Сложение и вычитание и умножение векторов – 1. Сложение и вычитание векторов. Умножение вектора на число

Сложение и вычитание векторов

Определение

Сложение векторов иосуществляется поправилу треугольника.

Суммой двух векторов иназывают такой третий вектор, начало которого совпадает с началом, а конец — с концомпри условии, что конец вектораи начало векторасовпадают (рис. 1).

Для сложения векторов применяется также правило параллелограмма.

Определение

Правило параллелограмма — если два неколлинеарных вектора ипривести к общему началу, то векторсовпадает с диагональю параллелограмма, построенного на векторахи(рис. 2). Причем начало векторасовпадает с началом заданных векторов.

Определение

Вектор называетсяпротивоположным вектором к вектору , если онколлинеарен вектору , равен ему по длине, но направлен в противоположную сторону вектору.

Операция сложения векторов обладает следующими свойствами:

  1. — коммутативность

  2. — ассоциативность

Определение

Разностью векторов иназывается вектортакой, что выполняется условие:(рис. 3).

Умножение вектора на число

Определение

Произведением вектора на число называется вектор, удовлетворяющий условиям:

  1. , если ,, если.

Свойства умножения вектора на число:

Здесь и- произвольные векторы,,- произвольные числа.

Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность равную 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство с введённым на нём положительно определённымскалярным произведением, либо метрическое пространство, соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.

-мерное евклидово пространство обозначается также часто используется обозначение(если из контекста ясно, что пространство обладает евклидовой структурой).

Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения. Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел, на векторах которого задана вещественнозначная функция обладающая следующими тремя свойствами:

Аффинное пространство, соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством[1].

Пример евклидова пространства — координатное пространство состоящее из всевозможныхn-ок вещественных чисел скалярное произведение в котором определяется формулой

  1. Базис и координаты вектора

Ба́зис (др.-греч. βασις, основа) — множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества — базисных векторов.

В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:

  • Базис Га́меля, в определении которого рассматриваются только конечные линейные комбинации. Базис Гамеля применяется в основном в абстрактной алгебре (в частности в линейной алгебре).

  • Базис Ша́удера, в определении которого рассматриваются и бесконечные линейные комбинации, а именно — разложение в ряды. Это определение применяется в основном в функциональном анализе, в частности для гильбертова пространства,

В конечномерных пространствах обе разновидности базиса совпадают.

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.

где — координаты вектора.

  1. Скалярное произведение.

операция над двумя векторами, результатом которой является число [когда рассматриваются векторы, числа часто называют скалярами], не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Данной операции соответствует умножение длины вектора x на проекцию вектора y на вектор x. Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

  1. Векторное произведение

это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном евклидовом пространстве. Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным) и, в отличие от скалярного произведения векторов, является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов — модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

где

  1. Смешанное произведение

Сме́шанное произведе́ние векторовскалярное произведение вектора навекторное произведение векторов и:

.

Иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами .смешанное произведение трех векторов можно найти через определитель

  1. Плоскость в пространстве

Плоскость — алгебраическая поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением первой степени.

Некоторые характеристические свойства плоскости

  • Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки;

  • Две плоскости являются либо параллельными, либо пересекаются по прямой.

  • Прямая либо параллельна плоскости, либо пересекает ее в одной точке, либо находится на плоскости.

  • Две прямые, перпендикулярные одной и той же плоскости, параллельны друг другу.

  • Две плоскости, перпендикулярные одной и той же прямой, параллельны друг другу.

Аналогично отрезку и интервалу, плоскость, не включающую крайние точки, можно назвать интервальной плоскостью, или открытой плоскостью.

где и— постоянные, причёмиодновременно не равны нулю; ввекторной форме:

где — радиус-вектор точки, векторперпендикулярен к плоскости (нормальный вектор).Направляющие косинусы вектора :

где ,,— отрезки, отсекаемые плоскостью на осяхи.

