной дроби.

www.math-solution.ru

Калькулятор дробей онлайн

Онлайн-калькулятор для расчета площади треугольника поможет Вам найти площадь треугольника несколькими способами в зависимости от известных данных. Наш калькулятор не просто рассчитает площадь треугольника, но и покажет подробное решение, которое будет показано под калькулятором. Поэтому данный калькулятор удобно использовать не только для быстрых расчетов, но и для проверки своих вычислений. С помощью данного калькулятора вы сможете найти площадь треугольника по следующим формулам: через основание и высоту, через две стороны и угол, по трем сторонам (формула Герона), через радиус вписанной окружности, через радиус описанной окружности.

Выберите способ расчета площади:

через основание и высотучерез две стороны и уголпо трем сторонам (формула Герона)через радиус вписанной окружностичерез радиус описанной окружности

Рассчитать



Треугольник – это геометрическая фигура, которая образована тремя отрезками. Эти отрезки называются сторонами треугольниками, а точки соединения отрезков – вершинами треугольника. В зависимости от соотношения сторон треугольники бывают нескольких видов: равнобедренный треугольник (две стороный треугольника равны между собой, эти стороны называются боковыми сторонами, а третья сторона называется основанием треугольника), равносторонний треугольник (у треугольника все три стороны равны), прямоугольный треугольник (один угол треугольника прямой).

Как найти площадь треугольника?

Найти площадь треугольника очень просто, достаточно воспользоваться нашим калькулятором или рассчитать самостоятельно, воспользовавшись формулой площади треугольника. В зависимости от того, какие данные известны, для расчета площади треугольника использует несколько способов:

1) через основание и высоту

a – основание треугольника,
h – высота треугольника.

2) через две стороны и угол

a, b – стороны треугольника,
α – угол между сторонами.

3) По трем сторонам. Формула Герона.

a, b, с – стороны треугольника,
p – полупериметр треугольника.

4) Через радиус вписанной окружности.

a, b, с – стороны треугольника,
p – полупериметр треугольника,
r – радиус вписанной окружности.

5) Через радиус описанной окружности.

a, b, с – стороны треугольника,
R – радиус описанной окружности.

Вы всегда сможете проверить правильность расчета площади треугольника с помощью нашего калькулятора.

calc.by

Х 7 1 – Найдите корень уравнения (x + 7)^7 = 1 — Задание 5 ЕГЭ по математике (Простые уравнения)

Решите уравнение (x-10)^7=1 ((х минус 10) в степени 7 равно 1)

Дано уравнение
$$\left(x — 10\right)^{7} = 1$$
Т.к. степень в ур-нии равна = 7 — не содержит чётного числа в числителе, то
ур-ние будет иметь один действительный корень.
Извлечём корень 7-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[7]{\left(x — 10\right)^{7}} = \sqrt[7]{1}$$
или
$$x — 10 = 1$$
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
$$x = 11$$
Получим ответ: x = 11

Остальные 6 корня(ей) являются комплексными.
сделаем замену:
$$z = x — 10$$
тогда ур-ние будет таким:
$$z^{7} = 1$$
Любое комплексное число можно представить так:
$$z = r e^{i p}$$
подставляем в уравнение
$$r^{7} e^{7 i p} = 1$$
где
$$r = 1$$
— модуль комплексного числа
Подставляем r:
$$e^{7 i p} = 1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left (7 p \right )} + \cos{\left (7 p \right )} = 1$$
значит
$$\cos{\left (7 p \right )} = 1$$
и
$$\sin{\left (7 p \right )} = 0$$
тогда
$$p = \frac{2 \pi}{7} N$$
где N=0,1,2,3,…
Перебирая значения N и подставив p в формулу для z
Значит, решением будет для z:
$$z_{1} = 1$$
$$z_{2} = — \cos{\left (\frac{\pi}{7} \right )} — i \sin{\left (\frac{\pi}{7} \right )}$$
$$z_{3} = — \cos{\left (\frac{\pi}{7} \right )} + i \sin{\left (\frac{\pi}{7} \right )}$$
$$z_{4} = \cos{\left (\frac{2 \pi}{7} \right )} — i \sin{\left (\frac{2 \pi}{7} \right )}$$
$$z_{5} = \cos{\left (\frac{2 \pi}{7} \right )} + i \sin{\left (\frac{2 \pi}{7} \right )}$$
$$z_{6} = — \cos{\left (\frac{3 \pi}{7} \right )} — i \sin{\left (\frac{3 \pi}{7} \right )}$$
$$z_{7} = — \cos{\left (\frac{3 \pi}{7} \right )} + i \sin{\left (\frac{3 \pi}{7} \right )}$$
делаем обратную замену
$$z = x — 10$$
$$x = z + 10$$

Тогда, окончательный ответ:
$$x_{1} = 11$$
$$x_{2} = — \cos{\left (\frac{\pi}{7} \right )} + 10 — i \sin{\left (\frac{\pi}{7} \right )}$$
$$x_{3} = — \cos{\left (\frac{\pi}{7} \right )} + 10 + i \sin{\left (\frac{\pi}{7} \right )}$$
$$x_{4} = \cos{\left (\frac{2 \pi}{7} \right )} + 10 — i \sin{\left (\frac{2 \pi}{7} \right )}$$
$$x_{5} = \cos{\left (\frac{2 \pi}{7} \right )} + 10 + i \sin{\left (\frac{2 \pi}{7} \right )}$$
$$x_{6} = — \cos{\left (\frac{3 \pi}{7} \right )} + 10 — i \sin{\left (\frac{3 \pi}{7} \right )}$$
$$x_{7} = — \cos{\left (\frac{3 \pi}{7} \right )} + 10 + i \sin{\left (\frac{3 \pi}{7} \right )}$$

www.kontrolnaya-rabota.ru

Калькулятор онлайн — Решение показательных уравнений

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о показательной функции и общие методы решения показательных уравнений.

Примеры подробного решения >>

Введите показательное уравнение

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) an am = an+m

2) \( \frac{a^n}{a^m} = a^{n-m} \)

3) (an)m = anm

4) (ab)n = an bn

5) \( \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \)

6) an > 0

7) an > 1, если a > 1, n > 0

8) anm, если a > 1, n

9) an > am, если 0

В практике часто используются функции вида y = ax, где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leq 0\), и имеет корень при любом b > 0.

3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = ax при a > 0 и при 0 Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = ax при 0 Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 23x • 3x = 576
Так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде 8x • 3x = 242, или в виде 24x = 242, откуда х = 2.
Ответ х = 2

Решить уравнение 3х + 1 — 2 • 3x — 2 = 25
Вынося в левой части за скобки общий множитель 3х — 2, получаем 3х — 2(33 — 2) = 25, 3х — 2 • 25 = 25,
откуда 3х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3х = 7х
Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac{3^x}{7^x} = 1 \), откуда \( \left( \frac{3}{7} \right) ^x = 1 \), х = 0
Ответ х = 0

Решить уравнение 9х — 4 • 3х — 45 = 0
Заменой 3х = t данное уравнение сводится к квадратному уравнению t2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3х = 9, 3х = -5.
Уравнение 3х = 9 имеет корень х = 2, а уравнение 3х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2х + 1 + 2 • 5x — 2 = 5х + 2х — 2
Запишем уравнение в виде
3 • 2х + 1 — 2x — 2 = 5х — 2 • 5х — 2, откуда
2х — 2 (3 • 23 — 1) = 5х — 2( 5 2 — 2 )
2х — 2 • 23 = 5х — 2• 23
\( \left( \frac{2}{5} \right) ^{x-2} = 1 \)
x — 2 = 0
Ответ х = 2

Решить уравнение 3|х — 1| = 3|х + 3|
Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1)2 = (х + 3)2, откуда
х2 — 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

www.math-solution.ru

Тест автомобильных ламп H7, H5 и h2

Хорошему автомобилю нужен хороший фонарь под каждый глаз. Да так чтоб светил, что можно было светлое будущее увидеть. Тест ламп, проведенный авторитетными экспертами, установил лучшие модели для фонарей вашего автомобиля.

Типы автомобильных ламп

Для правильного подбора ламп на автомобильную оптику нужно знать основные их типы. А также особенности конструкции каждого из них.

В основу международной классификации автомобильных ламп положена буквенная и цифровая маркировка. Буква в маркировке модели обозначает тип конструкции цоколя.

Автомобильные лампы и их маркировка

Для крепежа лампы в фаре применяют различные системы. В последние годы резьбовая система крепежа в автомобилестроении практически не применяется. Связано это с тем, что цокольная часть является наиболее уязвимой. Резьбовая система крепления не является оптимальным вариантом. На смену ей приходят эффективные конструктивные решения, обладающие большей сопротивляемостью к действию механических и физических факторов (тряска, вибрация, удар, перепады температур). Многие из этих крепежных конструкций перекочевали из экстремальных видов автоспорта.

h2

Наиболее распространенный тип. Чаще всего применяется в четырехфарной системе освещения. Конструкция таких устройств накаливания состоит из одной спирали. Тип h2 относится к фланцевым видам, характеризующихся жестким параметром расположения спирали по отношению к фланцу. Благодаря чему обеспечивается оптимальная фокусировка относительно оптики и отражающей зеркальной поверхности.

Автомобильные лампы h2, применяемые в фарах головного света и противотуманках, имеют вытянутую или скрученную спираль. Цоколь h2 чаще всего применяется в моделях для противотуманных фар и дополнительных огней.

Галогенная противотуманка с цоколем h2

В зависимости от применяемой технологии лампы h2 можно разделить на такие основные группы:

  • Накаливания – устроены по принципу обычной бытовой лампочки.
  • Галогенные – такие модели h2 устроены, как и обычные лампы накаливания. Но вместо вакуума в них закачивают смесь инертного газа и галогенового вещества (пары йода или брома). Колпак устройства выполняется из кварцевого стекла, что значительно увеличивает ударостойкость ламп. На сегодня галогенные модели h2 самые распространенные на нашем рынке.
  • На основе светодиодов – передовая технология. В таких устройствах h2 используются полупроводниковые кристаллы. Светодиодные модели наиболее устойчивы к механическим воздействиям. Использовать светодиоды в автомобильной оптике начали относительно недавно. Поэтому они еще не получили широкого распространения.
  • Ксеноновые лампы – в них для получения света используется электрическая дуга между двумя металлическими электродами, расположенными в ксеноновой среде. Для запуска таких устройств нужен специальный блок. Поэтому ксеноновые модели самые дорогие из всех.

h5

Автомобильные лампы с цоколем h5 используются в основном в фарах головной оптики. Конструкция ламп h5 включает в себя две спирали. Основные виды этого типа устройств:

  • Галогенки.
  • Светодиодные модели.
  • На ксеноне.

Наиболее распространены галогенки h5. Их модификации:

  • Модели с увеличенным термином эксплуатации – срок их службы в несколько раз больше обычной h5.
  • Лампы h5 повышенной световой мощности – продуцируют световой поток, который на 30% ярче обычного.
  • Всепогодные – продуцируют свет желтоватого цвета.
  • С повышенной энергетической мощностью – используются во внедорожной светооптике.

H7

Относится к фланцевому типу однонитевых автомобильных ламп. H7 производятся сравнительно недавно (середина 90-х).

Акция: Распродажа новых авто 2018-2019 года выпуска В Московском Автомобильном Доме

Акция: Распродажа новых авто 2018-2019 года выпуска В Московском Автомобильном Доме

Основные виды H7:

  • Галогенные модели H7.
  • Светодиодные модели.
  • H7 на основе ксенона.

Такой тип используется в основном в фонарях головного света. На рынке доступны модели H7 с повышенной мощностью и светоотдачей.

Лучшие модели

В рейтинг ламп для легкового автомобиля вошли самые лучшие модели устройств различных типов. Отбор производился не только по уровню популярности среди российских автомобилистов, но и по результатам испытаний авторитетных печатных изданий автомобильной тематики.

OSRAM h5 Standard

Характеристики модели, открывающей рейтинг:

  • Тип — h5.
  • Лампы основного света.
  • 12 В.
  • 60-55 Вт.

OSRAM h5 Standard — отлично подходит как для города, так и для трассы

Тест модели показал, что степень освещения верхней границы намного ниже установленной нормы. То есть она полностью безопасна для других участников дорожного движения (не ослепляет).

Освещение лампой рабочей зоны оказалось наиболее эффективных из всех представленных образцов. По всех границе освещения слепых зон или темных пятен не выявлено.

Модель подходит как для городского цикла движения автомобиля, так и для движения по трассе.

GENERAL ELECTRIC h5 Standard

  • h5.
  • Для основного света.
  • 12 В.
  • 60-55 Вт.

Тест показал, что автомобильная лампа освещает рабочую зону равномерно с двух сторон. Что для правостороннего движения не является идеальным показателем.

Уровень верхней границы светового потока ниже допустимого. Слепых зон или пятен затемнения в зоне основного фокуса обнаружено не было.

Philips Vision +50% Plus

  • H7.
  • С повышенным уровнем освещения.
  • 12 В.
  • 60-55 Вт.
Лампа Philips Vision +50% Plus

Освещенность рабочей области без слепых зон. Верхняя граница луча в пределах допустимой высоты. Тест мощности освещения показал, что световой поток выше установленной нормы всего на 10-12%, что намного ниже заявленного производителем уровня (50%).

OSRAM

  • H7.
  • Для основного света.
  • 12 В.
  • 60-55 Вт.

Тест освещения рабочей зоны модель прошла. Предел высоты луча в норме. Мощность освещения немного ниже минимального, что в условиях ограниченной видимости (дождь, снег туман) является критичным показателем.

OSRAM рекомендуется для использования в городских условиях и трассе только при достаточной видимости.

Philips X-Treme Vision  + 100%

  • Тип – h2 галогенка.
  • Для основного света.
  • 12 В.
  • 55 Вт.

Philips X-Treme Vision  + 100% — обеспечивают мощный световой луч

Специальная серия. Заявлена производителем как модель автомобильных ламп, рассчитанной для самых экстремальных дорожных условиях. Благодаря использованию галогенной технологии удалось в 2 раза увеличить мощность светового луча.

Тест возможностей модели показал, что она обладает повышенным уровнем освещения. Что при использовании ее в режиме дальнего света на крутых дорожных уклонах негативно влияет на безопасность передвижения других автомобилистов (может ослепить).

BOSCH h2 5000K

Характеристики модели, которая замыкает наш рейтинг:

  • h2, ксеноновая.
  • Для основного света.
  • Пусковой блок на 35 В.
  • 35 Вт.

Заявленный производителем ресурс лампы составляет 2 000 часов. При этом уровень мощности светового луча на 200% выше обычной.

Тест возможностей модели подтвердил заявленную мощность луча и потребление энергии на уровне 35 Вт. Тем не менее, вызывает опасение столь высокая мощность луча, которая может быть опасной для остальных участников автомобильного движения.

Видео о преимуществах и недостатках галогенных лампы с цоколем h5

Итоги

Из всех рассмотренных типов очевидным преимуществом в ценовом и ресурсном эквиваленте обладают галогенные модели h2. Но только при условии грамотного использования галогенок на крутых дорожных уклонах в режиме дальнего света.

Лучшие цены и условия на покупку новых авто

Кредит 6,5% / Рассрочка / Trade-in / 98% одобрений / Подарки в салоне Мас Моторс

rating-avto.ru

Cos arccos – What is cos of arccos of x

Вывод формул обратных тригонометрических функций

Основные формулы

Вывод формул для обратных тригонометрических функций прост, но требует контроля за значениями аргументов прямых функций. Это связано с тем, что тригонометрические функции периодичны и, поэтому, обратные к ним функции многозначны. Если особо не оговорено, то под обратными тригонометрическими функциями подразумевают их главные значения. Для определения главного значения, область определения тригонометрической функции сужают до интервала, на котором она монотонна и непрерывна. Вывод формул для обратных тригонометрических функций основывается на формулах тригонометрических функций и свойствах обратных функций как таковых. Свойства обратных функций можно разбить на две группы.

В первую группу входят формулы, справедливые на всей области определения обратных функций:
sin(arcsin x) = x    
cos(arccos x) = x    
tg(arctg x) = x      (–∞ < x < +∞)
ctg(arcctg x) = x    (–∞ < x < +∞)

Во вторую группу входят формулы, справедливые только на множестве значений обратных функций.
arcsin(sin x) = x     при
arccos(cos x) = x     при
arctg(tg x) = x     при
arcctg(ctg x) = x     при

Если переменная x не попадает в указанный выше интервал, то ее следует привести к нему, применяя формулы тригонометрических функций (далее n — целое):
sin x = sin(–x–π);     sin x = sin(π–x);     sin x = sin(x+2πn);
cos x = cos(–x);     cos x = cos(2π–x);     cos x = cos(x+2πn);
tg x = tg(x+πn);     ctg x = ctg(x+πn)

Например, если известно, что то
arcsin(sin x) = arcsin(sin( π — x )) = π — x .

Легко убедиться, что при   π – x   попадает в нужный интервал. Для этого умножим на –1:   и прибавим π:     или   Все правильно.

Обратные функции отрицательного аргумента

Применяя указанные выше формулы и свойства тригонометрических функций, получаем формулы обратных функций отрицательного аргумента.

arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x

Поскольку   то умножив на –1, имеем:   или  
Аргумент синуса попадает в допустимый интервал области значений арксинуса. Поэтому формула верна.

Аналогично для остальных функций.
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x

arctg(–x) = arctg(–tg arctg x) = arctg(tg(–arctg x)) = – arctg x

arcctg(–x) = arcctg(–ctg arcctg x) = arcctg(ctg(π–arcctg x)) = π – arcctg x

Выражение арксинуса через арккосинус и арктангенса через арккотангенс

Выразим арксинус через арккосинус.

Формула справедлива при Эти неравенства выполняются, поскольку

Чтобы убедиться в этом, умножим неравенства на –1: и прибавим π/2: или Все правильно.

Итак,  

Аналогично выражаем арктангенс через арккотангенс.

Выражение арксинуса через арктангенс, арккосинуса через арккотангенс и наоборот

Поступаем аналогичным способом.

Формулы суммы и разности

Аналогичным способом, получим формулу суммы арксинусов.

Установим пределы применимости формулы. Чтобы не иметь дела с громоздкими выражениями, введем обозначения: X = arcsin x,   Y = arcsin y. Формула применима при
. Далее замечаем, что, поскольку arcsin(–x) = – arcsin x,   arcsin(–y) = – arcsin y,       то при разных знаках у x и y, X и Y также разного знака и поэтому неравенства     выполняются. Условие различных знаков у x и y можно написать одним неравенством: .   То есть при     формула справедлива.

Теперь рассмотрим случай x > 0 и y > 0, или X > 0 и Y > 0. Тогда условие применимости формулы заключается в выполнении неравенства: .   Поскольку косинус монотонно убывает при значениях аргумента в интервале от 0, до π, то возьмем косинус от левой и правой части этого неравенства и преобразуем выражение:
;
;
;
.
Поскольку   и   ;   то входящие сюда косинусы не отрицательные. Обе части неравенства положительные. Возводим их в квадрат и преобразуем косинусы через синусы:
;
.
Подставляем   sin X = sin arcsin x = x:
;
;
;
.

Итак, полученная формула справедлива при     или .

Теперь рассмотрим случай   x > 0, y > 0   и   x2 + y2 > 1. Здесь аргумент синуса принимает значения:   .   Его нужно привести к интервалу области значения арксинуса   :

.

Итак,

при и.

Заменив x и y на – x и – y, имеем

при и.
Выполняем преобразования:

при и.
Или

при и.

Итак, мы получили следующие выражения для суммы арксинусов:

при или ;

при и ;

при и .

Аналогичным способом получаются остальные формулы:


при или ;

при и ;

при и ;


при ;

при ;


при ;

при ;


при ;

при ;

при ;


при ;

при ;

при .

Автор: Олег Одинцов.     Опубликовано:

1cov-edu.ru

Арксинус, арккосинус — свойства, графики, формулы

Арксинус, arcsin

Арксинус ( y = arcsin x )  – это функция, обратная к синусу ( x = sin y ). Он имеет область определения  –1 ≤ x ≤ 1  и множество значений  –π/2 ≤ y ≤ π/2.
sin(arcsin x) = x    
arcsin(sin x) = x    

Арксинус иногда обозначают так:
.

График функции арксинус

График функции   y = arcsin x

График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арксинуса.

Арккосинус, arccos

Арккосинус ( y = arccos x )  – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения  –1 ≤ x ≤ 1  и множество значений  0 ≤ y ≤ π.
cos(arccos x) = x    
arccos(cos x) = x    

Арккосинус иногда обозначают так:
.

График функции арккосинус

График функции   y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Четность

Функция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x

Функция арккосинус не является четной или нечетной:
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x

Свойства — экстремумы, возрастание, убывание

Функции арксинус и арккосинус непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства арксинуса и арккосинуса представлены в таблице.

  y = arcsin x y = arccos x
Область определения и непрерывность – 1 ≤ x ≤ 1 – 1 ≤ x ≤ 1
Область значений  
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы    
Минимумы    
Нули, y = 0 x = 0 x = 1
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2

Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

 x arcsin x arccos x
град. рад. град. рад.
– 1 – 90° 180° π
– 60° 150°
– 45° 135°
– 30° 120°
0 0 90°
30° 60°
45° 45°
60° 30°
1 90° 0

≈ 0,7071067811865476
≈ 0,8660254037844386

Формулы

Формулы суммы и разности


     при или

     при и

     при и


     при или

     при и

     при и


     при

     при


     при

     при

Выражения через логарифм, комплексные числа

Выражения через гиперболические функции

Производные

;
.
См. Вывод производных арксинуса и арккосинуса > > >

Производные высших порядков:
,
где – многочлен степени . Он определяется по формулам:
;
;
.

См. Вывод производных высших порядков арксинуса и арккосинуса > > >

Интегралы

Делаем подстановку   x = sin t. Интегрируем по частям, учитывая что  –π/2 ≤ t ≤ π/2,  cos t ≥ 0:
.

Выразим арккосинус через арксинус:
.

Разложение в ряд

При   |x| < 1   имеет место следующее разложение:
;
.

Обратные функции

Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.

Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x    
cos(arccos x) = x    .

Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
arcsin(sin x) = x     при
arccos(cos x) = x     при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

www.mathway.com

Tiff в jpeg онлайн – Конвертирование TIFF в JPG онлайн

Онлайн-конвертер файлов TIFF в JPG

Внимание!: Загрузите файл или укажите рабочий URL-адрес. ×

Внимание!: Введите пароль. ×

Внимание!: Wrong password, please enter the correct one! ×

Чтобы конвертировать в обратном порядке из JPG в TIFF, нажмите здесь:
Конвертер JPG в TIFF

Оцените конвертирование JPG с помощью тестового файла TIFF

Не впечатлило? Нажмите на ссылку, чтобы конвертировать наш демонстрационный файл из формата TIFF в формат JPG:
Конвертирование TIFF в JPG с помощью нашего тестового файла TIFF.

TIFF, Tagged Image File Format (.tiff)

Формат TIFF — это формат файлов. используемый для хранения растровой графики и изображений, а также векторных рисунков. Его также можно использовать для хранения штриховой графики и фотографий. Формат файлов TIFF был создан вследствие возросшей популярности приложений и оборудования сканирования (более того, формат хотели принять в качестве стандарта для отсканированных изображений). Данный…
Что такое TIFF?