в векторной форме:

  • Уравнение плоскости, проходящей через три заданные точки ,не лежащие на одной прямой:

  1. Нормированное уравнение плоскости

нормальное уравнение плоскости вида задает в прямоугольной системе координатOxyz плоскость, удаленную от начала координат на расстояние p в положительном направлении единичного нормального вектора плоскости .

  1. Прямая в пространстве

Прямая в пространстве может быть задана как линия пересечения двух плоскостей. Так как точка прямой прнадлежит каждой из плоскостей, то ее координаты обязаны удовлетворять уравнениям обеих плоскостей, то есть удовлетворять системе из двух уравнений.

итак, если уравнения двух непараллельных плоскостей — и, то прямая, являющаяся их линией пересечения, задается системой уравнений

(11.11)

И наоборот, точки, удовлетворяющие такой системе уравнений, образуют прямую, являющуюся линией пересечения плоскостей, чьи уравнения образуют эту систему.

Уравнения (11.11) называют общими уравнениями прямой в пространстве.

  1. Уравнение окружности

Уравнение окружности радиуса с центром вначале координат:

  1. Эллипс. Каноническое уравнение. Эксцентриситет, фокальный радиус.

Э́ллипсгеометрическое место точек M Евклидовой плоскости, для которых сумма расстояний до двух данных точек и(называемыхфокусами) постоянна и больше расстояния между фокусами, то есть

причем

Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой.

Эллипс также можно описать как пересечение плоскости и кругового цилиндра или как ортогональную проекцию окружности на плоскость.

studfiles.net

2. Линейные операции над векторами

К линейным операциям над векторами относятся следующие операции:

  • сложение векторов;

  • вычитание векторов;

  • умножение вектора на скаляр (действительное число).

2.1 Сложение векторов

Определение 2.1. Суммой двух векторов называется третий векторимеющий своим началом начало вектора, а концом – конец векторапри условии, что начало векторасовпадает с концом вектора(векторприведен к концу вектора)(рис. 2.1).

Это определение сложения двух векторов носит название «правило треугольника.

Это правило сложения векторов можно распространить на любое их количество.

Правило. Чтобы сложить любое количество векторов, следует расположить их так, чтобы конец каждого предыдущего вектора был началом следующего и построить вектор началом в начале первого и концом в конце последнего вектора(рис. 2.2).

Наряду с правилом треугольника сложения векторов существует «правило параллелограмма»

Определение 2.1*. Суммой векторов иявляется вектор– вектор-диагональ параллелограмма, построенного на векторахи, причем векторыиприведены к одному началу(рис. 2.3).

На рис 2.3 этой диагональю является диагональ .

По правилу параллелограмма определяется равнодействующая двух сил. Для нахождения равнодействующей сили,, приводим эти силы к точкеи строим на них параллелограмм. Вектор-диагональпараллелограмма и является равнодействующих этих сил (рис. 2.4).

Свойства сложения векторов

коммутативный (переместительный) закон.

Рис. 2.3 иллюстрирует справедливость свойства. В самом деле:

ассоциативный (сочетательный) закон.

для любого вектора .

Для любого вектора : .

2.2 Вычитание векторов

Определение 2.2. Разностью двух векторов иназывается третий вектор, такой, что.

Покажем, как реализуется на практике сформулированное определение понятия разности.

Задача 2.1. Даны два вектора:

Найти: разность векторов и.

Решение.Приведем варианта два решения.

10. Из определения следует: чтобы построить разность двух векторовэти векторы надо привести к одному началу, а затем построить вектор с началом в конце вектораи концом в конце вектора(рис. 2.5). Суммой векторовиявляется вектор .

Обратимся к рис. 2.3. В параллелограмме OACB диагональOC является суммой векторови, а диагональBA – разностью этих векторов.

20. Преобразуем равенство . Следовательно, векторявляется суммой вектораи вектора, противоположного вектору. Отсюда следует построение искомой разности векторов (рис. 2.6).

2.3. Умножение вектора на скаляр

Определение 2.3. Произведением вектора на скалярназывается вектор , удовлетворяющий двум условиям:

Свойства умножения вектора на скаляр

.;

.;

. ассоциативный (сочетательный) закон по отношению к скалярным множителям;

. – дистрибутивный (распределительный) закон по отношению к векторному множителю;

. – дистрибутивный (распределительный) закон по отношению к числовому множителю.

Замечание. Свойства сложения векторов и умножения вектора на число свидетельствуют о следующем: векторные одночлены и многочлены можно преобразовывать относительно этих операций по правилам преобразования алгебраических одночленов и многочленов.

В заключение рассмотрим пример использования изученных свойств на практике.

Задача 2.2.Даны два вектора и:

Найти: вектор .

Решение.Преобразуем выражение вектора, используя свойства сложения векторов и умножения вектора на скаляр:

Полученную сумму построим по правилу треугольника (рис. 2.8).

studfiles.net

Операции с векторами, сложение векторов, умножение вектора на действительное число.

Рассмотрим вектор v с начальной точкой в начале координат в любой координатной системе x-y и с конечной точкой в (a,b). Мы говорим, что вектор находится в стандартном положении и ссылаемся на него как на радиус-вектор. Обратите внимание, что пара точек определяет этот вектор. Таким образом, мы можем использовать это для обозначения вектора. Чтобы подчеркнуть, что мы имеем в виду вектор, и, чтобы избежать путаницы, как правило, пишут:
v = .


Координата a есть скаляром горизонтальной компоненты вектора, и координата b есть скаляром вертикальной компоненты вектора. Под скаляром мы подразумеваем численное количество, а не векторную величину. Таким образом, это рассматривается как компонентная форма v. Обратите внимание, что a и b НЕ вектора и их не надо путать с определением компонента вектора.

Теперь рассмотрим с A = (x1, y1) и C = (x2, y2). Давайте рассмотрим, как найти радиус вектор, эквивалентный . Как Вы видите на рисунке внизу, начальная точка A перемещена в начало координат (0, 0). Координаты P находятся вычитанием координат A из координат C. Таким образом, P = (x2 — x1, y2 — y1) и радиус вектор есть .

Можно показать, что и имеют одну и ту же величину и направление, и поэтому эквивалентны. Таким образом, = = 2 — x1, y2 — y1 >.

Компонентная форма с A = (x1, y1) и C = (x2, y2) есть
= 2 — x1, y2 — y1 >.

Пример 1 Найдите компонентную форму если C = (- 4, — 3) и F = (1, 5).

Решение Мы имеем
= = .

Обратите внимание, что вектор есть равным радиус-вектору , как показано на рисунке вверху.

Теперь, когда мы знаем, как записать вектор в компонентной форме, давайте изложим некоторые определения.
Длину вектора v легко определить, когда известны компоненты вектора. Для v = 1, v2 >, мы имеем
|v|2 = v21 + v22          Используя теорему Пифагора
|v| = √v21 + v22.

Длина, или величина ветктора v = 1, v2 > находится как |v| = √v21 + v22.

Два вектора равны или эквивалентны, если они имеют одну и ту же величину и одно и то же направление.

Пусть u = 1, u2 > и v = 1, v2 >. Tогда
1, u2 > = 1, v2 >          только если u1 = v1 and u2 = v2.

Операции с векторами

Чтобы умножить вектор V на положительное число, мы умножаем его длину на это число. Его направление остается прежним. Когда вектор V умножается на 2, например, его длина увеличивается в два раза, но его направление не изменяется. Когда вектор умножается на 1,6, его длина увеличивается на 60%, а направление остается прежним. Чтобы умножить вектор V на отрицательное действительное число, умножаем его длину на это число и изменяем направление на противоположное. Например, Когда вектор умножается на (-2), его длина увеличивается в два раза и его направление изменяется на противоположное. Так как действительные числа работают как скалярные множители в умножении векторов, мы называем их скаляры и произведение kv называется скалярные кратные v.