JPG, Joint Photographic Experts Group JFIF format (.jpg)

Фото и изображения, которые необходимо передать по электронной почте или выложить в Интернет, должны быть сжаты с целью уменьшения времени их выгрузки и загрузки, а также с целью экономии ресурсов Интернет-канала. Для этого обычно используют изображения в формате JPG. Сжатие с потерями равномерно по всему изображению, причем чем ниже степень сжатия, тем более четким становится изображение….
Что такое JPG?

image.online-convert.com

Онлайн конвертер изображений из TIFF в JPG

Во что: JPGDDSICOPNGTIFFGIFBMPPNMPSPS2PS3PPMPSDPTIFRADPICTPAMPBMPCLPCXPDBPDFPCDPFMPGMPALMVICARVIFFWBMPWDPWEBPXBMXPMXWDUYVYUILRFGSGISUNSVGTGAAAIDCXDIBDPXEPDFEPIEPSEPS2EPS3EPSIAVSCINCMYKCMYKAEPSFEPTEXRFAXJ2CJ2KJXRMIFFMONOMNGMPCMTVOTBJPTJP2FITSFPXGRAYHDRJNGJBIGINFOHRZP7


Глубина цвета 32 (True color, YCbCrK)24 (True color, YCbCr) 8 (Grayscale)


тип сжатия baseline (default)progressivelosslesssequential


sample 1:1:1 (11:11:11) (default)4:2:2 (22:21:21)4:2:1 (22:21:11)4:4:2 (22:22:21)4:1:1 (22:11:11)


lossless predictor Auto select best predictor01234567


Surface format R8G8B8: (24 bits per pixel, R:8, G:8, B:8) R5G6B5: (16 bits per pixel, R:5, G:6, B:5) A8R8G8B8: (32 bits per pixel, A:8, R:8, G:8, B:8) A8B8G8R8: (32 bits per pixel, A:8, B:8, G:8, R:8) X8R8G8B8: (32 bits per pixel, A:x, R:8, G:8, B:8) X8B8G8R8: (32 bits per pixel, A:x, B:8, G:8, R:8) A1R5G5B5: (16 bits per pixel, A:1, R:5, G:5, B:5) X1R5G5B5: (16 bits per pixel, A:x, R:5, G:5, B:5) L8: (8 bits per pixel, luminance:8) A8L8: (16 bits per pixel, A:8, L:8) DXT1: (compressed, 1-bit alpha) DXT2: (compressed, 4-bit premultiplied alpha) DXT3: (compressed, 4-bit nonpremultiplied alpha) DXT4: (compressed, interpolated premultiplied alpha) DXT5: (compressed, interpolated nonpremultiplied alpha)

генерировать mip-карту ДаНет


Глубина цвета: 64 (True color, RGBA)48 (True color, RGB)32 (True color, RGBA, transparent)24 (True color, RGB)8 (Indexed)4 (Indexed)1 (Mono)bpp

степень сжатия 0 — None1 — Lowest23456789- Highest



Глубина цвета64 (True color, RGBA)48 (True color, RGB)32 (True color, RGBA)32 (CMYK)24 (True color, RGB)8 (Indexed)4 (Indexed)1 (Mono)

тип сжатияNONECCITT RLE (for 1 bpp only)CCITT Fax3 (for 1 bpp only)CCITT Fax4 (for 1 bpp only)LZWFLATEJPEGJBIG (for 1 bpp only)JPEG 6+PACKBITS

степень сжатия0 — None1 — Lowest23456789 — Highest

Порядок байтовот младшего к старшемуот старшего к младшему

save TIFF file with MultistripSinglestripTiled

Jpeg subsample 1:1:1 (11:11:11) (default)4:2:2 (22:21:21)4:1:1 (22:11:11)

photometric mono Leave As IsMinimum is WhiteMinimum is Black

with fill order most significant to leastleast significant to most

создать превью

Сохранить EXIF, если есть

Сохранить IPTC, если есть

BigTIFF формат

Конвертировать!

online-converting.ru

Онлайн конвертер изображений из TIFF в JPG

Во что: JPGDDSICOPNGTIFFGIFBMPPNMPSPS2PS3PPMPSDPTIFRADPICTPAMPBMPCLPCXPDBPDFPCDPFMPGMPALMVICARVIFFWBMPWDPWEBPXBMXPMXWDUYVYUILRFGSGISUNSVGTGAAAIDCXDIBDPXEPDFEPIEPSEPS2EPS3EPSIAVSCINCMYKCMYKAEPSFEPTEXRFAXJ2CJ2KJXRMIFFMONOMNGMPCMTVOTBJPTJP2FITSFPXGRAYHDRJNGJBIGINFOHRZP7


Глубина цвета 32 (True color, YCbCrK)24 (True color, YCbCr) 8 (Grayscale)


тип сжатия baseline (default)progressivelosslesssequential


sample 1:1:1 (11:11:11) (default)4:2:2 (22:21:21)4:2:1 (22:21:11)4:4:2 (22:22:21)4:1:1 (22:11:11)


lossless predictor Auto select best predictor01234567


Surface format R8G8B8: (24 bits per pixel, R:8, G:8, B:8) R5G6B5: (16 bits per pixel, R:5, G:6, B:5) A8R8G8B8: (32 bits per pixel, A:8, R:8, G:8, B:8) A8B8G8R8: (32 bits per pixel, A:8, B:8, G:8, R:8) X8R8G8B8: (32 bits per pixel, A:x, R:8, G:8, B:8) X8B8G8R8: (32 bits per pixel, A:x, B:8, G:8, R:8) A1R5G5B5: (16 bits per pixel, A:1, R:5, G:5, B:5) X1R5G5B5: (16 bits per pixel, A:x, R:5, G:5, B:5) L8: (8 bits per pixel, luminance:8) A8L8: (16 bits per pixel, A:8, L:8) DXT1: (compressed, 1-bit alpha) DXT2: (compressed, 4-bit premultiplied alpha) DXT3: (compressed, 4-bit nonpremultiplied alpha) DXT4: (compressed, interpolated premultiplied alpha) DXT5: (compressed, interpolated nonpremultiplied alpha)

генерировать mip-карту ДаНет


Глубина цвета: 64 (True color, RGBA)48 (True color, RGB)32 (True color, RGBA, transparent)24 (True color, RGB)8 (Indexed)4 (Indexed)1 (Mono)bpp

степень сжатия 0 — None1 — Lowest23456789- Highest



Глубина цвета64 (True color, RGBA)48 (True color, RGB)32 (True color, RGBA)32 (CMYK)24 (True color, RGB)8 (Indexed)4 (Indexed)1 (Mono)

тип сжатияNONECCITT RLE (for 1 bpp only)CCITT Fax3 (for 1 bpp only)CCITT Fax4 (for 1 bpp only)LZWFLATEJPEGJBIG (for 1 bpp only)JPEG 6+PACKBITS

степень сжатия0 — None1 — Lowest23456789 — Highest

Порядок байтовот младшего к старшемуот старшего к младшему

save TIFF file with MultistripSinglestripTiled

Jpeg subsample 1:1:1 (11:11:11) (default)4:2:2 (22:21:21)4:1:1 (22:11:11)

photometric mono Leave As IsMinimum is WhiteMinimum is Black

with fill order most significant to leastleast significant to most

создать превью

Сохранить EXIF, если есть

Сохранить IPTC, если есть

BigTIFF формат

Конвертировать!

fconvert.ru

Конвертировать TIFF в JPG онлайн

Графические файлы формата TIFF в основном используются в печатной индустрии, поскольку они имеют большую глубину цвета и создаются без сжатия либо со сжатием без потерь. Именно из-за этого такие изображения имеют достаточно большой вес, и у некоторых пользователей возникает необходимость уменьшить его. Лучше всего для этих целей конвертировать TIFF в JPG, что позволит значительно уменьшить размер, практически не потеряв при этом в качестве. Сегодня мы расскажем о том, как решить эту задачу без помощи программ.

Читайте также: Преобразование TIFF в JPG с помощью программ

Конвертируем изображения TIFF в JPG онлайн

Далее речь пойдет об использовании специальных онлайн-сервисов для преобразования необходимых вам файлов. Такие сайты обычно предоставляют свои услуги бесплатно, а функциональность сосредоточена именно на рассматриваемом процессе. Предлагаем ознакомиться с двумя такими интернет-ресурсами.

Читайте также: Открываем формат TIFF

Способ 1: TIFFtoJPG

TIFFtoJPG – простой веб-сервис, позволяющий буквально за несколько минут перевести картинку формата TIFF в JPG, о чем и говорит его название. Вся процедура осуществляется следующим образом:

Перейти на сайт TIFFtoJPG

  1. Перейдите по ссылке выше, чтобы попасть на главную страницу сайта TIFFtoJPG. Здесь воспользуйтесь всплывающим меню справа вверху, чтобы выбрать подходящий язык интерфейса.
  2. Далее приступайте к загрузке необходимых изображений или перетащите их в указанную область.
  3. Если вы открыли обозреватель, то в нем будет достаточно просто выделить одну или несколько картинок, а затем щелкнуть левой кнопкой мыши по «Открыть».
  4. Ожидайте завершения загрузки и конвертирования.
  5. В любой момент вы можете удалить ненужные файлы или произвести полную очистку списка.
  6. Кликните на «Скачать» или «Скачать все», чтобы загрузить один или все полученные файлы в виде архива.
  7. Теперь вы можете приступать к работе с преобразованными рисунками.

На этом работа с интернет-сервисом TIFFtoJPG завершена. После ознакомления с нашей инструкцией вам должен стать понятен принцип взаимодействия с данным сайтом, а мы переходим к следующему методу преобразования.

Способ 2: Convertio

В отличие от предыдущего сайта, Convertio позволяет работать со множеством самых разнообразных форматов, однако сегодня нас интересуют только два из них. Давайте разберемся с процессом конвертирования.

Перейти на сайт Convertio

  1. Перейдите на сайт Convertio, воспользовавшись указанной выше ссылкой, и сразу же приступайте к добавлению изображений TIFF.
  2. Выполните те же самые действия, которые были показаны в предыдущем способе – выделите объект и откройте его.
  3. Обычно в параметрах конечного формата указано не то значение, что нам нужно, поэтому щелкните на соответствующем выпадающем меню левой кнопкой мыши.
  4. Перейдите в раздел «Изображение» и выберите формат JPG.
  5. Вы можете добавить еще файлы или удалить уже присутствующие.
  6. По завершении всех настроек нажмите на кнопку «Преобразовать».
  7. Вы можете отслеживать процесс изменения формата.
  8. Осталось только загрузить готовый результат на ПК и переходить к работе с файлами.

Открываются изображения JPG через стандартное средство просмотра в операционной системе Windows, однако это не всегда удобно. Рекомендуем ознакомиться с другой нашей статьей, которую вы найдете по ссылке ниже — в ней рассмотрено девять других способов открытия файлов упомянутого выше типа.

Подробнее: Открываем изображения формата JPG

Сегодня мы разобрались с задачей конвертирования картинок TIFF в JPG. Надеемся, приведенные выше инструкции помогли вам понять, как осуществляется эта процедура на специальных онлайн-сервисах. Если у вас остались какие-либо вопросы, смело задавайте их в комментариях.

Читайте также:
Редактирование изображений в формате JPG онлайн
Конвертируем фото в JPG онлайн

Мы рады, что смогли помочь Вам в решении проблемы.
Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

lumpics.ru

Из TIFF в JPG

Сервис позволяет произвести преобразование (конвертировать) из формата TIFF в формат JPG

TIFF — это формат, который позволяет хранить растровые графические изображения с тегами. Его разработала компания Aldus Corporation совместно с Microsoft для того, чтобы его можно было применить с PostScript. Aldus Corporation владеет спецификациями. Впоследствии эта компания объединилась с Adobe Systems. Именно она теперь владеет авторским правом на эти спецификации. Обычно файлы формата TIFF (англ. Tagged Image File Format) – с расширением .tiff или .tif. Разработкой формата компания Aldus занималась специально с целью добиться сохранения отсканированных изображений. Популярность TIFF можно объяснить тем, что именно его предпочитают для того, чтобы хранить изображения, у которых большая глубина цвета. Формат применяется для того, чтобы отправлять факсы, сканировать, распознавать тексты. Он широко поддерживается в полиграфии. TIFF выбрали как основной графический формат операционной системы NeXTSTEP. Затем из этой системы поддержка TIFF перекочевала в Mac OS X. Поначалу формат осуществлял поддержку сжатия без потерь. Затем его дополнили для того, чтобы он поддерживал сжатия с потерями в формате JPEG. Подчеркнем, что максимальный вес документа, если его сохранить в таком виде, – не более 4 Гб. Чтобы открыть файл TIFF размером свыше 2 ГБ, необходимо запустить Photoshop CS.

JPEG – это наиболее распространенный и популярный формат растрового изображения. Свое название форма получил по аббревиатуре от названия организации-разработчика Joint Photographic Experts Group. Файлы такого формата используются сегодня во всех цифровых фотоаппаратах и камерах. Они имеют хорошую степень сжатия и поддерживают глубину цвета в 24 бит. Поскольку такое сжатие существенно уменьшают размер изображения практически без потери качества, формат JPEG широко распространен в Интернете. Однако чем сильнее сжатие, тем хуже качество. К тому же формат JPEG не поддерживает опцию прозрачности.

Отзывы

ШИК
спасибо!!!круто!!!
Отличная служба! Очень помогли
не работает
Спасибо! Обработала тиффа за один раз. Все скачалось, качество на выходе отличное!
Это какой-то божественный сервис, в несколько кликов перевел в джипег, без регистраций и смс
/
Спасибо большое за услугу!
все классно

Другие сервисы

ru.inettools.net

Конвертировать TIFF в JPEG — Онлайн Конвертер Файлов

Исходный формат:CSV — Comma Separated ValuesDOC — Microsoft Word DocumentDOCX — Microsoft Word 2007 DocumentDJVU — DjVu DocumentODP — OpenDocument PresentationODS — OpenDocument SpreadsheetODT — OpenDocument Text DocumentPPS — PowerPoint Slide ShowPPSX — PowerPoint Slide Show 2007PPT — PowerPoint PresentationPPTX — PowerPoint Presentation 2007PDF — Portable Document FormatPS — PostScriptEPS — Encapsulated PostScriptRTF — Rich Text FormatTXT — Text documentWKS — Microsoft Works SpreadsheetWPS — Microsoft Works DocumentXLS — Microsoft Excel SpreadsheetXLSX — Microsoft Excel 2007 SpreadsheetXPS — XML Paper Specification3GP — 3GP Multimedia FileAVI — Audio Video Interleave FileFLV — Flash Video FileM4V — MPEG-4 Video FileMKV — Matroska Video FileMOV — Apple QuickTime Movie FileMP4 — MPEG-4 Video FileMPEG — Moving Picture Experts Group FileOGV — Ogg Vorbis Video FileWMV — Windows Media Video FileWEBM — HTML5 Video FileAAC — Advanced Audio Coding FileAC3 — AC3 Audio FileAIFF — Audio Interchange File FormatAMR — Adaptive Multi-Rate Audio FileAPE — Monkey’s Lossless Audio FormatAU — Sun’s Audio File FormatFLAC — Free Lossless Audio CodecM4A — MPEG-4 Audio FileMKA — Matroska Audio FileMP3 — MPEG-1 Audio Layer 3 FileMPC — MusePack Audio FileOGG — Ogg Vorbis Audio FileRA — RealMedia Streaming MediaWAV — Waveform Audio File FormatWMA — Windows Media Audio FileBMP — Windows BitmapEXR — OpenEXR File FormatGIF — Graphics Interchange FormatICO — ICO File FormatJP2 — JPEG 2000 compliant imageJPEG — Joint Photographic Experts GroupPBM — Netpbm Portable Bitmap formatPCX — Paintbrush image formatPGM — Netpbm Portable Graymap formatPNG — Portable Network GraphicsPPM — Netpbm Portable Pixmap formatPSD — Photoshop DocumentTIFF — Tagged Image File FormatTGA — Truevision Graphics AdapterCHM — Microsoft Compiled HTML HelpEPUB — Electronic PublicationFB2 — Fiction Book 2.0LIT — Microsoft LiteratureLRF — Sony Portable ReaderMOBI — Mobipocket eBookPDB — Palm Media eBookRB — RocketEdition eBookTCR — Psion eBook7Z — 7-ZipZIP — ZipRAR — Roshal ArchiveJAR — Java ArchiveTAR — TarballTAR.GZ — TAR GZippedCAB — Cabinet

www.docspal.com

Как конвертировать TIFF в JPG


TIFF – один из множества графических форматов, также один из самых старых. Однако изображения в таком формате не всегда удобны в бытовом использовании – не в последнюю очередь из-за объема, поскольку картинки с таким расширением представляют собой сжатые без потерь данные. Для удобства формат TIFF можно преобразовать в более привычный JPG с помощью программного обеспечения.

Конвертирование TIFF в JPG

Оба вышеупомянутых графических формата очень распространены, и с задачей преобразования одного в другой справляются как графические редакторы, так и некоторые просмотрщики изображений.

Читайте также: Конвертируем изображения PNG в JPG

Способ 1: Paint.NET

Популярный бесплатный редактор изображений Paint.NET известен поддержкой плагинов, и является достойным конкурентом как Photoshop, так и GIMP. Впрочем, богатство инструментария оставляет желать лучшего, да и привыкшим к ГИМП пользователям Пэйнт.НЕТ покажется неудобным.

  1. Открывайте программу. Воспользуйтесь меню «Файл», в котором выберите «Открыть».
  2. В окне «Проводника» проследуйте к папке, в которой находится ваша картинка в формате TIFF. Выберите её щелчком мыши и нажмите «Открыть».
  3. Когда файл будет открыт, снова пройдите в меню «Файл», и на этот раз нажмите на пункт «Сохранить как…».
  4. Откроется окно сохранения картинки. В нем в выпадающем списке «Тип файлов» следует выбрать «JPEG».

    Затем нажмите кнопку «Сохранить».
  5. В окне параметров сохранения нажмите «ОК».

    Готовый файл появится в нужной папке.

Программа работает прекрасно, однако на больших файлах (объемом больше 1 Мб) сохранение существенно замедляется, так что будьте готовы к таким нюансам.

Способ 2: ACDSee

Известный просмотрщик изображений ACDSee был очень популярным в середине 2000х годов. Программа продолжает развиваться и сегодня, предоставляя пользователям большой функционал.

  1. Откройте АСДСи. Используйте «File»«Open…».
  2. Откроется окно встроенного в программу Диспетчера файлов. В нем пройдите к директории с целевым изображением, выберите его нажатием левой кнопки мыши и кликните «Открыть».
  3. Когда файл будет загружен в программу, снова выберите «File» и пункт «Save As…».
  4. В интерфейсе сохранения файла в меню «Тип файла» установите «JPG-JPEG», затем нажмите на кнопку «Сохранить».
  5. Конвертированное изображение откроется прямо в программе, рядом с исходным файлом.

Недостатков у программы немного, однако для ряда пользователей они могут стать критичными. Первый – платная основа распространения этого ПО. Второй – современный интерфейс разработчики посчитали более важным, чем производительность: на не самых мощных компьютерах программа заметно подтормаживает.

Способ 3: FastStone Image Viewer

Еще одно известное приложение для просмотра фотографий, FastStone Image Viewer, тоже умеет преобразовывать картинки из TIFF в JPG.

  1. Открывайте ФастСтоун Имейдж Вьювер. В основном окне приложения найдите пункт «Файл», в котором выберите «Открыть».
  2. Когда возникнет окно встроенного в программу файлового менеджера, пройдите к местонахождению картинки, которую необходимо конвертировать, выберите её и нажмите на кнопку «Открыть».
  3. Изображение будет открыто в программе. Затем вновь используйте меню «Файл», выбирая пункт «Сохранить как…».
  4. Появится интерфейс сохранения файла через «Проводник». В нем проследуйте к выпадающему меню «Тип файла», в котором выберите «JPEG Format», затем нажмите «Сохранить».

    Будьте внимательны – не нажмите случайно пункт «JPEG2000 Format», расположенный прямо под нужным, не то получите совершенно другой файл!
  5. Результат преобразования будет сразу же открыт в FastStone Image Viewer.

Самым ощутимым недостатком программы является рутинность процесса конвертирования – если у вас много TIFF-файлов, конвертирование их всех может занять продолжительное время.

Способ 4: Microsoft Paint

Встроенное в Windows решение также способно решить задачу преобразования фотографий TIFF в JPG – правда, с некоторыми оговорками.

  1. Откройте программу (обычно она находится в меню «Пуск»«Все программы»«Стандартные») и щелкните по кнопке вызова меню.
  2. В главном меню выберите пункт «Открыть».
  3. Откроется «Проводник». В нем доберитесь к папке с файлом, который хотите конвертировать, выберите его щелчком мыши и откройте нажатием на соответствующую кнопку.
  4. После загрузки файла снова воспользуйтесь главным меню программы. В нем наведите курсор на пункт «Сохранить как» и во всплывающем меню щелкните по пункту «Изображение в формате JPG».
  5. Откроется окно сохранения. По желанию переименуйте файл и нажмите «Сохранить».
  6. Готово – картинка в формате JPG появится в выбранной ранее папке.
  7. Теперь насчет упомянутых оговорок. Дело в том, что MS Paint понимает только файлы с расширением TIFF, глубина цвета которого равна 32 битам. 16-битные картинки в нем просто не откроются. Поэтому, если вам нужно преобразовать именно 16-битный TIFF, этот способ вам не подойдет.

Как видим, вариантов преобразования фотографий из TIFF в формат JPG хватает и без использования онлайн-сервисов. Возможно, эти решения не так удобны, однако весомое преимущество в виде полноценной работы программ без интернета вполне компенсирует недостатки. Кстати, если вы найдете еще способы конвертировать TIFF в JPG, опишите их, пожалуйста, в комментариях.

Мы рады, что смогли помочь Вам в решении проблемы.
Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

lumpics.ru

Теория вероятности хотя бы одно событие – —

Вероятность появления хотя бы одного события. Задачи с решениями. |

Вероятность наступления события А, состоящего в появлении хотя бы одного из событий А1, А2,…, Аn, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

Пример 1

  Устройство содержит два независимо работающих элемента. Вероятности отказа элементов равны соответственно 0,05 и 0,08. Найти вероятности отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент.

Решение. 

  Пусть событие А — «устройство не работает», В1 — «отказал первый элемент», В2 — « отказал второй элемент».

  Событие А соответствует тому, что может отказать один из «цементов либо оба элемента. События
В1 и В2  независимы в совокупности, поэтому:

q1=1-0,05=0,95,   q2=1-0,08=0,92

 P(A)=1-q1*q2=1-0,95*0,92=1-0,874=0,126

 

Пример 2

  Для разрушения моста достаточно попадания одной авиационной бомбы, Найти вероятность того, что мост будет разрушен, если на него сбросить четыре бомбы, вероятности попадания которых равны соответственно: 0,3; 0,4; 0,6; 0,7.

Решение. 

  События А — «мост разрушен» и

— «ни одна бомба не попала в цель» противоположны, поэтому

Введем события:

В1— «первая бомба не попала в цель», Р( В1 ) = 1-0,3 = 0,7; 

В2 — «вторая бомба не попала в Цель». Р(В2) = 1 — 0,4 = 0,6; 

В3 — «третья бомба не попала в цель», Р(В3) = 1 — 0,6 = 0,4; 

В4— «четвертая бомба не попала в цель». Р(В4) = 1-0,7 = 0,3.

События  В1, В2,  В3 и В4  независимы, поэтому

Пример 3

  Вероятность попадания в мишень каждым из двух стрелков равна 0,3. Стрелки стреляют по очереди, причем каждый должен сделать по два выстрела. Попавший в мишень первым получает приз. Найти вероятность того, что стрелки получат приз.

Решение. 

  Пусть событие А — «стрелки получат приз». Для получения приза достаточно, чтобы хотя бы один из четырех выстрелов был успешным. Вероятность попадание в цель р=0,3, а вероятность промаха q=1- р =1-0,3=0,7. Поэтому

  P(A)=1-q4=1-0,74=1-0,2401=0,76

www.matematicus.ru

20. ВЕРОЯТНОСТЬ ПОЯВЛЕНИЯ ХОТЯ БЫ ОДНОГО СОБЫТИЯ

В жизни, производстве часто возникают такие ситуации, когда нужно вычислить вероятность появления хотя бы одного события из некоторого набора возможных событий. Например, если по цели был сделан залп из нескольких орудий, то интерес представляет вероятность того, что цель будет поражена, т. е. что будет хотя бы одно попадание.

Два несовместных события A и называются противоположными, если при эксперименте одно из них обязательно произойдет. Иначе, для противоположных событий справедливы равенства:

, .

Вероятности противоположных событий связаны соотношением

(18.1)

Вероятность появления хотя бы одного из событий A1, A2,…, An равна разности между единицей и вероятности совместного появления противоположных событий:

. (18.2)

Если события A1, A2,…, An независимы и их вероятности одинаковы, т. е. и , то

. (18.3)

Пример 18.1. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1=0,8, p2=0,7, p3=0,9. Найти вероятность хотя бы одного попадания при одном залпе из всех орудий.

Решение. Поскольку вероятности попаданий независимы и q1=1–p1=0,2, q2=1–p2=0,3, q3=1–p3=0,1, то искомая вероятность равна

P(A) = 1–q1q2q3 = 1–0,006 = 0,994.

Пример 18.2. Уличный торговец предлагает прохожим иллюстрированную книгу. Из предыдущего опыта ему известно, что в среднем один из 65 прохожих, которым он предлагает книгу, покупают ее. В течение некоторого промежутка времени он предложил книгу 20 прохожим. Чему равна вероятность того, что он продаст им хотя бы одну книгу?

Решение. Пусть Ai – событие того, что i-й прохожий купит книгу. Вероятность этого события , а противоположного события . Тогда вероятность того, что хотя бы один из 20 прохожих купят книгу, будет равна

.

Пример 18.3. Вероятность того, что при одном выстреле стрелок попадет в цель, равна p=0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Вероятность попадания хотя бы один раз при n выстрелах равна:

P(A) = 1 – qn,

Где q=1–p. Поскольку P(A)³0,9, то

1 – qn ³ 0,9 Þ qn £ 0,1 Þ n lg q £ lg0,1 Þ

.

Таким образом, чтобы хотя бы один раз попасть в цель с вероятностью не менее 0,9, стрелок должен произвести не менее 5 выстрелов.

Упражнения

18.1. Отдел маркетинга фирмы проводит опрос для выяснения мнений потребителей по определенному типу продуктов. Известно, что в местности, где проводятся исследования, 10% населения являются потребителями интересующего фирму продукта и могут дать ему квалифицированную оценку. Компания случайным образом отбирает 10 человек из всего населения. Чему равна вероятность того, что, по крайней мере, один человек из них может квалифицированно оценить продукт?

Ответ. .

18.2. Пакеты акций, имеющихся на рынке ценных бумаг, могут дать доход владельцу с вероятностью 0,5 (для каждого пакета). Сколько пакетов акций различных фирм нужно приобрести, чтобы с вероятностью, не меньшей 0,96875, можно было ожидать доход хотя бы по одному пакету акций?

Ответ. Из уравнения получаем, что не менее 5 пакетов.

18.3. Для рыночного исследования необходимо проведение интервью с людьми, которые добираются на работу общественным транспортом. В районе, где проводится исследование, 75% людей добираются на работу общественным транспортом. Если три человека согласны дать интервью, то чему равна вероятность того, что, по крайней мере, один из них добирается на работу общественным транспортом?

Ответ. .

18.4. Модельер, разрабатывающий новую коллекцию одежды к весеннему сезону, создает модели в зеленой, черной и красной цветовой гамме. Вероятность того, что зеленый цвет будет в моде весной, модельер оценивает в 0,3, что черный – в 0,2, а вероятность того, что будет моден красный цвет – в 0,15. Предполагая, что цвета выбираются независимо друг от друга, оцените вероятность того, что цветовое решение коллекции будет удачным хотя бы по одному из выбранных цветов?

Ответ. P=1 – 0,7×0,8×0,85 = 0,524

18.5. Предположим, что для одной торпеды попасть в цель равна 0,7. Какова вероятность того, что три торпеды потопят корабль, если для потопления корабля достаточно одного попадания в цель?

Ответ. .


< Предыдущая   Следующая >

matica.org.ua

Вероятность появления хотя бы одного события

 

Пусть в результате испытания могутпоявиться п событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий А1, А2, …, Ап, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий :

Доказательство. Обозначим через А событие, состоящее в появлении хотя бы одного из событий А1, А2, …, Ап, События А и (ни одно из событий не наступило) противоположны, следовательно, сумма их вероятностей равна единице:

P(A)+P( )=1.

Отсюда, пользуясь теоремой умножения, получим

P(A)=1— P( )=1-P()P()…P( ),

или

P(A)=1 — q1q2 … qn.

Частный случай. Если события А1, А2, …, Ап, имеют одинаковую вероятность, равную р, то вероятность появления хотя бы одного из этих событий

P(A)=1-qn. (**)

Пример 1. Вероятности попадания в цель при стрельбе из трех орудий таковы: р1 = 0,8; р1= О,7; р3 = 0,9. Найти вероятность хотя бы одного попадания (событие А)при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий независит от результатов стрельбы из других орудий, поэтому рассматриваемые события А1(попадание первого орудия), А2(попадание второго орудия) и А3(попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям А1, А2, А3, (т. е. вероятности промахов), соответственно равны:

q1=1-p1= 10,8 = 0,2; q2=1-p2= 10,7 = 0,3;

q3=13= 10,9 = 0,1.

Искомая вероятность

Р (A) = 1 — q1q2q3= 1 — 0,2• 0,3• 0,1 = 0,994.

Пример 2. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События «машина работает» и «машина не работает» (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:

p+q=1

Отсюда вероятность того, что машина в данный момент не работает, равна

q=1-p=10,9=0,1.

Искомая вероятность

Р (А) = 1 — q4 = 10,14= 0,9999.

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример 3. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие «при п выстрелах стрелок попадает в цель хотя бы един раз». События, состоящие в попадании в цель при первом, втором выстрелах и т.д., независимы в совокупности, поэтому применима формула (**)

Р (А) =1 — qn.

Приняв во внимание, что, по условию, Р(A) 0,9, р = 0,4 (следовательно, q=10,4= 0,6), получим

10,6n0,9; отсюда0,6n0,1.

Прологарифмируем это неравенство по основанию 10:

nlgO,6 lgO,l.

Отсюда, учитывая, что lgO,6 < 0, имеем

n lgO,l/lgO,6= —1/1,7782=—1/(0,2218) = 4,5.

Итак, п 5, т.е. стрелок должен произвести не менее 5 выстрелов.

Пример 4. Вероятность того, что событие появится хотя бы один раз в трех независимых в совокупности испытаниях, равна 0,936. Найти вероятность появления события в одном испытании (предполагается, что во всех испытаниях вероятность появления события одна и та же).

Решение. Так как рассматриваемые события независимы в совокупности, то применима формула (**)

P(A)=1-qn.

По условию, Р(A) = 0,936; п = 3. Следовательно,

0,936=1— q3, или q3= 1—0,936 = 0,064.

Отсюда q= = 0,4.

Искомая вероятность

р= 1-q= 10,4 = 0,6.

Задачи

1. Вероятность того, что стрелок при одном выстреле попадает в мишень, равна р=0,9. Стрелок произвел 3 выстрела. Найти вероятность того, что все 3 выстрела дали попадание.

Отв.0,729.

2.Брошены монета и игральная кость. Найти вероятность совмещения событий: «появился «герб», «появилось 6 очков».

Отв. 1/12.

3.В двух ящиках находятся детали: в первом—10 (из них 3 стандартных), во втором—15 (из них 6 стандартных). Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что обе детали окажутся стандартными.

Отв. 0,12.

4.В студии телевидения 3 телевизионных камеры. Для каждой камеры вероятность того, что она включена в данный момент, равна р = 0,6. Найти вероятность того, что в данный момент включена хотя бы одна камера (событие А).

Отв. 0,936.

5.Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей (событие А)?

Отв. 91/216.

6.Предприятие изготовляет 95% изделий стандартных, причем из них 86% — первого сорта. Найти вероятность того, что взятое наудачу изделие, изготовленное на этом предприятии, окажется первого сорта.

Отв. 0,817.

7.Монета бросается до тех пор, пока 2 раза подряд она не выпадет одной и той же стороной. Найти вероятности следующих событий: а) опыт окончится до шестого бросания; б) потребуется четное число бросаний.

Отв. а) 15/16; б) 2/3.

8.Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех — вторая цифра. Предполагается, что все 20 возможных исходов равновероятны. Найти вероятность того, что будет выбрана нечетная цифра: а) в первый раз; б) во второй раз; в) в оба раза.

Отв. а) 3/5; б) 3/5; в) 3/10.

9. Вероятность того, что при одном выстреле стрелок попадет в десятку, равна 0,6. Сколько выстрелов должен сделать стрелок, чтобы с вероятностью не менее 0,8 он попал в десятку хотя бы один раз?

Отв. n 2.

10.Три электрические лампочки последовательно включены в цепь. Вероятность того, что одна (любая) лампочка перегорит, если напряжение в сети превысит номинальное, равна 0,6. Найти вероятность того, что при повышенном напряжении тока в цепи не будет.

Отв. 0,936.

11.Вероятность того, что событие А появится хотя бы один раз при двух независимых испытаниях, равна 0,75. Найти вероятность появления события в одном испытании (предполагается, что вероятность появления события в обоих испытаниях одна и та же).

Отв. 0,5.

12. Три команды А1, А23, спортивного общества А состязаются соответственно с тремя командами общества В. Вероятности того, что команды общества А выиграют матчи у команд общества В, таковы: при встрече A1с В10,8; А2с В2— 0,4; А3с В30,4. Для победы необходимо выиграть не менее двух матчей из трех (ничьи во внимание не принимаются). Победа какого из обществ вероятнее?

Отв. Общества А (РA = 0,544 > 1/2).

13. Вероятность поражения цели первым стрелком при одном выстреле равна 0,8, а вторым стрелком—0,6. Найти вероятность того, что цель будет поражена только одним стрелком.

Отв. 0,44.

14. Из последовательности чисел 1, 2, …, п наудачу одно за другим выбираются два числа. Найти вероятность того, что одно из них меньше целого положительного числа k, а другое больше k, где 1 < k < п.

Отв. [2[k — 1)(n — k)]/[n(n— 1)].

Указание. Сделать допущения: а) первое число <k, а второе > k; б) первое число > k, а второе < k.

15. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие нестандартно, равна 0,1. Найти вероятность того, что: а) из трех проверенных изделий только одно окажется нестандартным; б) нестандартным окажется только четвертое по порядку проверенное изделие.

Отв. а) 0,243; б) 0,0729.

 

Глава четвертая




infopedia.su

Тема 4. Теория вероятностей. Формула Байеса, вероятность появления хотя бы одного события

 

1. В первой урне 3 белых и 7 чёрных шаров. Во второй урне 6 белых и 4 чёрных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна…

-a. Р=0,5;

-b. Р=0,9;

+c. Р=0,45;

-d. Р=0,15.

 

 

2. Имеются две одинаковые на вид урны. В первой урне находятся один белый и два чёрных шара. Во второй урне — два белых и два чёрных шара. Из наудачу взятой урны взяли один шар. Тогда вероятность того, что этот шар окажется белым равна …

-a. ;

+b. ;

-c. ;

-d. .

 

3. Имеются две одинаковые на вид урны. В первой урне находятся три красных и один чёрный шар. Во второй – два красных и один чёрный шар. Из наудачу взятой урны взяли один шар. Тогда вероятность того, что этот шар красный равна …

-a. ;

+b. ;

-c. ;

-d. .

4. Имеются две одинаковые на вид урны. В первой урне находятся два белых и один чёрный шар. Во второй урне – семь белых и семь чёрных шаров. Из наудачу взятой урны взяли один шар. Тогда вероятность того, что этот шар белый равна …

-a. ;

-b. ;

-c. ;

+d. .

 

 

5. В первом ящике 7 красных и 11 синих шаров, во втором – 5 красных и 9 синих. Из произвольного ящика достают один шар. Вероятность того, что он синий, равна…

-a. ;

-b. ;

+c. ;

-d. .

 

 

6. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

+a. ;

-b. ;

-c. .

 

 

7. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

+a. ;

-b. ;

-c. .

8. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

-a. ;

+b. ;

-c. .

 

 

9. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

-a. ;

-b. ;

+c. .

 

 

10. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

-a. ;

+b. ;

-c. .

 

 

11. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

-a. ;

+b. ;

-c. .

 

 

12. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

-a. ;

-b. ;

+c. .

13. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

-a. ;

-b. ;

+c. .

 

14. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

+a. ;

-b. ;

-c. .

 

15. Несовместные события ,  и  не образуют полную группу, если их вероятности равны …

+a. ;

-b. ;

-c. .

 

 

Тема 5. Теория вероятностей. Основные законы распределения дискретных случайных величин. Формула Бернулли

 

 

1. Пусть X – дискретная случайная величина, заданная законом распределения вероятностей:

Тогда математическое ожидание этой случайной величины равно…

-a. 1,5;

-b. 2,2;

-c. 2;

+d. 0,8.

 

2. Дан закон распределения вероятностей дискретной случайной величины Х:

Х 1 2 3 4
Р 0,2 0,3 0,4 а

Тогда значение a равно…

-a. – 0,7;

-b. 0,7;

-c. 0,2;

+d. 0,1.

3. Дан закон распределения вероятностей дискретной случайной величины Х:

Х 1 2 3 4
Р 0,2 0,3 a 0,1

Тогда значение a равно…

-a. – 0,6;

-b. 0,3;

+c. 0,4;

-d. 0,6.

 

4. Дан закон распределения вероятностей дискретной случайной величины Х:

Х 1 2 3 4
Р 0,2 a 0,3 0,2

Тогда значение a равно…

-a. 0,2;

+b. 0,3;

-c. – 0,7;

-d. 0,7.

 

5. Дискретная случайная величина Х задана законом распределения вероятностей:

Тогда математическое ожидание случайной величины Y=3X равно…

-a. 5,3;

-b. 9;

-c. 7,5;

+d. 6,9.

 

6. Дискретная случайная величина Х задана законом распределения вероятностей:

Тогда математическое ожидание случайной величины Y=6X равно…

-a. 8,9;

-b. 24;

-c. 18,6;

+d. 17,4.

 

7. Дискретная случайная величина Х задана законом распределения вероятностей:

Тогда математическое ожидание случайной величины Y=4X равно…

-a. 5,1;

-b. 5,2;

+c. 4,4;

-d. 4.

 

8. Вероятность появления события А в 20 независимых испытаниях, проводимых по схеме Бернулли, равна 0,54. Тогда математическое ожидание числа появлений этого события равно…

-a. 4,97;

-b. 9,20;

-c. 10,26;

+d. 10,8.

9. Дискретная случайная величина Х задана законом распределения вероятностей

Хi -1 0 1 3
Рi 0,2 0,3 0,1 0,4

Тогда значение интегральной функции распределения вероятностей F(2) равно …

+a. 0,6;

-b. 1;

-c. 0,4;

-d. 0,5.

 

studopedia.net

ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ. НЕЗАВИСИМОСТЬ СОБЫТИЙ. ВЕРОЯТНОСТЬ НАСТУПЛЕНИЯ ХОТЯ БЫ ОДНОГО СОБЫТИЯ ИЗ НЕСКОЛЬКИХ НЕЗАВИСИМЫХ

Поиск Лекций

Пусть А и В два события. Тогда

Р (А +В) = Р(А) +Р(В) — Р(АВ) (3.1)
Для несовместных событий Р(А+В)=Р(А)+Р(В).
В случае трех событий А,В, С

Р(А +В+С) =Р(А) +Р(В) +Р(С) – Р(АВ) – Р(ВС) – Р(СА) + Р(АВС) (3.2)

Для попарно несовместных событий А,В,С Р(А+В+С)=Р(А)+ Р(В)+ Р(С).

Для двух событий А и В (Р(В)>0) вероятность наступления события А при условии, что произошло событие В, определяется равенством

(3.3)

Для событий справедливо соотношение, называемое формулой умножения событий:

(3.4)

Два события А и В называются независимыми, если выполняется равенство

(3.5)

События называются попарно независимыми, если для любых двух событий Аi и Аj выполняется равенство

(3.6)

т.е. Аi и Аj независимы (i¹j).

События взаимонезависимы, или независимы в совокупности, если для любых целых k и таких, что , справедливо равенство

(3.7)

 

ЗАДАЧИ

1. Монету подбросили три раза. Событие А — первый раз выпал герб. Событие В — число выпавших гербов больше числа выпавших цифр. Найти вероятность этих событий и проверить независимы ли они.

2. В группе 20 студентов, из них 15 человек получают стипендию. На дежурство по жребию отобрали двух студентов. Событие А — оба получают стипендию, В — первый из отобранных получает стипендию. Определить, зависимы ли события А и В и найти их вероятности.

3. В урне 10 белых и 5 черных шаров. Вытаскивают 3 шара случайно и без возвращения. Какова вероятность того, что они все одного цвета ? Какова вероятность того, что первый шар белый ? Зависимы ли события ?

4. События А и В несовместны, Р(А)¹0, Р(В)¹0. Зависимы ли данные
события ?

5. Студент знает 10 из 30 вопросов программы. Используя теорему умножения вероятностей, определить вероятность того; что из трех предложенных ему экзаменатором вопросов студент знает а) все три вопроса; б) хотя бы один вопрос.

6. На одиннадцати карточках написано слово «производная». По одной выбирают четыре карточки. Какова вероятность того, что в порядке выхода можно прочитать слово «овод» ?

7. В коробке 9 новых теннисных мячей. Для игры берут три новых мяча. После игры их возвращают обратно. При выборе мячей новые от бывших в игре не отличаются. Какова вероятность того, что после трех игр в коробке не останется новых мячей?

8. В новогодней лотерее 20 билетов, из которых 10 выигрышных. Студент купил два билета какова вероятность того, что оба выиграют? Хотя бы один выиграет?

9. Два пеленгатора с целью обнаружить радиостанцию осуществляют независимо одновременную разведку сигналов этой станции с различных направлений на установленной ранее частоте. Определить вероятность удачного исхода разведки одновременно с двух направлений, если вероятность определения пеленга с одного направления равна 0,6 и с другого 0,7 ?

10. Вероятность того, что в электроцепи напряжение превысит номинальное значение равна 0,9. При повышенном напряжении вероятность отказа прибора равна 0,8. Определить вероятность отказа вследствие повышения напряжения.

11. При браковке деталей обнаружено, что первый дефект присутствует в среднем в двух деталях из каждых 25. В случае его отсутствия, второй присутствует в трех деталях из каждых 50. Какова вероятность взять бракованную деталь?

12. Вероятность занятости первой линии связи 0,3 , второй — 0,6 , третьей — 0,2. Какова вероятность того, что все три линии свободны?

13. На заводе три цеха. Вероятность того, что первый цех выполнит месячный план — 0,9 , второй — 0,8 , третий — 0,95. Завод выполнит план, если план выполнят хотя бы два цеха. Какова вероятность того, что завод выполнит план?

14. Два стрелка стреляют по мишеням по одному разу. Вероятность того, что попадет первый стрелок — 0,9 , второй — 0,6. Второй стрелок получает приз, если его результат не хуже, чем у первого. Какова вероятность того, что он получит приз ?

15. В цехе имеются два станка, вероятность занятости каждого из них равна 0,7. Какова вероятность, что один занят, а другой нет?

16. В блоке, содержащем 24 лампы, отказала одна лампа. Неисправность отыскивается путем поочередной проверки. Найти вероятность того, что неисправность будет устранена не более, чем при первых трех попытках.

17. Электрическая цепь между точками А и В составлена по схеме, изображенной на рисунке. Различные элементы цепи выходят из строя независимо один от другого. Вероятности выхода элементов из строя за время Т следующие:

Элемент K1 K2 Л1 Л2

Вероятность 0,1 0,2 0,4 0,5

Определить вероятность прерывания питания за указанный промежуток времени.

 

Рисунок 3

 

18. Доказать, что если Р(А) + Р(В) > 1, то А и В совместны.

19. Доказать, что если Р(А/В)>Р(А), то и Р(В/А) > Р(В).

20. Доказать, что если А и В независимы, то и , В, и , независимы.

21. Доказать, что если Р(А+В)=1–Р( ) ×Р( ), то события А и В независимы.

22. В коробке 6 ламп, из которых 4 бракованных. Некто наугад берет лампочку, ввинчивает в патрон и включает ток. Если лампа горит, то испытания прекращаются. Если лампа не горит, то она выбрасывается и испытывается следующая и т.д. Какова вероятность того, что будет проведено не более трех испытаний ?

23. В партии из 10 изделий содержится 5 бракованных. Для проверки контролер берет наугад одно изделие из партии и проверяет его качество. Если изделие оказывается бракованным, дальнейшие испытания прекращаются, а партия задерживается. Если изделие окажется стандартным, то контролер берет следующее изделие и т.д. Какова вероятность того, что будет проверено не более трех изделий.

24. Двое игроков бросают монету два раза каждый. Какова вероятность того, что у обоих игроков выпадет одинаковое число гербов ?

25. Производится стрельба по некоторой цели, вероятность попадания в которую при каждом выстреле равна 0,6 . Стрельба прекращается при первом попадании в цель. Найти вероятность того, что будет произведено не более четырех выстрелов.

26. Вероятность того, что разговор можно вести по каждому из трех каналов связи, соответственно равна 0,8 ; 0,7 ; 0,8 . Какова вероятность того, что разговор состоится ?

27. В комплекте имеется 12 телефонных аппаратов, среди которых 3 бракованных. Какова вероятность, что среди двух взятых аппаратов хотя бы один небракованный?

28. Вероятность соединения при телефонном вызове . Какова вероятность, что соединение произойдет только при третьем вызове?

29. Вероятность появления поломок на каждой из трех соединительных линий равна 0,2 . Какова вероятность, что хотя бы одна линия исправна ?

30. На предприятии три телефона. Вероятности занятости их соответственно равны 0,6 ; 0,4 ; 0,5 . Какова вероятность, что хотя бы один из них свободен ?

31. Два пеленгатора независимо друг от друга пеленгуют объект. Первый имеет вероятность успеха 0,3 , второй — 0,4 . Какова вероятность, что объект будет запеленгован ?

32. По радиолинии передается сигнал в виде последовательности пяти импульсов. Вероятность искажения каждого импульса равна 0,1. Искажения отдельных импульсов независимы. Найти вероятность того, что передаваемый сигнал будет искажен.

33. Вероятность попадания в мишень каждым из двух стрелков равна 0,3. Стрелки стреляют по очереди, причем каждый делает по два выстрела. Попавший в мишень первым получает приз. Найти вероятность того, что приз будет получен.

34. Вероятность хотя бы одного попадания в цель при трех выстрелах равна 0,936. Найти вероятность попадания в цель при одном выстреле.

 

4 ФОРМУЛЫ ПОЛНОЙ ВЕРОЯТНОСТИ И БАЙЕСА

 

Пусть даны события образующие полную группу попарно несовместимых событий, и некоторое событие А. Его вероятность может быть найдена по формуле полной вероятности

(4.1)

При выполнении этих же условий для любого справедлива формула Байеса

(4.2)

События часто называют гипотезами. Формула Байеса позволяет найти апостериорную, (послеопытную) вероятность гипотезы, если наступление события А считать результатом опыта. Вероятности называются априорными (доопытными).