Для действительного числа k и вектора v = 1, v2 >, скалярное произведение k и v есть
kv = k.1, v2 > = 1, kv2 >.
Вектор kv есть скалярным кратным вектора v.

Пример 2 Пусть u = и w = . Найдите — 7w, 3u и — 1w.

Решение
— 7w = — 7. = ,
3u = 3. = ,
— 1w = — 1. = .

Теперь мы можем сложить два вектора, используя компоненты. Чтобы сложить два вектора в компонентной форме, мы складываем соответствующие компоненты. Пусть u = 1, u2 > и v = 1, v2 >. Тогда
u + v = 1 + v1, u2 + v2 >

Например, если v = и w = , тогда
v + w = =

Если u = 1, u2 > и v = 1, v2 >, тогда
u + v = 1 + v1, u2 + v2 >.

Перед тем, как мы определим вычитание векторов нам нужно дать определение — v. Противоположный вектору v = 1, v2 >, изображенному внизу, есть
— v = (- 1).v = (- 1)1, v2 > = 1, — v2 >

Вычитание векторов, такое как u — v вовлекает вычитание соответствующих компонент. Мы покажем это представлением u — v как u + (- v). Если u = 1, u2 > и v = 1, v2 >, тогда
u — v = u + (- v) = 1, u2 > + 1, — v2 > = 1 + (- v1), u2 + (- v2) > = 1 — v1, u2 — v2 >

Мы можем проиллюстрировать вычитание векторов с помощью параллелограмма , как мы это делали для сложения векторов.

www.math10.com

Сложение и вычитание векторов. Умножение вектора на число

Отметим, что сложение векторов производится аналогично планиметрии, только все действия выполняются в пространстве.

Итак, пусть заданы два произвольных вектора в пространстве (рис. 1):

Рис. 1. Произвольные векторы в пространстве

Определим, что же называется суммой двух этих векторов.

Точно так же, как в планиметрии, из любой удобной точки, назовем ее точкой А, можно единственным образом отложить вектор, равный вектору . Напомним, что заданные векторы, как и любые другие, свободны, важно лишь направление и длина, сам вектор можно параллельно переносить в любое место как на плоскости, так и в пространстве. Так, мы получили вектор  – в результате действия вектора  точка А переместилась в точку В. Теперь из точки В откладываем единственно возможным образом вектор , получаем вектор  – так, в результате действия вектора  точка В переместилась в точку С. В результате точка А переместилась в точку С, получен вектор , который и называется суммой векторов  и  (рис. 2).

Рис. 2. Сумма двух векторов в пространстве

Так, получено правило треугольника для сложения векторов в пространстве.

Правило треугольника

Из любой точки пространства (точка А) откладываем первый вектор, из конца первого вектора (точка В) откладываем второй вектор и получаем точку С. Вектор, соединяющий начало первого вектора (точка А) и конец второго (точка С), и будет результирующим.

Отметим, что результат сложения векторов не зависит от выбора начальной точки, существует соответствующая теорема, которая это доказывает на основании того, что из точки можно отложить вектор, равный заданному, единственным образом.

Определение

Разностью двух векторов называется такой третий вектор, который, будучи сложенным со вторым вектором, даст первый вектор.

Введем разность векторов  и , для этого сложим вектор  с противоположным вектором :

Итак, из произвольной точки А откладываем вектор , получаем точку В. Чтобы получить вектор  мы строим вектор, равный вектору  по длине, но противонаправленный. Полученный вектор откладываем из точки В – получаем точку D. Вектор  и будет искомым вектором разности.

Проиллюстрируем (рис. 3):

Рис. 3. Вычитание двух векторов в пространстве

Построим на заданных векторах  и  параллелограмм (рис. 4):

Рис. 4. Параллелограмм на двух заданных векторах

Т. к. вектор ; аналогично .

По правилу треугольника:

Так, одна из диагоналей параллелограмма, построенного на двух векторах, соответствует сумме этих векторов.