ЗАДАЧИ

1. Кинескопы для цветных телевизоров производят три завода. Годовой выпуск кинескопов на П и III заводах одинаков, а первый завод производит на 50% меньше продукции, чем второй. В течение гарантийного срока не выходит из строя в среднем 50%, 60% и 70% кинескопов соответственно I, П, III заводов. Найти вероятность того, что кинескоп наугад приобретенного телевизора выйдет из строя до конца гарантийного срока.

2. Имеется три партии деталей, причем в первой — 2% брака, во второй -3% брака, в третьей — 4% брака. Какова вероятность взять бракованную деталь, если из выбранной наугад партии берется одна деталь ?

 

3. На трех автоматических линиях изготавливаются одинаковые детали. Первая линии дает 20%, вторая 40% всей продукции. Вероятность получения бракованной продукции на каждой линии соответственно равны 2%, 3% и 5%. Определить вероятность того, что взятая наудачу деталь окажется небракованной.

4. Известно, что 90% выпускаемой заводом продукции отвечает стандарту. Упрощенная схема контроля признает пригодной 95% стандартной и 2% нестандартной продукции. Определить вероятность того, что наудачу взятое изделие будет признано пригодным.

5. Имеются две партии одинаковых изделий по 10 и 15 штук. В первой партии 5 бракованных изделий, а во второй – 6. Наудачу взятое изделие из первой партии переложено во вторую, после чего из второй партии выбираются два изделия. Определить вероятность извлечения бракованных изделий из второй партии.

6. В трех аудиториях три группы абитуриентов. В 1-й – 39 человек, во 2-й –56, в 3-й – 46, причем в первой 4 медалиста, во второй – 3, в последней – 9. Экзаменатору по жребию досталась одна из аудиторий. Какова вероятность того, что случайно выбранный им абитуриент окажется медалистом ?

7. В ящике 10 новых теннисных мячей и 5 старых. Для первой игры берут случайно выбранный мяч, после игры возвращают. Для второй игры берут два мяча. Какова вероятность того, что они новые (не бывшие в употреблении)?

8. В университете среди выпускников 6 студентов получают именные стипендии, 120 студентов –«обычные» стипендии и 320 студентов стипендии не получают. Известно, что среди имеющих именные стипендии диплом с отличием получают 90%, среди имеющих «обычные» стипендии – 60%, среди остальных – 45%. Какова вероятность того, что наудачу выбранный студент получит диплом с отличием?

9. На одной из позиций импульсного кода с равными вероятностями передаются «единица» (импульс) и «ноль» (отсутствие импульса). Определить полную вероятность искажения помехами этой позиции, если вероятность преобразования «единицы» в «ноль» помехой равна 0,04 , а вероятность преобразования «ноля» в «единицу» равна 0,2.

10. Имеется два ящика с изделиями: в первом ящике 4 бракованных и 2 стандартных, во втором ящике 6 бракованных и 4 стандартных. Из первого ящика во второй наугад перекладывают два изделия, а затем из второго извлекают два изделия. Найти вероятность того, что оба извлеченных изделия будут стандартными.

11. В первом ящике содержится 5 изделий, из них 3 стандартных; во втором ящике 20 изделий, из них 15 стандартных. Из каждого ящика наугад извлекают по одному изделию, а затем из этих двух изделий взяли одно. Найти вероятность того, что взяли стандартное изделие.

12. В ящике находится 10 теннисных мячей, из которых 5 новых. Для каждой игры наугад берут два мяча. Найти вероятность того, что все мячи, взятые для второй игры, новые.

13. В урну, содержащую 3 шара, опущен белый шар. Какова вероятность извлечения одновременно из этой урны двух белых шаров, если все предположения о первоначальном числе белых шаров в урне равновероятны?

14. Вероятности подключения абонента к каждой из трех АТС соответственно равны . Вероятность соединения с абонентом подключения к первой АТС – , ко второй – , к третьей – ;

а) Какова вероятность соединения?

б) Соединение произошло. Какова вероятность, что соединение произошло через вторую АТС?

15. Радиолампа, поставленная в телевизор, может принадлежать к одной из трех партий с вероятностями Р1= Р3= 0,25, Р2= 0,5. Вероятности того, что лампа проработает заданное число часов, для этих партий равны соответственно 0,1 ; 0,2 ; 0,4.

а) Определить вероятность того, что лампа проработает заданное число часов;

б) Какова вероятность, что лампа принадлежит первой партии, если известно, что она проработала заданное количество часов?

16. Первая АТС работает 10 часов в сутки, вторая — 14. Вероятность соединения в случае работы первой АТС – 0,8 , в случае работы второй – 0,6 . Какова вероятность соединения ?

17. В урне 10 белых и 20 черных шаров. Подбрасывают игральную кость и добавляют в урну столько белых шаров, сколько выпало очков. Затем шары перемешивают и извлекают один. Он оказался белый. Какова вероятность того, что на игральной кости выпало 3 очка?

18. Два стрелка независимо друг от друга стреляют в цель, делая каждый по одному выстрелу. Вероятность попадания первого стрелка в цель 0,8 , второго — 0,4 . После стрельбы в мишени была обнаружена одна пробоина. Какова вероятность того, что она принадлежит первому стрелку ?

19. По цифровому каналу передаются символы «О» и «I», причем доля передаваемых нулей вдвое больше, чем единиц. Вероятность искажения символа «О» равна 0,06 , вероятность искажения «I» – 0,09. Найти вероятность искажения символа при передаче по этому каналу.

20. Прибор состоит из двух блоков, причем для функционирования прибора необходима исправная работа обоих блоков. Вероятность исправной работы первого блока в течение суток 0,8, второго — 0.7 . После испытаний прибора в течение суток было обнаружено, что прибор вышел из строя. Найти вероятность того, что первый узел исправен.

21. Изготовленные приборы сначала проверяет контролер в цехе, затем ОТК. Вероятность обнаружения неисправности контролером 0,8 , в ОТК-0,95. Известно, что прибор бракованный. Какова вероятность того, что неисправность обнаружит ОТК? Неисправность обнаружена. Какова вероятность, что ее обнаружил контролер?

22. Линия связи предназначена для передачи символов «О» и «I». При передаче символ с вероятностью 0,2 искажается (заменяется на противоположный). Для повышения надежности связи каждый из поступающих символов передается три раза («О» соответствует 000, «I» -III). Вместо переданной последовательности была принята 010. Какова вероятность, что был передан сигнал «О»?

23. В группе из 9 стрелков 5 отличных, 2 хороших, 2 удовлетворительных. Вероятность попадания в цель отличным стрелком равна 0,9 , хорошим – 0,7, удовлетворительным – 0,6. Наугад вызывается стрелок. Определить вероятность того, что вызванный стрелок попадет в цель.

24. В цехе работает 20 станков: 10 марки «I», 6 марки «П» и 4 марки «Ш» Вероятность произвести деталь отличного качества на станках марки «I» равна 0,9, «II» –0,8 и «III» – 0,7. Какой процент отличных деталей выпускает цех? Произвольно взятая деталь оказалась отличного качества. Какова вероятность, что она выполнена на станке марки «Ш»?

25. Радиолампы производятся на двух заводах. Первый поставляет 70%, второй -30% всей продукции. Из 100 ламп первого завода в среднем 80 стандартных, а из 100 ламп второго завода в среднем 60 стандартных. Какова вероятность, что произвольно взятая лампа будет стандартной? Произвольно взятая лампа оказалась стандартной. Какова вероятность, что она сделана на втором заводе?

26. Брак продукции завода вследствие первого дефекта составляет 8%. Причем среди бракованной продукции второй дефект составляет 4%, а в свободной от первого дефекта продукции второй дефект встречается в 2% случаев. Каков процент второго дефекта во всей продукции?

27. Имеется два комплекта одинаковых изделий по 12 и 10 штук. В каждом комплекте одно изделие бракованное. Наудачу взятое изделие из первого комплекта переложено во второй. После этого из второго комплекта наудачу вынимают изделие. Определить вероятность того, что оно бракованное.

 

5 СХЕМА БЕРНУЛЛИ

Пусть проводятся независимых испытаний, в каждом из которых может быть два исхода, условно называемых «успех» и «неудача». Вероятность наступления «успеха» в каждом испытании одинакова и обозначается р, вероятность наступления «неудачи» q =1 – р. Вероятность наступления k (0 < k <n) успехов при n испытаниях обозначается через . Справедлива формула Бернулли

, (5.1)

где число сочетаний из n no k:

При изменении k от 0 до n величина принимает максимальное значение при некотором k = m. Величина m может быть найдена из неравенства

(Если выполняются оба неравенства для двух целых m1 и m2, то ).

Обозначим через вероятность того, что число «успехов» k при n испытаниях не меньше k1 и не больше k2 , т.е. Тогда из (5.1) следует

(5.2)

Для вероятности хотя бы одного «успеха» можно использовать более простую формулу

(5.3)

В приложениях часто возникает задача определения числа испытаний n, необходимого для того, чтобы вероятность наступления хотя бы одного успеха была не меньше некоторой заданной величины g (0<g<1). Величина n удовлетворяет неравенству:

(5.4)

 

ЗАДАЧИ

1. Станок-автомат выпускает 30% деталей высшего сорта. Найти вероятность того, что из шести случайно отобранных деталей будет: а) 4 высшего сорта; б) хотя бы 4 высшего сорта.

2. В институте 40% студентов имеют спортивный разряд. Какова вероятность того, что среди 5 случайно отобранных студентов разрядников будет: а) не меньше 3; б) меньше 3.

3. Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0,8. Закупили 4 телевизора. Какова вероятность того, что:

а) три телевизора не проработают гарантийный сроки; б) не менее двух проработают гарантийный срок.

4. Вероятность попадания в цель 0,7. Сделано 8 выстрелов. Какова вероятность того, что оказалось: а) пять попаданий; б) пять или шесть попаданий.

5. Вероятность того, что на один лотерейный билет выпадет выигрыш, равна 0,2. Куплено 5 билетов. Найти вероятность того, что: а) выиграют два билета; б) выиграют хотя бы три билета; в) не выиграют три билета.

6. По линии связи передают знаки 0 и 1. При передаче происходят ошибки, в результате которых с вероятностью 0,1 знак меняется на противоположный. Какова вероятность того, что при передаче сообщения из 5 знаков произойдет не более одной ошибки?

7. По каналу связи передается сообщение с помощью кода, состоящего из двух знаков. Вероятность появления первого знака 0,8. Всего передано 5 знаков. Найти вероятность того, что первый знак появится: а) два раза; б) два или три раза; в) не менее двух раз.

8. Вероятность правильного приема радиосигнала при каждой передаче равна 0,8. Найти вероятность того, что при шестикратной передаче сигнал будет принят: а) четыре раза; б) не менее четырех раз.

9. На заводе радиолампы выпускают два равномощных цеха, причем первый цех выпускает 10% ламп высшего сорта, второй -20%. Далее радиолампы раскладываются в коробки по четыре штуки. Найти вероятность того, что в коробке будет одна лампа высшего сорта, если известно, что:

а) лампы по коробкам раскладывают прямо в цехах; б) лампы поступают на склад, перемешиваются и только потом раскладываются по коробкам.

10. Что более вероятно выиграть у равносильного противника:

а) три партии из четырех или хотя бы три из пяти;

б) три партии из четырех или пять из восьми; в) не менее трех из четырех или не менее пять из восьми?

11. При выпуске интегральных схем на некотором предприятии доля

брака достигает 50%. Найти:

а) вероятность того, что из трех схем хотя бы одна бракованная;

б) сколько схем должно быть в случайно отобранной партии для того, чтобы с вероятностью 0,99 в ней оказалась хотя бы одна небракованная схема.

12. Известно, что вероятность выиграть хотя бы по одному лотерейному билету из трех равна 0,271. Какова вероятность выиграть по всем трем билетам.

13. Лампа сгорает раньше установленного срока в среднем в двух случаях из шести. В помещении установлены 6 ламп. Каково наиболее вероятное число ламп, которые выйдут из строя раньше срока? Какова вероятность этого?

14. На АТС поступают микросхемы, выпускаемые двумя предприятиями: 1-е поставляет вдвое больше схем, чем 2-е. На 1-ом 10% брака, на 2-м – 20% брака. В партии из трех изделий два бракованных. Какова вероятность того, что партия выпущена 1-м предприятием?

 


Рекомендуемые страницы:

poisk-ru.ru

Теоремы сложения и умножения вероятностей, вероятность появления хотябы одного события

Дело в том, что любая стратегия управления будет строиться на базе определенных представлений о вероятности событий в системе — и на первых шагах эти вероятности будут взяты «из головы» или в лучшем случае из опыта управления другими системами. Но по мере «жизни» системы нельзя упускать из виду возможность «коррекции» управления — использования всего накапливаемого опыта.

4.3 Схемы случайных событий и законы распределения случайных величин

Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ.

Эти распределения иногда называют «теоретическими», поскольку для них разработаны методы расчета всех показателей распределения, зафиксированы связи между ними, построены алгоритмы расчета и т. п.

Таких, классических законов распределений достаточно много, хотя «штат» их за последние 30..50 лет практически не пополнился. Необходимость знакомства с этими распределениями для специалистов вашего профиля объясняется тем, что все они соответствуют некоторым «теоретическим» схемам случайных (большей частью — элементарных) событий.

Как уже отмечалось, наличие больших массивов взаимосвязанных событий и обилие случайных величин в системах экономики приводит к трудностям априорной оценки законов распределений этих событий или величин. Пусть, к примеру, мы каким-то образом установили математическое ожидание спроса некоторого товара. Но этого мало — надо хотя бы оценить степень колебания этого спроса, ответить на вопрос — а какова вероятность того, что он будет лежать в таких-то пределах? Вот если бы установить факт принадлежности данной случайной величины к такому классическому распределению как т. н. нормальное, то тогда задача оценки диапазона, доверия к нему (доверительных интервалов) была бы решена безо всяких проблем.

Доказано, например, что с вероятностью более 95% случайная величина X с нормальным законом распределения лежит в диапазоне — математическое ожидание Mx плюс/минус три среднеквадратичных отклонения SX.

Так вот — все дело в том к какой из схем случайных событий классического образца ближе всего схема функционирования элементов вашей большой системы. Простой пример — надо оценить показатели оплаты за услуги предоставления времени на междугородние переговоры — например, найти вероятность того, что за 1 минуту осуществляется ровно N переговоров, если заранее известно среднее число поступающих в минуту заказов. Оказывается, что схема таких случайных событий прекрасно укладывается в т. н. распределение Пуассона для дискретных случайных величин. Этому распределению подчинены почти все дискретные величины, связанные с так называемыми «редкими» событиями.

Далеко не всегда математическая оболочка классического закона распределения достаточно проста. Напротив — чаще всего это сложный математический аппарат со своими, специфическими приемами. Но дело не в этом, тем более при «повальной» компьютеризации всех областей деятельности человека. Разумеется, нет необходимости знать в деталях свойства всех или хоть какой-то части классических распределений — достаточно иметь в виду саму возможность воспользоваться ими.

Таким образом, при системном подходе к решению той или иной задачи управления (в том числе и экономического) надо очень взвешено отнестись к выбору элементов системы или отдельных системных операций. Не всегда «укрупнение показателей» обеспечит логическую стройность структуры системы — надо понимать, что заметить близость схемы событий в данной системе к схеме классической чаще всего удается на самом «элементарном» уровне системного анализа.

Завершая вопрос о распределении случайных величин обратим внимание на еще одно важное обстоятельство: даже если нам достаточно одного единственного показателя — математического ожидания данной случайной величины, то и в этом случае возникает вопрос о надежности данных об этом показателя.

В самом деле, пусть нам дано т. н. выборочное распределение случайной величины X (например — ежедневной выручки в $) в виде 100 наблюдений за этой величиной. Пусть мы рассчитали среднее Mx и оно составило $125 при колебаниях от $50 до $200. Попутно мы нашли SX, равное $5. Теперь уместен вопрос: а насколько правдоподобным будет утверждение о том, что в последующие дни выручка составит точно $125? Или будет лежать в интервале $120..$130? Или окажется более некоторой суммы — например, $90?

Вопросы такого типа чрезвычайно остры — если это всего лишь элемент некоторой экономической системы (один из многих), то выводы на финише системного анализа, их достоверность, конечно же, зависят от ответов на такие вопросы.

Что же говорит теория, отвечая на эти вопросы? С одной стороны очень много, но в некоторых случаях — почти ничего. Так, если у вас есть уверенность в том, что «теоретическое» распределение данной случайной величины относится к некоторому классическому (т. е. полностью описанному в теории) типу, то можно получить достаточно много полезного.

С помощью теории можно найти доверительные интервалы для данной случайной величины. Если, например, уже доказано (точнее — принята гипотеза) о нормальном распределении, то зная среднеквадратичное отклонение можно с уверенностью в 5% считать, что окажется вне диапазона (Mx — 3·Sx)……(Mx+3·Sx) или в нашем примере выручка с вероятностью 0.05 будет <$90 или >$140. Надо смириться со своеобразностью теоретического вывода — утверждается не тот факт, что выручка составит от 90 до 140 (с вероятностью 95%), а только то, что сказано выше.

Если у нас нет теоретических оснований принять какое либо классическое распределение в качестве подходящего для нашей СВ, то и здесь теория окажет нам услугу — позволит проверить гипотезу о таком распределении на основании имеющихся у нас данных. Правда — исчерпывающего ответа «Да» или «Нет» ждать нечего. Можно лишь получить вероятность ошибиться, отбросив верную гипотезу (ошибка 1 рода) или вероятность ошибиться приняв ложную (ошибка 2 рода).

Даже такие «обтекаемые» теоретические выводы в сильной степени зависят от объема выборки (количества наблюдений), а также от «чистоты эксперимента» — условий его проведения.

ЗАКЛЮЧЕНИЕ

Теория вероятностей – это математическая наука, изучающая математические модели массовых случайных явлений. В теории вероятностей используются результаты и методы многих областей математики (комбинаторики, математического анализа, алгебры, логики и т. п.). Однако теория вероятностей обладает некоторым своеобразием, поскольку она очень тесно связана с различными приложениями, причем приложения эти не столь привычны, как, например, приложения алгебры или дифференциальных уравнений. Задачи теории вероятностей также необычны и часто имеют нематематическую постановку. Это в первую очередь объясняется тем, что зарождение теории вероятностей связано с комбинаторными задачами азартных игр. Азартные игры трудно считать серьезным занятием. Но именно они привели к задачам, которые не укладывались в рамки существовавших математических соотношений и стимулировали тем самым поиск новых понятий, подходов и идей.

Подобно другим математическим наукам, теория вероятностей развивалась из потребностей практики и представляла собой прикладную дисциплину. В связи с этим ее понятия и выводы имели характерные черты тех областей знаний, в которых они были получены. Лишь постепенно выкристаллизовалось то общее, что присуще вероятностным схемам, независимо от области их приложения и что позволило превратить теорию вероятностей в надежный, точный и эффективный метод познания.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 1998.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1972, 1977.

3. Ежова Л.Н. Теория вероятностей и математическая статистика: Основы математики для экономистов. Вып. 9: Учеб. Пособие. – Иркутск: Изд-во ИГЭА, 2000.

4. Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1991.

5. Теория вероятностей: Учебное пособие / Ежова Л.Н., Абдуллин Р.З., Калашникова Л.С., Никулина С.И., Леонова О.В.. – Иркутск: изд-во ИГЭА. – 1996.

6. Анализ и диагностика финансово-хозяйственной деятельности предприятия. Табурчак П.П., Викуленко А.Е., Овчинникова Л.А. и др.: Учеб. пособие для вузов / Под ред. П.П. Табурчака, В.М. Туина и М.С Сапрыкина. — Ростов н/Д: Феникс, 2002.

7. Баканов М.И., Шеремет А.Д. Теория экономического анализа: Учебник. — 4- изд., доп. и перераб. — М.: Финансы и статистика, 2001.

8. Бамина О.Э., Спирин А.А. Общая теория статистики. Изд-во Финансы и статистика, 2005. ― 440 с.

9. Бочаров.В.Б. Финансовый анализ. — СПб: Питер, 2004. — 240 с.

10. Гинсбург А.И. Экономический анализ. — Спб.: Питер, 2003. — 480 с.

11. Ефимова М.Р., Румянцев В.Н., Петрова Е.В. Общая теория статистики. Учебник. ― М.: Инфра-М, 2005, с. 94.

12. Завьялова З.М. Теория экономического анализа. Курс лекций. — М.: Финансы и статистика, 2002.

mirznanii.com

Основные формулы теория вероятностей Операции над событиями


Глава 3. Основные формулы теория вероятностей
§ 1. Операции над событиями.

Суммой двух событий А и В называется событие АВ (А+В), заключающееся в том, что произойдет хотя бы одно из событий А или В (либо событие А, либо событие В либо А и В одновременно).

Произведением (или пересечением)двух событий А и В называется событие АВ (АВ), состоящее в одновременном появлении и события А и события В.

Вероятность суммы двух событий вычисляется по формуле (теорема сложения)

.

События А12,…,Ак образуют полную группу событий, если в результате испытания непременно произойдет одно из них , т.е. .

События А и В называются несовместными (непересекающимися), если они не могут произойти одновременно АВ=. Если события несовместны, то

Р(АВ) = 0 и Р(А + В) = Р(А) + Р(В).
Задача 1. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?

Решение. Событие A={вынуты пуговицы одного цвета} можно представить в виде суммы , где события и означают выборку пуговиц красного и синего цвета соответственно. Вероятность вытащить две красные пуговицы равна, а вероятность вытащить две синие пуговицы . Так как события и не могут произойти одновременно, то в силу теоремы сложения

§ 2. Условная вероятность и теорема умножения.

Помимо обычной (безусловной) вероятности можно рассматривать так называемую условную вероятность, вычисляемую при условии, что событие B произошло. Такую вероятность (вероятность А при условии В) обозначают Р(А|В) и вычисляют с помощью одной из двух формул:


Из этой формулы вытекает формула для вероятности произведения двух событий (теорема умножения)

.

Формула умножения для трех событий:

.

Задача 2. В семье – двое детей. Какова вероятность, что старший ребенок – мальчик, если известно, что в семье есть дети обоего пола?

Решение. Пусть А={старший ребенок – мальчик}, B={в семье есть дети обоего пола}. Будем считать, что рождения мальчика и рождение девочки – равновероятные события. Если рождение мальчика обозначить буквой М, а рождение девочки – Д, то пространство всех элементарных исходов состоит из четырех пар: . В этом пространстве лишь два исхода (МД и ДМ) отвечают событию B. Событие AB означает, что в семье есть дети обоего пола и старший ребенок – мальчик, это значит, что второй (младший) ребенок – девочка. Этому событию AB отвечает один исход – МД. Таким образом, |AB|=1, |B|=2 и


Задача 3. Мастер, имея 10 деталей, из которых 3 – нестандартных, берет и проверяет детали одну за другой, пока нему не попадется стандартная. Какова вероятность, что он проверит ровно две детали.

Решение. Событие А={мастер проверил ровно две детали} означает, что при такой проверке первая деталь оказалась нестандартной, а вторая – стандартная. Значит, , где ={ первая деталь оказалась нестандартной } и ={вторая деталь – стандартная}. Очевидно, что вероятность кроме того, (так как перед взятием второй детали у мастера осталось 9 деталей, из которых только 2 нестандартные и 7 стандартных). По теореме умножения

§ 3. Независимость событий.

Событие А не зависит от В, если появление события В не меняет значения вероятности события А, т.е. условная вероятность равна безусловной: Р(А/В) = Р(А). Аналогично определяется независимость события B от A. Оказывается, что свойство независимости на самом деле симметрично относительно событий A и B, и потому определение независимости двух событий принимает более простой вид:

два события A и B независимы, если справедливо равенство

Р(АВ) = Р(А)  Р(В).

Это равенство можно использовать также как удобный критерий независимости при практической проверке независимости двух событий.
Задача 4. В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут один белый шар, если из каждого ящика вынуто по одному шару.

Решение. Событие A={хотя бы из одного ящика вынут белый шар} можно представить в виде суммы , где события и означают выборку одного белого шара из первого и второго ящика соответственно. Вероятность вытащить белый шар из первого ящика равна, а вероятность вытащить белый шар из второго ящика . Кроме того, в силу независимости и имеем: . По теореме сложения получаем:

.
§ 4. Формула полной вероятности.

Пусть событие А может быть реализовано только при условии появления одного из событий Hi, i = 1,…, n. Предположим, что события Hi несовместны, образуют полную группу (т.е. в результате испытания непременно произойдет одно из них) и вероятности их до опыта известны.. Такие события Hiназываются гипотезами. Тогда вероятность события А можно вычислить с помощью формулы полной вероятности:

.

Задача 5. Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй — 3 студента, а третий — 21 студентов (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго — только 10%, зато у третьего — 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.

Решение. Обозначим через – гипотезы, состоящие в том, что слабо подготовившийся студент отвечал первому, второму и третьему экзаменатору соответственно. По условию задачи

, , .

Пусть событие A={слабо подготовившийся студент сдал экзамен}. Тогда снова в силу условия задачи

, , .

По формуле полной вероятности получаем:

.

Для решения задач такое типа удобно использовать так называемое «дерево» вероятностей. Из формулы полной вероятности следует, что для вычисления вероятности события А необходимо осуществить перебор всех путей, ведущих к результирующему событию А; вычислить и расставить на соответствующих путях вероятности Р(Нi) того, что движение будет происходить по данному пути, и вероятности Р(А/ Нi) того, что на данном пути будет достигнуто конечное событие А. Затем вероятности, стоящие на одном пути, перемножаются, а результаты, полученные для различных путей, складываются.

Каждое из условий может в свою очередь делиться на несколько дополнительных условий или гипотез, т.е. на каждом этапе оно допускает неограниченное число ветвлений схемы, поэтому в решении задач удобнее пользоваться не самой формулой полной вероятности, а графической схемой полной вероятности, которую называют «деревом» вероятностей.

§ 5. Формулы Байеса.

Предположим теперь другую ситуацию: пусть теперь известно, что событие A произошло. Это знание влияет на нашу оценку вероятностей гипотез Нk, т.е. на вероятность того, что событие A произошло именно путем Нk. Эти условные вероятности (т.е. при условии, что событие А произошло), вычисляются с помощью формулы Байеса:

.

Отметим, что в знаменателе этой формулы записана ничто иное как вероятность Р(А), вычисленная по формуле полной вероятности.
Задача 6. (см. задачу 4) Известно, что студент сдавал экзамен, но получил «неуд». Кому из трех преподавателей вероятнее всего он отвечал?

Решение. Вероятность получить «неуд» равна . Требуется вычислить условные вероятности . По формулам Байеса получаем:

,

и аналогично,

,

Отсюда следует, что вероятнее всего слабо подготовившийся студент сдавал экзамен третьему экзаменатору.

Задачи для самостоятельного решения


  1. Рабочий обслуживает три независимо работающих станка. Событие Аi={ i-ый станок в течении часа потребует наладки}, Р(Аi)=0,2, i=1,2,3. Выразить события: а) ровно два станка потребуют наладки; б) не более двух потребуют наладки; в) хотя бы один потребует наладки. Найти вероятность события в).

  2. Стрелок делает три выстрела, при этом он поражает цель с вероятностью 0,6 при одном выстреле. Событие Аi={ i-ая пуля попала в цель }, i=1,2,3. Выразить события: а) было хотя бы одно попадание; б) ровно одно попадание; в) не менее двух попаданий. Найти вероятность события в).

  3. В коробке 4 детали. Мастер извлекает детали до тех пор, пока не вытащит годную. Событие = { i-ая извлеченная деталь является годной }, Выразить события, состоящие в том, что мастер сделал а) ровно одно извлечение; б) ровно 2 извлечения; в) не менее двух извлечений. Найти вероятность б).

  4. Пусть А,В,С – три произвольных события. Найти выражение для событий, состоящих в том, что: а) произошли все три события; б) произошло хотя бы одно из событий; в) произошли хотя бы два события; г) произошли два и только два события; д) произошло ровно одно событие; е) ни одно событие не произошло; ж) произошло не более двух событий.

  5. Прибор состоит из трех блоков первого типа и четырех блоков второго типа. Событие Аi ={исправен i-ый блок первого типа}, i=1,2,3, Вj = {исправен j-ый блок второго типа}, j=1,2,3,4. Прибор работает, если исправны хотя бы один блок первого типа и не менее трех блоков второго типа. Найти выражение для события С, которое соответствует работающему состоянию прибора.

  6. В пакете с леденцами лежит 4 красных, 5 желтых и 6 зеленых конфет. Найти вероятность наудачу вынуть подряд 3 конфеты одного цвета.

  7. В партии из 20 изделий 4 бракованных. Найти вероятность того, что в выборке из 5 изделий не более одного бракованного.

  8. В лифт 9-этажного дома на первом этаже входят 6 человек. Для каждого человека равновероятен выход на любом из 8 этажей. Известно, что все вышли на разных этажах. При этом условии найти вероятность, что на первых трех этажах вышли два человека.

  9. Три пассажира садятся в поезд, случайно выбирая любой из 6 вагонов. Какова вероятность, что хотя бы один из них сядет в первый вагон, если известно, что они сели в разные вагоны?

  10. В ящике 12 красных , 8 зеленых и 10 синих шаров .Наудачу вынимаются два шара. Какова вероятность, что вынутые шары разного цвета, если известно, что не вынут синий шар?

  11. Шесть шаров случайным образом раскладывают в три ящика. Найти вероятность, что во всех ящиках разное число шаров при условии, что все они не пустые.

  12. Двое шахматистов равной силы играют 4 партии. Найти вероятность, что победил первый, если известно, что каждый выиграл хоть один раз.

  13. В лифт на цокольном этаже входят 5 человек. Считая для каждого человека равновероятном выход на любом из 9 этажей, найти вероятность того, что двое из них выйдут на одном этаже, а остальные на разных.

  14. Известно, что 5-значный номер телефона имеет все цифры разные. Какова вероятность при этом условии, что среди них ровно четная (0 считаем четной цифрой и телефонный номер может начинаться с нуля).

  15. Пять человек случайным образом (независимо друг от друга) выбирают любой из 7 вагонов поезда. Известно, что некоторые 2 вагона остались пустыми. Какова вероятность при этом условии, что все сели в различные вагоны, в том числе в первый и во второй?

  16. В урне 5 белых и 10 черных шаров. Извлечены 6 шаров (с возвращением). Известно, что среди них есть белые шары. При этом условии найти вероятность того, что среди них будут также не менее двух черных шаров.

  17. Семь пассажиров случайным образом выбирают один из 9 вагонов поезда. Известно, что они сели в разные вагоны, при этом условии найти вероятность того, что в первых трех вагонах поезда будут ехать два человека.

  18. Распределяются 5 шаров по трем ящикам. Известно, что нет пустых ящиков. При этом условии найти вероятность, что в первом ящике лежит один шар.

  19. В четырех группах учится 100 человек (по 25 человек в каждой). На олимпиаду отобрано 5 человек. Какова вероятность, что среди них будут представители всех классов?

  20. Сколько раз надо бросить игральную кость, чтобы на 95% быть уверенным в том, что хотя бы при одном бросании появится «шестерка»?

  21. Известно, что в пятизначном номере телефона все цифры разные. Найти вероятность того, что среди них есть цифры 1 и 2.

  22. Бросают три кубика. Какова вероятность того, что хотя бы на одном из них выпадет «шестерка», если известно, что на всех кубиках выпали разные грани?

  23. Фирма участвует в 4 проектах, каждый из которых может закончиться неудачей с веростностью 0,1. В случае неудачи одного проекта вероятность разорения фирмы равна 20%, двух – 50%, трех – 70%, четырех – 90%. Найти вероятность разорения фирмы.

  24. Два аудитора проверяют 10 фирм (по 5 фирм каждый), у двух из которых имеются нарушения. Вероятность обнаружения нарушений первым аудитором равна 80%, вторым – 90%. Найти вероятность, что обе фирмы-нарушители будут выявлены.

  25. В первой урне лежат один белый и три черных шара, а во второй урне – 2 белых и 1 черный шар. Из первой урны во вторую перекладывается не глядя один шар, а затем один шар перекладывается из второй урны в первую. После этого из первой урны вынули один шар. Найти вероятность, что он белый.

  26. В прибор входит комплект из двух независимых деталей, вероятность для которых выйти из строя в течение года соответственно равна 0,1 и 0,2. Если детали исправны, то прибор работает в течение года с вероятностью 0,99. Если выходит из строя только первая деталь, то прибор работает с вероятностью 0,7, а если только вторая – то с вероятностью 0,8. Если выходят из строя обе детали, прибор будет работать с вероятностью 0,1. Какова вероятность, что прибор будет работать в течение года?

  27. Электроэнергия поступает в город через три электролинии, каждая из которых может быть отключена с вероятностью 0,1. Если отключена одна электролиния, город испытывает недостаток электроэнергии с вероятностью 0,8. Если отключены три электролинии, недостаток электроэнергии ощущается с вероятностью 0,5. Если же отключены все три электролинии, то недостаток электроэнергии есть с вероятностью 1. В случае, когда работают все электролинии, недостатка энергии нет. Какова вероятность, что в день проверки город испытывает недостаток электроэнергии?

  28. Фирма нарушает закон с вероятностью 0,25. Аудитор обнаруживает нарушения с вероятностью 0,75. Проведенная им проверка не выявила нарушений. Найти вероятность, что они на самом деле есть.

  29. Изделие имеет скрытые дефекты с вероятностью 0,2. В течение года выходит из строя 75% изделий со скрытыми дефектами и 15% изделий без дефектов. Найти вероятность, что изделие имело скрытые дефекты, если оно вышло из строя в течение года.

  30. Из урны, где было 4 белых и 6 черных шаров, потерян один шар неизвестного цвета. После этого из урны извлечены (без возвращения) два шара, оказавшиеся белыми. При этом условии найти вероятность, что потерян был черный шар.

  31. Производственный брак составляет 4%. Каждое изделие равновероятным образом поступает к одному из двух контролеров, первый из которых обнаруживает брак с вероятностью 0,92, второй – 0,98. Какова вероятность, что признанное годным изделие является бракованным.

  32. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 90% пачек были признаны удовлетворительными: они содержали 1% неправильно оформленных накладных. Остальные 10% накладных были признаны неудовлетворительными, т.к. они содержали 5% неправильно оформленных накладных. Какова вероятность того, что взятая наугад накладная оказалась неправильно оформленной? (р1=0,1; р2=0,014)

  33. Известно, что проверяемая фирма может уйти от налогов с вероятностью 40% и выбрать для этого одну из трех схем (равновероятно). Найти вероятность, что фирма уходит от налогов по третьей схеме, если по первым двум схемам нарушений не обнаружено.

  34. Стрелок А поражает мишень с вероятностью 0,6., стрелок Б — с вероятностью 0,5 и стрелок В – с вероятностью 0,4. Стрелки дали залп по мишени, и две пули попали в цель. Что вероятнее: попал стрелок В в мишень или нет?

  35. Имеются три партии по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 20, 15 и 10. Из наудачу выбранной партии извлечена деталь, оказавшейся стандартной. Деталь возвращают в партию и вторично из той же партии наугад извлекают деталь, которая оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.

topuch.ru

Мнк погрешность – Метод наименьших квадратов (мнк).

Метод наименьших квадратов

Программа МНК

Введите данные
Данные и аппроксимация y = a + b·x

i – номер экспериментальной точки;
xi – значение фиксированного параметра в точке i;
yi – значение измеряемого параметра в точке i;
ωi – вес измерения в точке i;
yi, расч. – разница между измеренным и вычисленным по регрессии значением y в точке i;
Sxi(xi) – оценка погрешности xi при измерении y в точке i.

Кликните по графику,
чтобы добавить значения в таблицу

Данные и аппроксимация y = k·x
i xi yi ωi yi, расч. Δyi Sxi(xi)

Кликните по графику,
чтобы добавить значения в таблицу

Инструкция пользователя онлайн-программы МНК.

В поле данных введите на каждой отдельной строке значения `x` и `y` в одной экспериментальной точке. Значения должны отделяться пробельным символом (пробелом или знаком табуляции).

Третьим значением может быть вес точки `w`. Если вес точки не указан, то он приравнивается единице. В подавляющем большинстве случаев веса экспериментальных точек неизвестны или не вычисляются, т.е. все экспериментальные данные считаются равнозначными. Иногда веса в исследуемом интервале значений совершенно точно не равнозначны и даже могут быть вычислены теоретически. Например, в спектрофотометрии веса можно вычислить по простым формулам, правда в основном этим все пренебрегают для уменьшения трудозатрат.

Данные можно вставить через буфер обмена из электронной таблицы офисных пакетов, например Excel из Майкрософт Офиса или Calc из Оупен Офиса. Для этого в электронной таблице выделите диапазон копируемых данных, скопируйте в буфер обмена и вставьте данные в поле данных на этой странице.

Для расчета по методу наименьших квадратов необходимо не менее двух точек для определения двух коэффициентов `b` – тангенса угла наклона прямой и `a` – значения, отсекаемого прямой на оси `y`.

Для оценки погрешности расчитываемых коэффициентов регресии нужно задать количество экспериментальных точек больше двух. Чем больше количество экспериментальных точек, тем более точна статистическая оценка коэффицинетов (за счет снижения коэффицинета Стьюдента) и тем более близка оценка к оценке генеральной выборки.

Получение значений в каждой экспериментальной точке часто сопряжено со значительными трудозатратами, поэтому часто проводят компромиссное число экспериментов, которые дает удобоваримую оценку и не привеодит к чрезмерным трудо затратам. Как правило число экспериментах точек для линейной МНК зависимости с двумя коэффицинетами выбирает в районе 5-7 точек.

Краткая теория метода наименьших квадратов для линейной зависимости

Допустим у нас имеется набор экспериментальных данных в виде пар значений [`y_i`, `x_i`], где `i` – номер одного эксперементального измерения от 1 до `n`; `y_i` – значение измеренной величины в точке `i`; `x_i` – значение задаваемого нами параметра в точке `i`.

В качестве примера можно рассмотреть действие закона Ома. Изменяя напряжение (разность потенциалов) между участками электрической цепи, мы замеряем величину тока, проходящего по этому участку. Физика нам дает зависимость, найденную экспериментально:

`I = U / R`,
где `I` – сила тока; `R` – сопротивление; `U` – напряжение.

В этом случае `y_i` у нас имеряемая величина тока, а `x_i` – значение напряжения.

В качестве другого примера рассмотрим поглощение света раствором вещества в растворе. Химия дает нам формулу:

`A = ε l C`,
где `A` – оптическая плотность раствора; `ε` – коэффициент пропускания растворенного вещества; `l` – длина пути при прохождении света через кювету с раствором; `C` – концентрация растворенного вещества.

В этом случае `y_i` у нас имеряемая величина отптической плотности `A`, а `x_i` – значение концентрации вещества, которое мы задаем.

Мы будем рассматривать случай, когда относительная погрешность в задании `x_i` значительно меньше, относительной погрешности измерения `y_i`. Так же мы будем предполагать, что все измеренные величины `y_i` случайные и нормально распределенные, т.е. подчиняются нормальному закону распределения.

В случае линейной зависимости `y` от `x`, мы можем написать теоретическую зависимость:
`y = a + b x`.

С геометрической точки зрения, коэффициент `b` обозначает тангенс угла наклона линии к оси `x`, а коэффициент `a` – значение `y` в точке пересечения линии с осью `y` (при `x = 0`).

Нахождение параметров линии регресии.

В эксперименте измеренные значения `y_i` не могут точно лечь на теоеретическую прямую из-за ошибок измерения, всегда присущих реальной жизни. Поэтому линейное уравнение, нужно представить системой уравнений:
`y_i = a + b x_i + ε_i`   (1),
где `ε_i` – неизвестная ошибка измерения `y` в `i`-ом эксперименте.

Зависимость (1) так же называют регрессией, т.е. зависимостью двух величин друг от друга со статистической значимостью.

Задачей восстановления зависимости является нахождение коэффициентов `a` и `b` по экспериментальным точкам [`y_i`, `x_i`].

Для нахождения коэффициентов `a` и `b` обычно используется метод наименьших квадратов (МНК). Он является частным случаем принципа максимального правдоподобия.

Перепишем (1) в виде `ε_i = y_i — a — b x_i`.

Тогда сумма квадратов ошибок будет

`Φ = sum_(i=1)^(n) ε_i^2 = sum_(i=1)^(n) (y_i — a — b x_i)^2`.   (2)

Принципом МНК (метода наименьших квадратов) является минимизация суммы (2) относительно параметров `a` и `b`. Минимум достигается, когда частные производные от суммы (2) по коэффициентам `a` и `b` равны нулю:

`frac(partial Φ)(partial a) = frac( partial sum_(i=1)^(n) (y_i — a — b x_i)^2)(partial a) = 0`

`frac(partial Φ)(partial b) = frac( partial sum_(i=1)^(n) (y_i — a — b x_i)^2)(partial b) = 0`

Раскрывая производные, получаем систему из двух уравнений с двумя неизвестными:

`sum_(i=1)^(n) (2a + 2bx_i — 2y_i) = sum_(i=1)^(n) (a + bx_i — y_i) = 0`

`sum_(i=1)^(n) (2bx_i^2 + 2ax_i — 2x_iy_i) = sum_(i=1)^(n) (bx_i^2 + ax_i — x_iy_i) = 0`

Раскрываем скобки и переносим независящие от искомых коэффициентов суммы в другую половину, получим систему линейных уравнений:

`sum_(i=1)^(n) y_i = a n + b sum_(i=1)^(n) bx_i`

`sum_(i=1)^(n) x_iy_i = a sum_(i=1)^(n) x_i + b sum_(i=1)^(n) x_i^2`

Решая, полученную систему, находим формулы для коэффициентов `a` и `b`:

`a = frac(sum_(i=1)^(n) y_i sum_(i=1)^(n) x_i^2 — sum_(i=1)^(n) x_i sum_(i=1)^(n) x_iy_i) (n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i )^2)`   (3.1)

`b = frac(n sum_(i=1)^(n) x_iy_i — sum_(i=1)^(n) x_i sum_(i=1)^(n) y_i) (n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i )^2)`   (3.2)

Эти формулы имеют решения, когда `n > 1` (линию можно построить не менее чем по 2-м точкам) и когда детерминант `D = n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i )^2 != 0`, т.е. когда точки `x_i` в эксперименте различаются (т.е. когда линия не вертикальна).

Оценка погрешностей коэффициентов линии регресии

Для более точной оценки погрешности вычисления коэффициентов `a` и `b` желательно большое количество экспериментальных точек. При `n = 2`, оценить погрешность коэффициентов невозможно, т.к. аппроксимирующая линия будет однозначно проходить через две точки.

Погрешность случайной величины `V` определяется законом накопления ошибок
`S_V^2 = sum_(i=1)^p (frac(partial f)(partial z_i))^2 S_(z_i)^2`,
где `p` – число параметров `z_i` с погрешностью `S_(z_i)`, которые влияют на погрешность `S_V`;
`f` – функция зависимости `V` от `z_i`.

Распишем закон накопления ошибок для погрешности коэффициентов `a` и `b`

`S_a^2 = sum_(i=1)^(n)(frac(partial a)(partial y_i))^2 S_(y_i)^2 + sum_(i=1)^(n)(frac(partial a)(partial x_i))^2 S_(x_i)^2 = S_y^2 sum_(i=1)^(n)(frac(partial a)(partial y_i))^2 `

,

`S_b^2 = sum_(i=1)^(n)(frac(partial b)(partial y_i))^2 S_(y_i)^2 + sum_(i=1)^(n)(frac(partial b)(partial x_i))^2 S_(x_i)^2 = S_y^2 sum_(i=1)^(n)(frac(partial b)(partial y_i))^2 `

,
т.к. `S_(x_i)^2 = 0` (мы ранее сделали оговорку, что погрешность `x` пренебрежительно мала).

`S_y^2 = S_(y_i)^2` – погрешность (дисперсия, квадрат стандартного отклонения) в измерении `y` в предположении, что погрешность однородна для всех значений `y`.

Подставляя в полученные выражения формулы для расчета `a` и `b` получим

`S_a^2 = S_y^2 frac(sum_(i=1)^(n) ( sum_(i=1)^(n) x_i^2 — x_i sum_(i=1)^(n) x_i)^2) (D^2) = S_y^2 frac(( n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2) sum_(i=1)^(n) x_i^2 ) (D^2) = S_y^2 frac(sum_(i=1)^(n) x_i^2) (D)`   (4.1)

`S_b^2 = S_y^2 frac(sum_(i=1)^(n) ( n x_i — sum_(i=1)^(n) x_i)^2) (D^2) = S_y^2 frac(n ( n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2)) (D^2) = S_y^2 frac(n) (D)`   (4.2)

В большинстве реальных экспериментов значение `Sy` не измеряется. Для этого нужно проводить несколько паралельных измерений (опытов) в одной или нескольких точках плана, что увеличивает время (и возможно стоимость) эксперимента. Поэтому обычно полагают, что отклонение `y` от линии регрессии можно считать случайным. Оценку дисперсии `y` в этом случае, считают по формуле.

`S_y^2 = S_(y, ост)^2 = frac(sum_(i=1)^n (y_i — a — b x_i )^2) (n-2)`

.

Делитель `n-2` появляется потому, что у нас снизилось число степеней свободы из-за расчета двух коэффициентов по этой же выборке экспериментальных данных.

Такую оценку еще называют остаточной дисперсией относительно линии регрессии `S_(y, ост)^2`.

Оценка значимости коэффициентов проводится по критерию Стьюдента

`t_a = frac(|a|) (S_a)`, `t_b = frac(|b|) (S_b)`

Если рассчитанные критерии `t_a`, `t_b` меньше табличных критериев `t(P, n-2)`, то считается, что соответсвующий коэффициент не значимо отличается от нуля с заданной вероятностью `P`.

Если `t_a

Если `t_b

Для оценки качества описания линейной зависимости, можно сравнить `S_(y, ост)^2` и `S_(bar y)` относительно среднего с использованием критерия Фишера.

`S_(bar y) = frac(sum_(i=1)^n (y_i — bar y)^2) (n-1) = frac(sum_(i=1)^n (y_i — (sum_(i=1)^n y_i) /n )^2) (n-1)`

– выборочная оценка дисперсии `y` относительно среднего.

Для оценки эффективности уравнения регресии для описания зависимости расчитывают коэффициент Фишера
`F = S_(bar y) / S_(y, ост)^2`,
который сравнивают с табличным коэффициентом Фишера `F(p, n-1, n-2)`.

Если `F > F(P, n-1, n-2)`, считается статистически значимым с вероятностью `P` различие между описанием зависимости `y = f(x)` с помощью уравенения регресии и описанием с помощью среднего. Т.е. регрессия лучше описывает зависимость, чем разброс `y` относительно среднего.

xn——7kcbakcjfdd9ab3avfoelp4b2ar8dzd9e.xn--p1ai

Метод наименьших квадратов при решении экспериментальных задач по физике

 

При решении экспериментальных задач по физике часто возникает необходимость измерения физических величин, находящихся в функциональной зависимости. Как правило, после измерений информация о физическом явлении извлекается из графиков, построенных по данным, полученным экспериментальным путем, а зависимость между двумя физическими величинами — xи yпредставляется в виде таблицы 1.

 

Таблица 1

x

x1

x2

x3

xn

y

y1

y2

y3

yn

 

В связи с тем, что значения величин xи y измеряются с погрешностью, нанесенные на координатную плоскость точки будут разбросаны относительно предполагаемой кривой.

Если график y = f (x) строить, непосредственно соединяя экспериментально полученные точки, то он будет иметь вид ломаной. Однако в большинстве случаев функции, описывающие процессы в природе, являются гладкими. Значит, необходимо подобрать такую функцию y = f (x), которая наилучшим образом выражала бы экспериментальную зависимость y от x.

Наиболее простым видом функциональной зависимости является прямо пропорциональная зависимость между физическими величинами вида.

Необходимо отыскать такой коэффициент k, а значит, прямую, наилучшим образом согласованную с экспериментальными точками, нанесенными на плоскость (x, y), при котором общее отклонение

минимально (рисунок 1). Для этого необходимо решить уравнение:

или ,

где xi, yi — измеренные значения величин; N — количество пар значений измеренных величин.

Естественно, что для отыскания экстремума дифференцирование ведется по параметру, от которого зависит, как пройдет график. Воспользовавшись правилами дифференцирования суммы и сложной функции, получим

Полученное значение параметра k позволяет наиболее близко к экспериментальным точкам провести прямую, выходящую из начала координат.

Рис. 1. Экспериментальные точки при измерении величин

 

Погрешность при определении параметра k:

Экспериментальная задача. Измерить сопротивление проводника при помощи амперметра и вольтметра. Оценить погрешность измерений.

Для решения поставленной задачи необходимо собрать электрическую цепь, изображенную на рисунке 2.

Рис. 2. Экспериментальная установка для измерения сопротивления проводника при помощи амперметра и вольтметра

 

Изменения силы тока и напряжения на резисторе, полученные в результате измерений приведены в таблице 2.

 

Таблица 2

I, А

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

U, В

0,27

0,56

0,9

1,18

1,49

1,79

2,05

2,42

2,68

3,01

I, А

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

U, В

3,35

3,56

3,85

4,18

4,48

4,79

5,12

5,45

5,68

5,9

 

Необходимо подобрать такую формулу U = f (I), чтобы она наиболее удачно отражала зависимость между силой тока I и напряжением U. Закон Ома устанавливает эту зависимость в виде U=RI. Это линейная зависимость. Определим величину сопротивления R.

Способ № 1.

  1.                Определим значение сопротивления R каждого из N измерений:

.

  1.                Определим среднее значение сопротивления по формуле:

(Ом).

Погрешность такого косвенного измерения сопротивления можно найти по правилам обработки результатов прямых измерений, рассматривая набор значений Ri как статистический набор данных. Пренебрегая инструментальной погрешностью, получим:

(Ом).

Итак,Ом.

Это самый простой, но не лучший способ выбора коэффициента k в случае, когда сглаживающая зависимость между величинами xи y линейная и имеет вид: y = kx.

Способ № 2 (Метод наименьших квадратов)

  1.                Значение сопротивления R можно найти по формуле:

(Ом).

  1.                Погрешность вычислим по формуле:

(Ом).

В результате получим: (Ом).

 

Видно, что наиболее вероятные значения сопротивлений, вычисленные двумя рассмотренными способами, попадают в доверительные интервалы друг друга и, следовательно, оба имеют право на существование. Однако погрешность расчета сопротивления при использовании метода наименьших квадратов оказалась вдвое меньше по сравнению с первым способом. Таким образом, результат, полученный методом наименьших квадратов, более точен.

 

Литература:

 

  1.                Тейлор Дж. Введение в теорию ошибок / Дж. Тейлор; Пер. с англ. М.: Мир, 1985. 272 с.
  2.                Исаков В. А. Физика колебаний. Лабораторный практикум: Методические указания к лабораторным работам по физике / В. А. Исаков, В. П. Нестеров / Омский гос. ун-т путей сообщения. Омск, 2001. 22 с.
  3.                Линник Ю. В. Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений / Ю. В. Линник. Л.: Физматгиз, 1962. 352 с.

yun.moluch.ru

Метод наименьших квадратов

Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x. В результате измерений получается ряд значений:

;

.

По данным такого эксперимента можно построить график зависимости . Полученная кривая дает возможность судить о виде функции. Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Оптимальный подход к решению подобных задач возможен на основе применения метода наименьших квадратов.

Суть метода наименьших квадратов состоит в том, что наивероятнейшими значениями аргументов искомой аналитической зависимости будут те, при которых сумма квадратов отклонений экспериментальных значений функции от значений самой функцииy, т.е. является наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда или.

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением , то на графике строят зависимостьn от .

Для начала рассмотрим зависимость (прямая, проходящая через начало координат). Составим величину– сумму квадратов отклонений экспериментальных точек от прямой

.

Величина всегда положительна и оказывается тем меньше, чем ближе к прямой лежат экспериментальные точки. Метод наименьших квадратов утверждает, что дляk следует выбирать такое значение, при котором имеет минимум

или

.

(16)

Вычисление показывает, что среднеквадратичная ошибка определения величины k при этом равна

.

(17)

Теперь можно рассмотреть более трудный случай, когда точки должны удовлетворить формуле .

Задача состоит в том, чтобы по имеющемуся набору значений найти наилучшие значенияa и b.

Составляя квадратичную форму , равную сумме квадратов отклонений точекот прямой

определяют значения a и b, при которых имеет минимум

,

.

Совместное решение этих уравнений дает

,

(18)

.

(19)

Среднеквадратичные ошибки определения a и b равны

,

(20)

.

(21)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (16) – (21). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения (прямая, проходящая через начало координат). При различных значениях моментаM измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 2.

Таблица 2. Результаты эксперимента

n

1

1.44

0.52

2.0736

0.7488

0.039432

0.001555

2

3.12

1.06

9.7344

3.3072

0.018768

0.000352

3

4.59

1.45

21.0681

6.6555

0.006693

4

5.90

1.92

34.8100

11.3280

0.002401

5

7.45

2.56

55.5025

19.0720

0.073725

0.005435

123.1886

41.1115

0.016436

Используя линейную зависимость

,

по формуле (16) определяем

,

откуда .

Для определения среднеквадратичной ошибки воспользуемся формулой (17)

.

По формуле (14) имеем

.

Задавшись надежностью , по таблице коэффициентов Стьюдента для, находими определяем абсолютную ошибку

.

Относительная погрешность

.

Окончательно результат можно записать в виде:

при ,.

Пример 2. Вычислить коэффициент линейного расширения металлического стержня по методу наименьших квадратов. Длина металлического стержня от температуры зависит по линейному закону

.

Свободный член определяет первоначальную длинупри температуре 0° C, а угловой коэффициент– произведение коэффициента линейного расширенияна первоначальную длину.

Результаты измерений и расчетов приведены в таблице 3.

Таблица 3.Результаты эксперимента

n

l, мм

1

23

150.005

2500

0.0001429

2.041

2

43

150.040

900

0

0.0003143

9.878

3

63

150.074

100

1500.74

0.0002286

5.224

4

83

150.109

10

100

1501.09

0.0002286

5.226

5

103

150.143

30

900

4504.29

0.0003143

9.878

6

123

150.178

50

2500

7508.90

0.0001429

2.041

438

900.549

0

7000

12.09

34.286

73

150.091

По формулам (18), (19) определяем

,

.

Отсюда:

.

Найдем ошибку в определении . Так как , то по формуле (14) имеем:

.

Пользуясь формулами (20), (21) имеем

,

.

Тогда

.

Задавшись надежностью , по таблице коэффициентов Стьюдента для , находим и определяем абсолютную ошибку

.

Тогда результат вычисления равен

.

Относительная погрешность

.

Окончательно результат можно записать в виде:

при , .

studfiles.net

§ 5 Метод наименьших квадратов (мнк).

Помимо двух вышеописанных способов оценки погрешности результата при косвенных измерениях, иногда применяют еще так называемый «метод наименьших квадратов» или сокращенно МНК. Этот метод можно использовать, если известен вид функциональной зависимостимежду измеряемыми физическими величинами, а требуется определитькоэффициенты, входящие в эту функцию. В наших лабораторных работах предлагается применять этот метод для определения параметров линейной зависимости.

Пусть в эксперименте можно измерить ряд значений некоторой величины xи, соответствующие им значения, величиныy. И пусть при этомизвестно, что между ними справедлива зависимость вида: y = ax + b.Как известно, такая зависимость графически представляется прямой линией (рис.4). Однако измеренные значенияxi и yi включают в себя погрешность и, в результате, не лягут идеально на прямую линию.

Как по данным экспериментальных наблюдений наилучшим образом найти коэффициенты aиb? Графически эта задача сводится к построению прямой, ближе всего лежащей ко всем экспериментальным токам, так как прямая однозначно задается этими коэффициентами (рис.4.).

Для аналитического выражения коэффициентов применяется метод наименьших квадратов.

Утверждается, что наилучшей будет та прямая, сумма квадратов расстояний до которой, от всех экспериментальных точек будет минимальной. Расстояние (вдоль оси y) от точки с координатамиxi,yi до искомой прямой определяется выражением: (axi +b yi),

Рис.4

тогда сумма квадратов расстояний будет равна:

Решение задачи на нахождение минимума этого выражения (см. приложение, §8) приводит к следующим выражениям для коэффициентовaиb.

(25)

(26)

Дисперсию отклонения экспериментальных точек от прямой S02и дисперсию коэффициентовaиb Sa2 иSb2 можно вычислить по формулам:

S02 =

(27)

(28)

Sb2=

(29)

Доверительные интервалы для коэффициентов aиb определяются как обычно:

ap = Sabp = Sb

Если график исследуемой зависимости проходит через начало координат, то есть b=0, формулы 25, 27 и 28 существенно упрощаются. В этом случае коэффициентaи его дисперсию можно рассчитать по следующим формулам:

Однако следует иметь в виду, что формулы 25-28 включают разности больших величин, мало отличающихся друг от друга, что легко может привести к ошибкам при вычислениях, если их проводить с недостаточным числом значащих цифр. Поэтому все промежуточные вычисления следует выполнять с большим числом значащих цифр, без округления. Если вы проводите вычисления с помощью компьютера, то это условие выполняется. В том случае, если расчеты выполняются «вручную», или с помощью не очень совершенного калькулятора, а результаты измерений имеют более трех верных знаков, то велика вероятность получить неправильный результат вычислений. В этом случае рекомендуется для вычисления коэффициентовaиb,а также доверительных границ их погрешности вместо вышеуказанных формул использовать выражения, преобразованные к другому виду:

Во всех случаях проведения расчетов по МНК для определения коэффициентов линейной зависимости и их погрешностей необходимо вычислить некоторые суммы.Для этого удобно воспользоваться следующими таблицами – алгоритмами вычислений. Подсчитав суммы в каждом столбце и подставив их в соответствующие формулы, легко определить и значенияa,b,a иb

Таблица 5

xi

yi

xi2

yi2

xi yi

x1

y1

x12

y12

x1 y1

x2

y2

x22

y22

x2 y2

xn

yn

xn2

yn2

xn yn

xi

yi

xi2

yi2

x1 y1

Или в случае использования формул 33 -37

Таблица 6

xi

yi

xi

(xi )2

(xi )yi

xi2

(axi +b yi)2

x1

y1

x1

(x1 )2

(x1 )y1

x12

(ax1 +b y1)2

x2

y2

x2

(x2 )2

(x2 )y2

x22

(ax2 +b y2)2

xn

yn

xn

(xn )2

(xn )yn

xn2

(axn +b yn)2

xi

yi

(xi )

(xi )2

(xi )yi

xi2

(axi +b yi)2

studfiles.net

Метод наименьших квадратов

Метод наименьших квадратов

Пусть требуется установить функциональную зависимость между переменными х, упо результатам экспериментальных исследований, приведенных в таблице:

Нужно подобрать функцию так, чтобы ее значения были как можно более близкими к экспериментальным значениям. Выбор функциизависит от характера расположенных на плоскости экспериментальных точек.

Пример:

Погрешность, возникающая при замене экспериментальных значений на значения функции, равна в каждой точке.

В МНК коэффициенты функции f(x)подбираются из следующего условия:сумма квадратов погрешностей по всей совокупности экспериментов принимает минимальное значение:

.

Обычно рассматривают несколько видов функций f(x) выбирают ту функцию, для которой суммарная погрешность окажется наименьшей.

Рассмотрим основные виды функций , используемые в МНК.

  1. Линейная зависимость.

Пусть , тогда необходимо найтиminфункции двух переменных:.

По необходимому условию экстремума обе частные производные этой функции двух переменных должны быть равны нулю:

.

Раскрывая скобки, получим систему для определения неизвестных параметров aиb:

.

Значения коэффициентов при неизвестных a и b определяем из первоначальной таблицы как соответствующие суммы значений переменных х, у .

Решая эту систему относительно коэффициентов aиb:, получим:

,

.

Убедимся, что в точке функцияS(a,b)имеет минимум.

Составим матрицу Гессе и найдем ее главные миноры:

,

Так как главные миноры матрицы Гессе положительны, то по критерию Сильвестра матрица положительно определена и квадратичная форма второго дифференциала , соответствующая этой матрице, принимает только положительные значения.

Из условия следует, что- точка минимума.

Если коэффициенты линейной функции найдены, можно вычислить суммарную погрешность: .

II. Показательная функция.

Сведем этот случай к линейной функции.

  1. Логарифмируем уравнение: .

  2. Логарифмируем таблицу:

Обозначим ,, тогда

  1. Найдем коэффициенты Аиbаналогично первому случаю линейной функции:

.

Дальнейшие вычисления провести самостоятельно аналогично первому пункту. Окончательное значение коэффициента аопределить по формуле.

Суммарная погрешность равна .

III. Степенная функция .

Поступим аналогично показательной функции.

  1. Логарифмируем уравнение: , получимлинейную функцию.

  2. Логарифмируем таблицу:

3. Обозначим . Тогда .

Найдем коэффициенты иb аналогично первому случаю:

.

Дальнейшие вычисления провести самостоятельно аналогично первому пункту. Окончательное значение коэффициента аопределить по формуле.

Суммарная погрешность равна .

IV. Квадратичная функция .

Условие метода наименьших квадратов имеет вид:

.

Аналогично линейной функции составляется система трех уравнений , из которой находятся коэффициентыa, bис:

Запишем систему в развернутом виде:

Эта система имеет единственное решение. Кроме того, можно доказать, что коэффициенты, получаемые методом наименьших квадратов, всегда определяют именно минимум функции .

Суммарная погрешность .

studfiles.net

Метод наименьших квадратов

Метод наименьших квадратов (МНК).

Пример.

Экспериментальные данные о значениях переменных х иу приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостьюy=ax+b (найти параметрыа иb). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при

которых функция двух переменных а иb принимает наименьшее значение. То есть, при данныха иb сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными.

Находим частные производные функции по переменныма иb, приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки илиметодом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а иb функцияпринимает наименьшее значение. Доказательство этого факта приведенониже по тексту в конце страницы .

Вот и весь метод наименьших квадратов. Формула для нахождения

параметра a содержит суммы,,,и параметрn — количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициентb находится после вычисленияa.

Пришло время вспомнить про исходый пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ойстроки на значения3-ейстроки для каждого номераi .

Значения в пятой строке таблицы получены возведением в квадрат значений 2- ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а иb. Подставляем в них соответствующие значения из

последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 — искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 илилучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Оценка погрешности метода наименьших квадратов.

Для этого требуется вычислить суммы квадратов отклонений исходных данных

от этих линий и, меньшее значение соответствует линии, которая лучше в смысле метода наименьших квадратов аппроксимирует исходные данные.

Так как , то прямаяy = 0.165x+2.184 лучше приближает исходные данные.

Графическая иллюстрация метода наименьших квадратов

(мнк).

На графиках все прекрасно видно. Красная линия – это найденная прямая y =

0.165x+2.184, синяя линия – это, розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y приx=3 или приx=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.

К началу страницы

Доказательство.

Чтобы при найденных а иb функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала

второго порядка для функции была положительно определенной. Покажем это.

Дифференциал второго порядка имеет вид:

То есть

Следовательно, матрица квадратичной формы имеет вид

причем значения элементов не зависят от а иb .

Покажем, что матрица положительно определенная. Для этого нужно, чтобы угловые миноры были положительными.

Угловой минор первого порядка . Неравенство строгое, так как точкинесовпадающие. В дальнейшем это будем подразумевать.

Угловой минор второго порядка

Докажем, что методом математической индукции.

1.Проверим справедливость неравенства для любого значения n, например дляn=2.

Получили верное неравенство для любых несовпадающих значений

и.

2.Предполагаем, что неравенство верное для n.

— верное.

3.Докажем, что неравенство верное для n+1.

То есть, нужно доказать, что исходя из предположения что- верное.

Поехали.

Выражение в фигурных скобках положительно по предположению пункта 2), а остальные слагаемые положительны, так как представляют собой квадраты чисел. Этим доказательство завершено.

Вывод : найденные значенияа иb соответствуют наименьшему значению

функции , следовательно, являются искомыми параметрами для метода наименьших квадратов.

studfiles.net

Л. А. Литневский, с. А. Минабудинова

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

В ЛАБОРАТОРНОМ ПРАКТИКУМЕ ПО ФИЗИКЕ

ОМСК 2004

Министерство путей сообщения Российской Федерации

Омский государственный университет путей сообщения

___________________

Л. А. Литневский, С. А. Минабудинова

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

В ЛАБОРАТОРНОМ ПРАКТИКУМЕ ПО ФИЗИКЕ

Утверждено редакционно-издательским советом университета

в качестве методических указаний к лабораторным работам по физике

для студентов 1-го, 2-го курсов дневного обучения

Омск 2004

УДК 530.1 (076.5)

ББК 22.3я73

Л64

Метод наименьших квадратов в лабораторном практикуме по физике: Методические указания к выполнению лабораторных работ; Л. А. Литневский, С. А. Минабудинова / Омский гос. ун-т путей сообщения. Омск, 2004. 32 с.

В методических указаниях подробно рассмотрен метод наименьших квадратов, приведены примеры его применения и расчет погрешности при обработке результатов измерений функциональных зависимостей между физическими величинами.

Методические указания по физике предназначены для студентов 1-го и 2-го курсов всех факультетов, могут быть использованы при выполнении лабораторных работ и дополнительных заданий к лабораторным работам.

Библиогр.: 3 назв. Табл. 7. Рис. 2.

Рецензенты: доктор техн. наук, профессор В. Н. Зажирко;

канд. физ.-мат. наук Г. И. Косенко.

________________________

© Омский гос. университет

путей сообщения, 2004

ОГЛАВЛЕНИЕ

Введение 5

  1. Обработка результатов измерений функциональных зависимостей 6

    1. Метод наименьших квадратов 6

    2. Погрешность параметров a, b, … 7

    3. Критерий качества аппроксимации 9

  2. Аппроксимация экспериментальной зависимости линейной функцией вида y = k x 10

    1. Вычисление параметра k 10

    2. Вычисление погрешности параметра k 12

    3. Пример: зависимость силы тока от напряжения на резисторе 13

  3. Аппроксимация экспериментальной зависимости линейной функцией вида y = p x + q 15

    1. Вычисление параметров p и q 15

    2. Вычисление погрешности параметров p и q 16

    3. Пример: зависимость сопротивления проводника от температуры 17

  4. Аппроксимация экспериментальной зависимости параболической функцией 19

    1. Вычисление параметров a и b функции y = a x2 + bx 19

    2. Вычисление погрешности параметров a и b функции y = a x2 + bx 20

    3. Вычисление параметра с функции y = c x2 и его погрешности 21

  5. Другие виды экспериментальной зависимости 22

    1. Общий подход 22

    2. Экспоненциальная зависимость между величинами вида y = α e βx 22

    3. Экспоненциальная зависимость между величинами вида y = α e β/x 22

    4. Использование прикладных программ 23

  6. Метод наименьших квадратов в работе «Затухающие электрические колебания» 24

    1. Постановка задачи 24

    2. Вычисление логарифмического декремента затухания и его погрешности с помощью прикладных программ 25

    3. Вычисление логарифмического декремента затухания и его погрешности аппроксимацией линейной функцией 26

    4. Вычисление сопротивления контура и его погрешности 28

Библиографический список 30

ВВЕДЕНИЕ

При проведении экспериментов часто возникает необходимость измерения физических величин, находящихся в функциональной зависимости. Как правило, после измерений информация о физическом явлении извлекается из графиков, построенных по данным, полученным экспериментальным путем, а зависимость между двумя физическими величинами – X и Y – представляется в виде табл. 1.

Таблица 1

Зависимость физических величин X и Y

X

x1

x2

x3

xN

Y

y1

y2

y3

yN

Обработка результатов таких измерений не может быть выполнена по известным правилам обработки результатов прямых и косвенных измерений, поскольку наборы чисел (x1, x2, …, xN) и (y1, y2, …, yN) не являются значениями многократного измерения одной и той же величины. В связи с тем, что значения величин X и Y измеряются с погрешностью, нанесенные на координатную плоскость точки будут разбросаны относительно предполагаемой кривой. Как тогда построить кривую, чтобы она наилучшим образом соответствовала проведенным измерениям?

Если график y = f (x) строить, непосредственно соединяя экспериментально полученные точки, то он будет иметь вид ломаной. Однако в большинстве случаев функции, описывающие процессы в природе, являются гладкими. Значит, необходимо подобрать такую функцию y = f (x), которая наилучшим образом выражала бы экспериментальную зависимость Y от X. Другими словами, требуется сгладить построенную по точкам ломаную линию. Эту задачу называют задачей о сглаживании экспериментальных зависимостей. Она решается при помощи метода наименьших квадратов.

Подбор формул по экспериментальным данным называют подбором эмпирических формул. На самом деле, формула тем точнее, чем больше теоретических представлений вложено в нее и чем в меньшей степени она является эмпирической. В действительности необходимо сначала задаться видом функции, а затем, пользуясь результатами эксперимента, определить значения различных параметров (постоянных величин), входящих в нее.

Перед тем как приступить к подбору формулы, полезно нанести экспериментальные данные на график и от руки провести через полученные точки наиболее правдоподобную гладкую кривую. При этом сразу выявляются те данные, в которых можно предполагать существенные ошибки. Очень важно при проведении кривой по экспериментальным точкам знать, как должна вести себя кривая при значениях аргумента, весьма близких к нулю, при больших значениях аргумента, проходит ли кривая через начало координат, пересекает ли координатные оси и т. п.

Итак, допустим, что эта предварительная работа выполнена, подобрана формула, и требуется определить значения входящих в формулу постоянных величин. Как это сделать?

  1. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

studfiles.net

В арифметической прогрессии что такое n – Арифметическая прогрессия

Как найти n в арифметической прогрессии

Арифметическая последовательность – это последовательность чисел, в которой всякое новое число получается путем добавления определенного числа к предыдущему. Число n – это число членов арифметической прогрессии . Существуют формулы, объединяющие параметры арифметической прогрессии , из которых дозволено выразить n.

Вам понадобится

  • Арифметическая прогрессия

Инструкция

1. Арифметическая прогрессия – это последовательность чисел вида a1, a1+d, a1+2d…, a1+(n-1)d. Число d именуется шагом прогрессии .Видимо, что всеобщая формула произвольного n-го члена арифметической прогрессии имеет вид: An = A1+(n-1)d. Тогда зная один из членов прогрессии , 1-й член прогрессии и шаг прогрессии , дозволено определить, то есть номер члена прогресси. Видимо, он будет определяться по формуле n = (An-A1+d)/d.

2. Пускай сейчас вестим m-ый член прогрессии и какой-то иной член прогрессии – n-ый, но n неведомо, как и в предыдущем случае, но знаменито, что n и m не совпадают.Шаг прогрессии может быть вычислен по формуле: d = (An-Am)/(n-m). Тогда n = (An-Am+md)/d.

3. Если знаменита сумма нескольких элементов арифметической прогрессии , а также ее 1-й и конечный элемент, то число этих элементов тоже дозволено определить.Сумма арифметической прогрессии будет равна: S = ((A1+An)/2)n. Тогда n = 2S/(A1+An) – число чденов прогрессии . Применяя тот факт, что An = A1+(n-1)d, эту формулу дозволено переписать в виде: n = 2S/(2A1+(n-1)d). Из этой формулы дозволено выразить n, решая квадратное уравнение.

Арифметической последовательностью называют такой упорядоченный комплект чисел, весь член которого, помимо первого, отличается от предыдущего на одну и ту же величину. Эта непрерывная величина именуется разностью прогрессии либо ее шагом и может быть рассчитана по знаменитым членам арифметической прогрессии.

Инструкция

1. Если из условий задачи знамениты значения первого и второго либо всякий иной пары соседних членов арифметической прогрессии, для вычисления разности (d) примитивно отнимите от дальнейшего члена предшествующий. Получившаяся величина может быть как позитивным, так и негативным числом – это зависит от того, является ли прогрессия нарастающей либо убывающей. В всеобщей форме решение для произвольно взятой пары (a? и a???) соседних членов прогрессии запишите так: d = a??? – a?.

2. Для пары членов такой прогрессии, один из которых является первым (a?), а иной – любым иным произвольно выбранным, тоже дозволено составить формулу нахождения разности (d). Впрочем в этом случае непременно должен быть знаменит порядковый номер (i) произвольного выбранного члена последовательности. Для вычисления разности сложите оба числа, а полученный итог поделите на уменьшенный на единицу порядковый номер произвольного члена. В всеобщем виде эту формулу запишите так: d = (a?+ a?)/(i-1).

3. Если помимо произвольного члена арифметической прогрессии с порядковым номером i знаменит иной ее член с порядковым номером u, измените формулу из предыдущего шага соответствующим образом. В этом случае разностью (d) прогрессии будет сумма этих 2-х членов, поделенная на разность их порядковых номеров: d = (a?+a?)/(i-v).

4. Формула вычисления разности (d) несколько усложнится, если в условиях задачи дано значение первого ее члена (a?) и сумма (S?) заданного числа (i) первых членов арифметической последовательности. Для приобретения желанного значения поделите сумму на число составивших ее членов, отнимите значение первого числа в последовательности, а итог удвойте. Получившуюся величину поделите на уменьшенное на единицу число членов, составивших сумму. В всеобщем виде формулу вычисления дискриминанта запишите так: d = 2*(S?/i-a?)/(i-1).

jprosto.ru

Формулы арифметической прогрессии. Формула n числа арифметической прогрессии. Формула для вычисления суммы арифметической прогрессии.

Прогрессия-это последовательность объектов, которые следуют определенному порядку. Арифметическая прогрессия — это последовательность чисел, в которой разница между двумя последовательными числами одинакова.

 

Арифметическая прогрессия представляет собой последовательность чисел, где разница между любыми двумя последовательными числами постоянна.

Другими словами, в арифметической прогрессии, результат одинаков, когда число вычитается из его следующего числа, по всей ее последовательности. Результат, когда число вычитается из его следующего числа, называется  шагом или разностью арифметической прогрессии.

Пример арифметической прогресии: \(1,3,5,7,9,11\), к каждому последующему числу мы прибавляем \(2\). 

Для того чтобы решать задачи по арифметической прогрессии, важно понимать формулировку  символов.

Обозначения в формулах арифметической прогрессии:

  • Первый член в арифметической прогрессии \(a_1\):

    \(1,3,5,7,9\)   \(1 -a_1\) 

  • Какой-либо член в арифметической прогрессии \(a_n\) :

​          \(1,3,5,7,9\)  например \(a_n-3\), также это может быть любое число из прогрессии.

  •  Следующий член \(a_{n+1}\):

     \(1,3,5,7,9\)    \(3-n,\; \; \; 5-a_{n+1}\).

  • Предыдущий член арифметической прогрессии \(a_{n-1}\)

      \(1,3,5,7,9\)    \(5-n,\; \; \; 3-a_{n-1}\).

  • Сумма членов арифметической прогрессии \(S_n\):

      \(1,3,5,7,9\)   \(S_n=1+3+5+7+9=25\).

 

  • Шаг арифметической прогрессии \(d\):

       \(1,3,5,7,9\)    \(3-1=5-3=7-5=9-7=2(d)\)

  • Номер члена арифметической прогрессии \(n\):

      \(1,3,5,7,9\)    \(1\)–первый член \((n=1)\); \(3-\)второй член \((n=2)\); третий член\(-5\) \((n=3)\).

Формулы

 

Формула для нахождения \(a_n\) , если нам известно \(a_1\)и \(d\):

\(a_n=a_1+d(n-1)\)

Формула для нахождения \(a_{n+1}\) , если нам известно \(a_{n}\)  и \(d\), также мы можем выразить любое слагаемое:

 

\(a_{n+1}=a_n+d\)

Предыдущий член арифметической прогрессии, если мы знаем \(a_n\)  и \(d\):

 

\(a_{n-1}=a_n-d\)



Формула если нам известно \(a_{n+1}\)  , \(a_{n-1}\), \(n\):

\(a_{n}=\frac{a_{n-1}+a_{n+1}}{2}\), где \(n>1\)

 



Формула нахождения суммы арифметической прогрессии, если мы знаем \(a_1\), \(a_n,n\):

 

\( S_n=\frac{(a_1+a_n)*n}{2}\)

 

Формула нахождения суммы арифметической прогрессии, если мы знаем \(a_1,d,n\):

\(S_n=\frac{2a_1+d(n-1)n}{2}\)

 

Также не забываем, что мы можем выразить неизвестную нам искомую величину, в любой вышеперечисленной формуле.

 

 

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы «Альфа». Запишитесь на пробное занятие уже сейчас!

Запишитесь на бесплатное тестирование знаний!

myalfaschool.ru

Арифметическая прогрессия. Часть 1

Прежде чем мы начнем решать задачи на арифметическую прогрессию, рассмотрим, что такое числовая последовательность, поскольку арифметическая прогрессия — это частный случай числовой последовательности.

Числовая последовательность — это числовое множество, каждый элемент которого имеет свой порядковый номер. Элементы этого множества называются членами последовательности.  Порядковый номер элемента последовательности обозначается индексом:

— первый элемент последовательности;

— пятый элемент последовательности;

— «энный» элемент последовательности, т.е. элемент, «стоящий в очереди» под номером n.

Между значением элемента последовательности и его порядковым номером существует зависимость. Следовательно, мы можем рассматривать последовательность как функцию, аргументом которой является порядковый номер элемента последовательности. Другими словами можно сказать, что последовательность — это функция от натурального аргумента:

Последовательность можно задать тремя способами:

1. Последовательность можно задать с помощью таблицы. В этом случае мы просто задаем значение каждого члена последовательности.

Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он  проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:

В первой строке таблицы указан номер дня недели, во второй — время в минутах. Мы видим, что , то есть в понедельник Некто провел ВКонтакте 125 минут,  , то есть в четверг  —  248 минут, а , то есть в пятницу всего 15.

2. Последовательность можно задать с помощью формулы n-го члена.

В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.

Например, если , то

Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.

То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:

Если, например,  , то

Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.

3. Последовательность можно задать с помощью формулы, выражающей зависимость значения члена последовательности с номером n от значения предыдущих членов. В этом случае нам недостаточно знать только номер члена последовательности, чтобы найти его значение. Нам нужно задать первый член или несколько первых членов последовательности.

Например, рассмотрим последовательность , 

Мы можем находить значения членов последовательности один за другим, начиная с третьего:

То есть каждый раз, чтобы найти значение n-го члена последовательности, мы возвращаемся к двум предыдущим. Такой способ задания последовательности называется рекуррентным, от латинского слова recurro — возвращаться.

Теперь мы можем дать определение арифметической прогрессии. Арифметическая прогрессия — это простой частный случай числовой последовательности.

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

Число называется разностью арифметической прогрессии.  Разность арифметической прогрессии может быть  положительной,  отрицательной, или равной нулю.

Если , то каждый член арифметической прогрессии больше предыдущего, и прогрессия является возрастающей.

Например, 2; 5; 8; 11;…

Если , то каждый член арифметической прогрессии меньше предыдущего, и прогрессия является убывающей.

Например, 2; -1; -4; -7;…

Если , то все члены прогрессии равны одному и тому же числу, и прогрессия является стационарной.

Например, 2;2;2;2;…

 

Основное свойство арифметической прогрессии:

Посмотрим на рисунок.

Мы видим, что

,  и в то же время

Сложив эти два равенства, получим:

.

Разделим обе части равенства на 2:

Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:

Больше того, так как

,  и в то же время

, то

, и, следовательно,

Каждый член арифметической прогрессии, начиная с , равен среднему арифметическому двух равноотстоящих.

Формула го члена.

Мы видим, что для членов арифметической прогрессии выполняются соотношения:

и, наконец,

Мы получили формулу n-го члена.

ВАЖНО! Любой член арифметической прогрессии можно выразить через и . Зная первый член и разность арифметической прогрессии можно найти любой её член.

Сумма n членов арифметической прогрессии.

В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:

Рассмотрим арифметическую прогрессию, в которой n членов. Пусть сумма n членов этой прогрессии равна .

Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:

Сложим попарно:

Сумма в каждой скобке равна , число пар равно n.

Получаем:

Итак, сумму n членов арифметической прогрессии можно найти по формулам:

Рассмотрим решение задач на арифметическую прогрессию.

1. Последовательность задана формулой n-го члена: . Докажите, что эта последовательность является арифметической прогрессией.

Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.

Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.

2Дана арифметическая прогрессия -31; -27;…

а) Найдите 31 член прогрессии.

б) Определите, входит ли в данную прогрессию число 41.

а) Мы видим, что ; 

Запишем формулу n-го члена для нашей прогрессии.

В общем случае

В нашем случае , поэтому

Получаем:

б) Предположим, что число 41 является членом последовательности. Найдем его номер. Для этого решим уравнение:

Мы получили натуральное значение n, следовательно, да, число 41 является членом прогрессии. Если бы найденное значение n не было бы натуральным числом, то мы бы ответили, что число 41  НЕ является членом прогрессии.

3. а) Между числами 2 и 8 вставьте 4 числа так, чтобы они вместе с данными числами составляли арифметическую прогрессию.

б) Найдите сумму членов полученной прогрессии.

а) Вставим между числами 2 и 8 четыре числа:

Мы получили арифметическую прогрессию, в которой 6  членов.

Найдем разность этой прогрессии. Для этого воспользуемся формулой n-го члена:

Теперь легко найти значения чисел:

3,2; 4,4; 5,6; 6,8

б)

Ответ: а) да; б) 30

 

4. Гру­зо­вик пе­ре­во­зит пар­тию щебня мас­сой 240 тонн, еже­днев­но уве­ли­чи­вая норму пе­ре­воз­ки на одно и то же число тонн. Из­вест­но, что за пер­вый день было пе­ре­ве­зе­но 2 тонны щебня. Опре­де­ли­те, сколь­ко тонн щебня было пе­ре­ве­зе­но на две­на­дца­тый день, если вся ра­бо­та была вы­пол­не­на за 15 дней.

По условию задачи количество щебня, которое перевозит грузовик, каждый день увеличивается на одно и то же число. Следовательно, мы имеем дело с арифметической прогрессией.

Сформулируем эту задачу в терминах арифметической прогрессии.

За пер­вый день было пе­ре­ве­зе­но 2 тонны щебня: [pmath  size=14]a_1=2[/pmath].

Вся ра­бо­та была вы­пол­не­на за 15 дней: .

Гру­зо­вик пе­ре­во­зит пар­тию щебня мас­сой 240 тонн:

Нам нужно найти .

Сначала найдем разность прогрессии. Воспользуемся формулой суммы n членов прогрессии.

В нашем случае:

Найдем по формуле n-го члена:

Ответ: 24.

Продолжение статьи — решение основных типов задач на арифметическую прогрессию — читайте здесь.

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Что такое арифметическая прогрессия.

Числовую последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же для данной последовательности числом, называют арифметической прогрессией. Число, которое каждый раз прибавляют к предыдущему числу, называется разностью арифметической прогрессии и обозначается буквой d.

Так, числовая последовательность а1;  а2;  а3;  а4;  а5; … аn будет являться арифметической  прогрессией, если а2 = а1 + d;

а3 = а2 + d;

a4 = a3 + d;

a5 = a4 + d;

………….

an = an-1 + d

Говорят, что дана арифметическая прогрессия с общим членом аn. Записывают: дана арифметическая  прогрессия {an}.

Арифметическая прогрессия считается определенной, если известны ее первый член a1 и разность d.

Примеры арифметической прогрессии

Пример 1.    1; 3; 5; 7; 9;…      Здесь а1 = 1; d = 2.

Пример 2.   8; 5; 2; -1; -4; -7; -10;…   Здесь а1 = 8; d =-3.

Пример 3.   -16; -12; -8; -4;…    Здесь а1 = -16; d = 4.

Заметим, что каждый член прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов.

В 1 примере второй член 3 =(1+5):2  ;  т.е. а2 = (а13):2;  третий член   5 =(3+7):2;

т. е. а3 = (а24):2.

Значит, справедлива формула:

Но, на самом деле, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому не только соседних с ним членов, но и равноотстоящих от него членов, т. е.

Обратимся  примеру 2.  Число -1 является четвертым членом арифметической прогрессии и одинаково отстоит от первого и  седьмого членов (а1 = 8, а7 = -10).

По формуле (**) имеем:

Выведем формулу n- го члена арифметической прогрессии.

Итак, второй член арифметической прогрессии мы получим, если к первому прибавим разность d; третий член получим, если ко второму прибавим разность d или к первому члену прибавим две разности d; четвертый член получим, если к третьему прибавим разность d или к первому прибавим три разности d и так далее.

Вы уже догадались: а2 = а1 + d;

a3 = a2 + d = a1 + 2d;

a4 = a3 + d = a1 + 3d;

…………………….

an = an-1 + d = a1 + (n-1) d.

Полученную формулу an = a1 + (n-1)d               (***)

называют формулой n-го члена арифметической прогрессии.

Теперь поговорим о том, как найти сумму первых n членов арифметической прогрессии. Обозначим эту сумму через Sn.

От перестановки мест слагаемых значение суммы не изменится, поэтому ее можно записать двумя способами.

Sn = a1 + a2 + a3  + a4 + … + an-3 + an-2 + an-1+ an                    и

Sn = an + an-1 + an-2 + an-3 + ……+ a4 + a3 + a2 + a1

Сложим почленно эти два равенства:

2Sn = (a1 + an) + (a2 + an-1) + (a3 + an-2) + (a4 + an-3) + …

Значения в скобках равны между собой, так как являются суммами равноотстоящих членов ряда, значит, можно записать: 2Sn = n· (a1 + an).

Получаем формулу суммы первых n членов арифметической прогрессии.

                         (****)

Если заменим аn  значением а1 + (n-1) d    по формуле  (***), то получим еще одну формулу для суммы первых n членов арифметической прогрессии.

                (*****)

 

www.mathematics-repetition.com

Арифметическая прогрессия — ЭНЭ

Арифметическая прогрессия

— А. прогрессия есть ряд чисел, из которых каждое последующее разнится от предыдущего на одну и ту же величину, например 1, 4, 7, 10,: А. прогрессии могут быть возрастающие или убывающие и состоят из ряда явно выраженных чисел или буквенных означений величин, вещественных или мнимых. Легко убедиться в следующих свойствах А. прогрессии. Сумма пары членов А. прогрессии, одинаково отстоящих от обоих концов ее, есть величина постоянная. Сумма всех членов А. прогрессии равна произведению из полусуммы крайних членов ее на число членов. Все вопросы, относящиеся к А. прогрессии решаются посредством двух формул

l = a + (n — l)r,
s = n•(a + l)/2,

выражающих зависимость между первым членом прогрессии а, последним членом ее l, разностью прогрессии r, числом ее членов n и суммою s.


Прогрессия арифметическая

— Арифметической прогрессией называется такой ряд чисел: a1, a2, a3,….an-1, an, в котором разность между каждыми двумя соседними числами, предыдущим и последующим, одна и та же. Разность эта называется арифметическим отношением, и П. называется возрастающей, если арифметическое отношение положительное, и называется убывающей, если это отношение отрицательное. Пусть арифметическая разность есть r. Величина члена aS прогрессии выразится так: a1 + (s — 1)r и сумма n членов так: 1/2(a1 + an)n.

Геометрической прогрессией называется такой ряд чисел a1, a2, a3,…. а n, в котором отношение каждого члена к члену предыдущему равно одной и той же величине q, которую называют знаменателем прогрессии. Величина члена aS прогрессии выражается так: a1qS-1, а величина суммы n членов так: a1(qn — 1)/(q — 1).

Д. Б.


Примечание на полях: в исходном тексте «Брокгауза» имеются две статьи /005/5220.htm («Арифметическая прогрессия») и /083/83389.htm («Прогрессия арифметическая»)

В статье воспроизведен материал из Большого энциклопедического словаря Брокгауза и Ефрона.

Арифметическая прогрессия, ряд чисел, в к-рых каждое последующее число получается из предыдущего прибавлением одного и того же числа, называемого разностью, напр, ряд — 1, 3, 5, 7 и т. д. Если a — первый член прогрессии, d — разность, n — число членов, то n-ный член прогрессии an=a+d•(n — 1) и сумма n членов:

В статье воспроизведен текст из Малой советской энциклопедии.

См. также

Ссылки

wiki.laser.ru

Что такое арифметическая прогрессия? Основные понятия.

        Арифметическая прогрессия – это очень и очень простое понятие. И это отнюдь не пустые слова с сомнительной целью утешить, успокоить и приободрить слабо подготовленного ученика. Арифметическая прогрессия – это и вправду просто! Всё-таки сомневаетесь? Напрасно! Чуть ниже сами убедитесь. Если рискнёте и… почитаете.)

        В этом небольшом уроке вы:

        а) прочувствуете и поймёте смысл арифметической прогрессии;

        б) ознакомитесь и разберётесь с базовыми терминами и обозначениями, относящимися к арифметической прогрессии;

        в) научитесь решать простенькие задачки по арифметической прогрессии.

        Ну что, трогаемся в путь?)

        Наше знакомство с прогрессиями (и арифметической – в том числе) мы начнём… нет, не со строгого определения арифметической прогрессии! А начнём мы с такого ключевого понятия, как последовательность.

 

Числовые последовательности, знакомство.

        В житейском плане слово «последовательность» вопросов, как правило, ни у кого не вызывает. Это длинное слово всего лишь означает, что что-то следует за чем-то. Например, последовательность действий, последовательность событий, последовательность дней недели, времён года и так далее.

        Или когда кто-то следует за кем-то. Например, последовательность людей в очереди. Или последовательность коров на тропе к водопою.)

        Из чего состоит любая последовательность? Тут тоже всё логично. Если идёт речь о последовательности дней календаря, то из дней, если об очереди покупателей на кассе, то – из покупателей. И так далее.)

        Но… математика – наука строгая. По законам природы устроена. И работает со всеми объектами сразу. Поэтому ей должно быть без разницы, что (или кто) под этими объектами скрывается – дни, покупатели, спортсмены, коровы, свиньи… Для неё всё едино: последовательность – и всё тут.) Как можно одним словом описать любой объект, из которого состоит любая последовательность? Очень просто: член последовательности! И всё.) Кратко и точно!

        Под ёмким словом «член» скрываются все объекты всех последовательностей махом – и дни, и месяцы, и покупатели, и коровы, и гуси – всё что угодно! Вот из каких объектов конкретная последовательность состоит, те объекты и являются её членами.

        Например, если идёт речь о последовательности календарных месяцев, то январь – член этой последовательности. И июнь – член. И ноябрь – тоже член, да.)

        Математика, как правило, работает с числовыми последовательностями. Что это за зверь? Всё просто, как в сказке. Это последовательность, членами которой являются числа. Совершенно любые! Целые, дробные, отрицательные, иррациональные – какие угодно!

        Например, последовательность натуральных чётных чисел:

        2, 4, 6, 8, 10, 12, 14, 16, …

       

        Или последовательность цифр в десятичной записи числа «пи»:

        3, 1, 4, 1, 5, 9, 2, 6, …

       

        И так далее. Насочинять и понаписать можно всё что угодно, даже вообще безо всякой логики. Что-нибудь типа:

        -2; 0; -0,12; 33; 7; -1,2; …

        Как вы видите, в некоторых последовательностях имеется какая-то закономерность, а в некоторых – нет. Всё зависит от моей (или вашей) фантазии.)

        Последовательности (в том числе и числовые, да) бывают конечные и бесконечные. Вышеприведённые примеры – это примеры бесконечных числовых последовательностей. С неограниченным количеством членов.

        А вот последовательность, скажем, месяцев в году – конечна. Ибо количество членов в ней, как можно догадаться, равно 12. То есть, конечному числу.

        Или, например, последовательность натуральных двузначных чисел, делящихся на три:

        12, 15, 18, 21, …, 99.

        Эта последовательность – тоже конечна, да.) Ибо первый член этой последовательности – это число 12, а последний член – это число 99. А вот дальше идут уже трёхзначные числа…

        Приводя примеры самых разных последовательностей, я периодически употреблял слова: «первый член», «последний член», «количество членов»… Не задумывались, почему? Ответ прост: каждый член последовательности (любой!) стоит на своём месте! Всегда. Есть первый член, есть десятый, есть тридцать пятый – и так далее… Нумерация членов – строго по порядку! Без пропусков. Если же какие-то члены переставить местами (хотя бы два), то получится, вообще говоря, уже другая последовательность. Со своими правилами и порядками, да…

        Одним словом, любая числовая последовательность – это упорядоченный (или занумерованный) набор чисел. И всё.

        Понятие последовательности – более широкое, нежели пока малоизвестное нам понятие прогрессии (неважно, арифметической или геометрической). Ибо каждая прогрессия – это последовательность чисел, но не каждая последовательность чисел – это прогрессия. Как говорится, всякая селёдка – рыба, но не всякая рыба – селёдка.)

        Более подробно и широко свойства и поведение самых разных (и, чего скрывать, порой очень интересных и необычных) числовых последовательностей изучается уже в ВУЗе, в курсе матанализа. В школе же изучаются лишь две самые простые их разновидности. Это, как вы уже, наверное, догадались, арифметическая и геометрическая прогрессии.

        Арифметическая прогрессия попроще будет. Так что именно с неё и начнём.

 

Что такое арифметическая прогрессия? Понятие арифметической прогрессии.

        Начнём наше знакомство, как обычно, с самого элементарного и примитивного. Для начала я запишу незаконченную последовательность чисел:

        1, 2, 3, 4, 5, …

        Сможете назвать, какие числа пойдут дальше, вслед за пятёркой? Любой э-э-э-э… в общем, даже человек, далёкий от математики, догадается, что дальше пойдут числа 6, 7, 8 и так далее.)

        Что ж, ладно. Усложняю задачу. Даю незаконченную последовательность чисел:

        1, 4, 7, 10, 13, …

        Сможете уловить закономерность, продлить последовательность и назвать девятый её член?

        Если вы сообразили, что это число 25, то примите мои поздравления! Ибо это означает, что вы не только прочувствовали ключевые моменты арифметической прогрессии, но и с блеском употребили их в дело! Если же не сообразили и не прочувствовали, то… читаем дальше.

        А теперь переведём ключевые моменты из ощущений в математику.

 

        Ключевой момент №1

        Арифметическая прогрессия имеет дело с последовательностями чисел. Собственно, именно это больше всего и смущает поначалу. Ибо непривычно, да… Мы же с вами привыкли уравнения с неравенствами решать, графики строить… А тут – продлить последовательность. Найти член последовательности…

        Ничего страшного. Просто последовательности (и прогрессии тоже) – это первое знакомство с новым разделом математики. Раздел называется «Ряды» и работает именно с последовательностями, с рядами чисел и даже выражений. Так что привыкаем.)

 

        Ключевой момент №2

        В любой арифметической прогрессии каждый её член отличается от предыдущего на одну и ту же величину. Всегда!

        В первом примере эта величина – единичка. Какой член последовательности ни возьми, он больше предыдущего на единичку.

        Во втором примере эта величина – тройка: каждый член больше предыдущего на тройку.

        Собственно, именно этот момент и даёт нам возможность уловить закономерность и рассчитать все последующие числа.)

 

        Ключевой момент №3

        А вот этот момент не сразу бросается в глаза, да… Но он не менее важен. А именно: каждый член арифметической прогрессии стоит на своём месте. Как и в любой числовой последовательности, да. Есть первый член, есть пятый, есть сорок седьмой, и т.д. Если хотя бы два члена в последовательности переставить местами, то закономерность исчезнет. Вместе с ней, естественно, исчезнет и арифметическая прогрессия. Останется просто последовательность чисел.

        Вот и всё. Вот и вся суть арифметической прогрессии.

 

Базовые термины и обозначения.

        А вот теперь, вооружившись самыми начальными знаниями о последовательностях вообще и о ключевых моментах арифметической прогрессии в частности, можно и математическое определение арифметической прогрессии дать. Ибо, если я бы начал наш урок сразу с него, то арифметическая прогрессия для многих навсегда так и осталась бы монстром в тумане…

        Итак!

        Определение арифметической прогрессии.

        Арифметическая прогрессия – это числовая последовательность, каждый член которой, начиная со второго, отличается от предыдущего члена на одну и ту же величину.

        Вот и всё определение. После предыдущего параграфа, всё должно быть понятно и прозрачно, я надеюсь. Но на некоторых отдельных словах из определения я всё-таки заострю особое внимание.

        Во-первых, слово «последовательность».

        Запоминаем: арифметическая прогрессия – это именно числовая последовательность. А вовсе не ряд, как ошибочно любят её называть очень многие учителя и даже авторы учебников (наверное, для краткости). Что потом неизбежно приводит к путанице терминов и каше в голове уже у студентов, изучающих высшую математику.

        В чём же дело? А вот в чём. Да, на обывательском уровне понятия «последовательность» и «ряд» — почти синонимы. Типа «последовательность покупателей». Или «ряд солдат». Но! В математике словом «ряд» именуется совершенно другое понятие. Хотя и неразрывно связанное с последовательностью, которая, как раз, этот самый ряд и образует.

        Что такое ряд, в этом уроке не скажу! Маленькие ещё.) Сдадите ЕГЭ, поступите в ВУЗ – сами узнаете.) Но в изложении материала я буду строг. И не поленюсь, когда требуется, написать «последовательность чисел» вместо даже «ряд чисел» и уж, тем более, «числовой ряд». Длиннее, но зато более корректно. И никакой путаницы не будет. Привыкаем.)

        Во-вторых, возможно, вы также обратили внимание на слова «начиная со второго» и «отличается от предыдущего». Здесь всё проще. Каждый член арифметической прогрессии на какую-то величину отличается от предыдущего члена. Десятый член отличается от девятого, второй член отличается от первого. А что можно сказать про самый первый член? На какую величину он отличается от предыдущего? А ни на какую!) Ибо у первого члена просто-напросто нет предыдущего. Вот и весь смысл этих слов. Именно поэтому говорить об «отличии от предыдущего» имеет смысл только начиная со второго члена включительно.)

        В-третьих, есть ещё слова «на одну и ту же величину». Эта самая величина носит своё специальное название – разность арифметической прогрессии. К ней и переходим.)

 

        Разность арифметической прогрессии.

        Здесь всё просто.

        Разность арифметической прогрессии – это число (или величина), на которое каждый член прогрессии больше предыдущего.

        Ключевым словом, на которое следует обратить внимание в этом определении, является слово «больше». Математически этот факт означает, что каждый член арифметической прогрессии получается прибавлением разности прогрессии к предыдущему члену.

        Поясняю.

        Для расчёта, скажем, второго члена, надо разность прогрессии прибавить к первому члену. Для расчёта восьмого члена, надо разность прибавить к седьмому члену.

        И так далее, и тому подобное…

        Разность арифметической прогрессии может при этом быть какой угодно. Совершенно любой!

        Разность может быть положительной. Тогда каждый член прогрессии получается и вправду больше предыдущего.

        Например:

        1, 4, 7, 10, 13, …

        Здесь каждый член получается прибавлением положительного числа +3 к предыдущему члену. Такая прогрессия называется возрастающей.

        Также разность может быть и отрицательной. Тогда каждый член прогрессии получается меньше предыдущего. Такая прогрессия называется убывающей.

        Например:

        1, -2, -5, -8, -11, …

        Здесь каждый член получается тоже прибавлением к предыдущему члену, но уже отрицательного числа -3.

        И, наконец, разность прогрессии может быть даже… равной нулю! Да-да! А почему – нет?

        Например:

        2, 2, 2, 2, 2, …

        Всё то же самое. Каждый член прогрессии получается прибавлением к предыдущему члену числа 0.

        Такие прогрессии и не возрастают и не убывают. Мы с вами их рассматривать не будем, ибо никакого практического интереса они не представляют. Но для общего развития знать об их существовании полезно. Скажем, зададут вам вопрос на засыпку: «Может ли арифметическая прогрессия состоять из одинаковых членов?» А вы уже знаете: может! Запросто.)

        Кстати говоря, при работе с арифметической прогрессией бывает очень полезным сразу определить её тип – возрастающая она или убывающая. Это позволяет на раннем этапе сориентироваться в решении, засечь свои ошибки и исправить их, пока не поздно.)

        Разность арифметической прогрессии обозначается, чаще всего, буковкой d.

        Как найти это самое d ? Элементарно! Надо от любого числа прогрессии отнять предыдущее число. Отнять – значит, вычесть. Кстати, результат вычитания так и называется – «разность». Отсюда и название «разность прогрессии» для буковки d.)

        Определим, например, величину d для возрастающей арифметической прогрессии:

        3, 5, 7, 9, 11, 13, …

        Всё просто, как в сказке. Берём любое число последовательности. Какое хотим, такое и берём. Например, 9. И отнимаем предыдущее число. То есть, 7.

        Получаем:

        d = 9 – 7 = 2

        Вот и всё. Это правильный ответ. Для данной арифметической прогрессии разность равна двум.

        Найдём теперь разность d для убывающей арифметической прогрессии. Например, вот такой:

        1, -2, -5, -8, -11, …

        Всё то же самое. Вне зависимости от знаков самих членов, снова просто берём любое число последовательности (например, -11) и отнимаем предыдущее число (т.е. -8).

        Получим:

        d = -11 – (-8) = -11 + 8 = -3

        И все дела.) В этот раз разность прогрессии оказалась отрицательной. Что неудивительно, ибо наша прогрессия – убывающая.)

        Как вы, возможно, заметили, брать можно совершенно любое число в последовательности. Хоть где-нибудь в начале, хоть в конце, хоть в серединке. Нельзя брать только самое первое число. По той простой причине, что у самого первого числа нет предыдущего.

 

        Как обозначать арифметическую прогрессию?

        Любое число в арифметической прогрессии, как мы помним, называется её членом.

        Каждый член арифметической прогрессии, в свою очередь, обязательно имеет свой номер. Причём все номера идут строго по порядку, без пропусков: первый, второй, третий, четвёртый, пятый и так далее.

        Например, в прогрессии

        1, 4, 7, 10, 13, …

        единичка – это первый член, четвёрка – второй, десятка – четвёртый… И так далее. Идея ясна.)

        Прошу обратить внимание: сами числа в прогрессии – совершенно любые! Натуральные, целые, дробные, отрицательные, иррациональные – всякие.) А вот их нумерация – всегда строго по порядку! Это важно.

        Как же нам записать арифметическую прогрессию в общем виде? Никаких проблем! Каждый член последовательности записывается в виде буквы. Для арифметической прогрессии, обычно, используется буква «а». А вот номер члена всегда указывается индексом справа внизу. Сами члены прогрессии просто перечисляем через запятую или точку с запятой.

        Вот так:

        а1, а2, а3, а4, а5, а6, …

        Здесь а1 – первый член прогрессии, а4 – четвёртый член и т.д. А в конце – многоточие. Всё просто, ничего хитрого.)

        Коротко такую прогрессию записывают вот так: (an).

        Так обозначаются бесконечные прогрессии. Конечную же прогрессию можно записать просто перечислением всех её членов и точкой в конце.

        Например, вот так:

        а1, а2, а3, а4, а5, а6.

        Или вот так, если членов много:

        а1, а2, …, а29, а30.

        А вот в краткой записи для конечных прогрессий придётся дополнительно указывать количество членов. Например, вот так:

        (an), n=30.

        Вот, собственно, и все обозначения.

        На этой позитивной ноте считаю наше начальное знакомство с арифметической прогрессией полностью состоявшимся. А теперь, вооружившись глубокими познаниями, можно и задачки порешать. Задачки совсем простые, без фокусов. Чисто для понимания смысла арифметической прогрессии.

 

Простейшие задания по арифметической прогрессии.

       

        Начнём с такой несложной задачки:

        Выпишите первые пять членов арифметической прогрессии (an), если известно, что

        а2 = 3 и d = -1,5.

        Переводим задание с математического языка на русский. Нам дана бесконечная арифметическая прогрессия. Известен второй член этой прогрессии:

        а2 = 3

        Кроме того, нам известна разность прогрессии:

        d = -1,5

        А найти требуется первый, третий, четвёртый и пятый члены этой прогрессии.

        Вот и действуем. Для наглядности я сначала запишу последовательность по условию задачки. Прямо в общем виде, где второй член – тройка:

        а1, 3, а3, а4, а5, …

        А теперь приступаем к поискам. Начинаем, как всегда, с самого простого. Легко можно посчитать, например, третий член a3. Мы же с вами уже знаем (прямо по смыслу арифметической прогрессии), что третий член 3) больше второго 2) на величину d.

        Так прямо и пишем:

        a3 = a2 + d

        Подставляем в это выражение тройку вместо a2  и -1,5 вместо d и считаем. Про минус, естественно, тоже не забываем, да.)

        a3 = 3 + (-1,5) = 3 – 1,5 = 1,5

        Вот так. Третий член оказался меньше второго. Ничего удивительного. Наша разность d – отрицательна. А, если число больше предыдущего на отрицательную величину, то само число, стало быть, будет меньше предыдущего. Убывает наша прогрессия…

        Считаем теперь следующий, четвёртый член нашей прогрессии:

        a4 = a3 + d

        a4 = 1,5 + (-1,5) = 1,5 – 1,5 = 0

        Ну и дальше, по проторенной дорожке:

        a5 = a4 + d

        a5 = 0 + (-1,5) = 0 – 1,5 = -1,5

        Отлично, члены с третьего по пятый найдены. Получилась вот такая последовательность:

        а1; 3; 1,5; 0; -1,5; …

        Осталось лишь найти первый член а1 по известному второму. А это шаг уже в другую сторону – влево.) Это значит, что в данном случае разность d нам надо не прибавить к a2, а отнять.

        Получаем:

        a1 = a2 – d

        a1 = 3 – (-1,5) = 3 + 1,5 = 4,5

        Вот и всё.) Ответ к задачке будет такой:

        4,5; 3; 1,5; 0; -1,5; …

        Что интересного можно заметить в решении данного задания? А заметить можно то, что каждый член прогрессии мы искали по предыдущему (соседнему) члену. Такой способ подсчёта членов прогрессии называется вполне научно – рекуррентным способом. И в дальнейшей работе с прогрессиями (и не только) мы к этому загадочному и страшному слову ещё не раз вернёмся. Так что прошу не пугаться.)

        Что ещё важного можно вынести из решения этой, казалось бы, примитивной задачки? А вот что:

        Если нам известен хотя бы один член и разность арифметической прогрессии, то мы всегда можем найти любой другой член этой прогрессии. Какой хотим.

        Ясненько? Это простое умозаключение позволит вам успешно решать большинство задач школьного курса по данной теме! Все задачи на арифметическую прогрессию вертятся вокруг всего трёх параметров: член прогрессии, разность прогрессии, номер члена прогрессии. И всё!

        Разумеется, вся предыдущая математика не отменятся, да.) В солидных заданиях к прогрессии может прицепляться всё что угодно – и уравнения, и неравенства, и прочие жуткие вещи. Но по самой прогрессии всё всегда крутится вокруг этих трёх простых параметров. Так что имеем в виду.)

 

        Следующее задание уже поинтереснее будет, да.)

        Определите, будет ли число 6 членом арифметической прогрессии (an), если

        a1 = 2,5; d = 1,3.

        Гм… И как тут определишь, будет или нет? Кто ж его знает-то… Что делать?

        Что-что… Записать прогрессию в виде последовательности чисел и посмотреть, будет ли там шестёрка или нет! Для расчёта нам всё необходимое уже дано: дан первый член, дана разность. Вот и считаем. Прямо по смыслу арифметической прогрессии:

        a2 = a1 + d = 2,5 + 1,3 = 3,8

        a3 = a2 + d = 3,8 + 1,3 = 5,1

        a4 = a3 + d = 5,1 + 1,3 = 6,4

        Ну что, стоит считать дальше или нет, как вы думаете? Естественно, нет.) Запишем результаты наших расчётов в виде последовательности:

        1,3; 3,8; 5,1; 6,4; …

        Теперь уже отчётливо видно, что шестёрку мы просто проскочили мимо между членами 5,1 и 6,4. Не вошла шестёрка в нашу последовательность и, стало быть, число 6 не является членом заданной прогрессии.

        Ответ: нет.

 

        А вот теперь задачка на основе реального варианта ОГЭ:

        Выписано несколько последовательных членов арифметической прогрессии:

         …; 14; х; 8; 5; …

         Найдите член прогрессии, обозначенный буквой х.

        Что, внушает? Ни первого члена нет, ни разности d, дана просто последовательность чисел без начала и конца. Это и пугает поначалу. А ведь задачка, на самом деле, проще некуда! Чисто на понимание смысла арифметической прогрессии. Кто понимает этот смысл, тот справится с задачкой буквально в уме.

        Итак, смотрим внимательно на нашу последовательность и соображаем, что именно можно узнать из неё? Какие параметры арифметической прогрессии из трёх главных в ней спрятаны?

        Номера членов? Не-а! Нет здесь ни единого номера. Последовательность у нас простирается как вправо, так и влево…

        Да, номеров членов у нас никаких нет, но зато есть четыре числа и (важно!) слово «последовательных» в условии задачи. А лишних слов в условии задачи никогда не бывает… Это слово означает, что наши числа следуют строго по порядку, без пропусков! Теперь смотрим дальше. Есть ли в этой последовательности два соседних известных числа? Да, безусловно! Это 8 и 5. Раз так, то теперь мы без проблем можем найти разность арифметической прогрессии! Берём пятёрку и отнимаем предыдущее число, т.е. восьмёрку.

        Получаем:

        d = 5 – 8 = -3

        Всё. Дальше осталась сущая элементарщина. Какое число будет предыдущим для икса? Четырнадцать! Значит, икс легко ищется простым сложением: к 14 прибавить разность арифметической прогрессии.

        Получим:

        x = 14 + (-3) = 11

        Вот и вся задачка. Ответ: x = 11.

 

        Ещё одна задачка. Уже посолиднее, но тоже довольно простая.

        Известно, что в арифметической прогрессии a3 = 2,1 и a6 = 6,3. Найдите a4.

        А теперь размышляем. Нас интересует четвёртый член a4. Для его расчёта надо к третьему члену a3 прибавить разность прогрессии d:

        a4 = a3 + d

        Третий член a3 нам известен. Это 2,1. Отлично! Но… где же взять разность прогрессии? Нет её и в помине! А для её определения нам позарез нужны какие-нибудь два известных соседних члена! Где они? Нет их! Но зато нам зачем-то дан шестой член прогрессии a6. И куда его можно пристроить…

        Тупик? Вовсе нет! Сейчас мы с вами поступим по-хитрому. Мы пока ничего считать не будем. Мы будем… рисовать! Да-да! Графическое изображение задачи очень часто высвечивает массу дополнительной информации! И помогает увидеть то, что на словах разглядеть, порой, весьма трудно.

        В нашем случае, рисунок поможет нам не только увидеть разность прогрессии d, но и догадаться, как именно следует её искать!

        Рисуем задачку!

        Берём и схематично изображаем нашу последовательность на числовой оси. Вот так:

        

        Ну как? Увидели d? Нет? Ну ладно…

        А вот так?

        Теперь по картинке чётко видно, что между третьим и шестым членами находится по три равных промежутка. Три раза по d. Или 3d. А какая величина приходится на это самое 3d ? Не проблема! Определим разницу между a6 и a3, да и узнаем:

        a6a3 = 6,3 – 2,1 = 4,2

        3d = 4,2

        d = 1,4

        Отлично. Полдела сделано. Остались сущие пустяки. Прибавляем найденную разность прогрессии к третьему члену и получаем искомый четвёртый член:

        a4 = a3 + d = 2,1 + 1,4 = 3,5

        Вот и всё.

        Ответ: 3,5

 

        Запоминаем: рисунок к задаче очень часто открывает массу дополнительной полезной информации и подсказывает дальнейший ход решения. Не стесняемся делать его, когда есть возможность!

 

        А вот следующие задачки решаем самостоятельно:

        1. Найдите первый отрицательный член арифметической прогрессии, если

            a1 = 7 и d = -2,4.

 

        2. Выписано несколько последовательных членов арифметической прогрессии:

         …; 3,4; х; 5,2; …

         Найдите член прогрессии, обозначенный буквой х.

 

        3. Известно, что число 4 является членом арифметической прогрессии, в которой

            a1 = 1 и d = 0,6. Найдите номер этого члена.

 

        4. Известно, что в арифметической прогрессии a2 = 3 и a7 = 23. Найдите a5.

 

        5. Автобус начал движение от остановки, равномерно увеличивая скорость на 2 м/с. Какую скорость разовьёт автобус через 5 секунд? Ответ дайте в км/ч.

 

        6. Известно, что в арифметической прогрессии a2 = -3 и a6 = -15. Найдите a1.

 

        Ответы (в беспорядке, естественно): 15; -0,2; 0; 6; 36; 4,3.

 

        Ну как? Всё получилось? Отлично! Значит, урок не прошёл даром, и можно осваивать арифметическую прогрессию на более серьёзном уровне. В следующих уроках.)

        Что-то не получается? Рисуйте картинку, не ленитесь! Она реально спасает в некоторых трудных ситуациях! Если вы видите прогрессию глазами, то решать задачу становится намного легче.

        Кстати, в задачке №5 про автобус есть два подводных камня. Первый камень – по правильному составлению арифметической прогрессии. Надо подумать, какую скорость автобуса следует брать за первый член прогрессии. Если вы думаете, что 0 м/с, то задачку не решить, да… А второй подводный камень – по переводу размерностей из одной в другую. Внимательнее читать задание надо, да…

        Последняя задача №6 очень похожа на задачу №4. Только числа отрицательные. Ну и что? Рисуем (правильно) картинку и определяем по ней (правильно) величину d. Главное – внимание и элементарное понимание смысла арифметической прогрессии. И всё получится!)

 

        В этом уроке мы с вами познакомились с арифметической прогрессией и её ключевыми параметрами на самом начальном уровне и порешали простенькие задачки. Как видите, ничего сложного. Прибавляй d к числам, считай себе, пиши последовательность или рисуй картинку – всё и решится.

        Всё просто, но… Пришло время открыть вам горькую правду. Такое элементарное решение «на пальцах» прокатывает только для очень коротких кусочков прогрессии. Таких, где число последовательно рассчитываемых членов не очень большое. Скажем, три, пять или, пускай, даже десять.

        А вот если прогрессия подлиннее, то вычисления значительно усложняются. А рисование картинки – тоже превращается в занятие, мягко говоря, на большого любителя.)

        Например, такая задачка:

        В арифметической прогрессии известно, что a1 = 4 и d = 0,4. Найдите a141.

        И что же, будем много-много раз прибавлять по 0,4? Можно, конечно. Если не жалко часок-другой.)

        В таких ситуациях спасает простая формула! По которой такие задания решаются буквально за минуту! Формула эта будет в следующем уроке. И эта злая задачка там будет решена. Тоже за минуту.)

        До встречи!

abudnikov.ru

Арифметическая прогрессия — это… Что такое Арифметическая прогрессия?

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

,

то есть последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага или разности прогрессии):

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

Арифметическая прогрессия является монотонной последовательностью. При она является возрастающей, а при  — убывающей. Если , то последовательность будет стационарной. Эти утверждения следуют из соотношения для членов арифметической прогрессии.

Свойства

Общий член арифметической прогрессии

Член арифметической прогрессии с номером может быть найден по формуле

, где  — первый член прогрессии,  — ее разность.

Доказательство

Характеристическое свойство арифметической прогрессии

Последовательность есть арифметическая прогрессия для ее элементов выполняется условие .

Доказательство

Необходимость:

Поскольку — арифметическая прогрессия, то для выполняются соотношения:

.

Сложив эти равенства и разделив обе части на 2, получим .

Достаточность:

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется . Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду . Поскольку соотношения верны при всех , с помощью математической индукции покажем, что .

База индукции  :

— утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :

Но по предположению индукции следует, что . Получаем, что .

Итак, утверждение верно и при . Это значит, что .

Обозначим эти разности через . Итак, , а отсюда имеем для . Поскольку для членов последовательности выполняется соотношение , то это есть арифметическая прогрессия.

Сумма первых членов арифметической прогрессии

Сумма первых членов арифметической прогрессии может быть найдена по формулам

, где  — первый член прогрессии,  — член с номером ,  — количество суммируемых членов.
, где  — первый член прогрессии,  — разность прогрессии,  — количество суммируемых членов.

Доказательство

Сходимость арифметической прогрессии

Арифметическая прогрессия расходится при и сходится при . Причем

Доказательство

Записав выражение для общего члена и исследуя предел , получаем искомый результат.

Связь между арифметической и геометрической прогрессиями

Пусть  — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .

Доказательство

Проверим характеристическое свойство для образованной геометрической прогрессии:

Воспользуемся выражением для общего члена арифметической прогрессии:

Итак, поскольку характеристическое свойство выполняется, то — геометрическая прогрессия. Ее знаменатель можно найти, например, из соотношения .

Арифметические прогрессии высших порядков

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

0, 1, 4, 9, 16, 25, 36…,

разности которых образуют простую арифметическую прогрессию с разностью 2:

1, 3, 5, 7, 9, 11…

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Примеры

.

См. также

Ссылки

muller.academic.ru