Рассмотрим разность векторов. По правилу треугольника:

.

Так, вторая диагональ параллелограмма, построенного на двух векторах, соответствует разности этих векторов.

Для сложения и вычитания нескольких векторов применяется правило многоугольника. Пусть заданы векторы  и :

Рис. 5. Три вектора в пространстве

Необходимо построить вектор .

Видим, что перед некоторыми векторами стоят численные множители. Напомним, что при умножении вектора на число получаем сонаправленный вектор, длина которого – это длина исходного вектора, умноженная на заданное число. Получим векторы  и . Вектор  сонаправлен с вектором , длина его в три раза больше. Вектор  противонаправлен вектору , длина его в два раза больше. Проиллюстрируем (рис. 6):

Рис. 6. Умножение вектора на число

Приступаем к сложению. Из произвольной точки А откладываем полученный вектор  – получаем точку В. Из точки В откладываем вектор  – получаем точку С. Из точки С откладываем вектор  – получаем точку D. Согласно правилу многоугольника, вектор  соответствует искомому вектору :

Рис. 7. Сложение векторов по правилу многоугольника

Задача 1:

Задан тетраэдр ABCD (рисунок 8). Доказать:

 

Рис. 8. Тетраэдр, задача 1

Решение:

По правилу треугольника:

Аналогично:

, ч. т. д.

По правилу треугольника:

Аналогично: , ч. т. д.

Задача 2

Упростить выражение:

Рассмотрим отдельно сумму двух векторов: , ее значение очевидно:

Проиллюстрируем (рис. 9):

Рис. 9. Сумма двух векторов

Теперь сократим противоположные векторы:

Можно было сразу заметить:

.

В результате упрощения получено:

.

Итак, мы ввели операции сложения и вычитания векторов, умножения вектора на число в стереометрии, отметили, что операции аналогичны таким же для планиметрии. Кроме того, решили несколько задач, базирующихся на описанных операциях.

 

Список литературы

  1. Геометрия. 10–11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М.: Мнемозина, 2008. – 288 с.: ил.
  2. Геометрия. 10–11 класс: учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
  3. Геометрия. 10 класс: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е издание, стереотип. – М.: Дрофа, 2008. – 233 с.: ил.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Ru.onlinemschool.com (Иточник).
  2. Emomi.com (Источник).
  3. Cleverstudents.ru (Источник).

 

Домашнее задание

Задача 1: задан параллелепипед (рисунок 10). Доказать:

1.

2.

3.

Рис. 10. Параллелепипед

Задача 2: упростить выражение:

Задача 3: построить вектор , если векторы  и  заданы на рисунке 11:

Рис. 11. Векторы, задача 3

interneturok.ru

12.Линейные операции над векторами. Сложение, вычитание и умножение вектора на число.

Сложение векторов

В алгебраическом представлении при сложении векторов с = a + b проекция результирующего вектора на оси координат является суммой соответствующих проекций складываемых векторов с учётом их знака:

сx = ax + bx ; сy = ay + by ; сz = az + bz .

Если точка привязки не важна, а важна лишь величина (длина и направление) результирующего вектора, то сложение векторов можно считать коммутативной операцией (от перемены мест слагаемых сумма не меняется). В противном случае точка привязки результирующего вектора определяется исходя из физического смысла производимой операции (как правило, в физике точки привязки всех складываемых векторов и суммарного вектора совпадают, — то есть и все слагаемые, и их сумма применимы к одной и той же точке пространства или материальной точке).

Вычитание векторов

Вычитание векторов с = a – b можно представить как 2.narod.ru/info/vectors.htm»сложение уменьшаемого вектора с вектором, противоположным вычитаемому по направлению и равным ему по величине. Таким образом, в агебраическом представлении проекции вычитаемого вектора на оси координат меняют свой знак:

сx = ax – bx ; сy = ay – by ; сz = az – bz .

Умножение вектора на число

При умножении вектора на число b = k · a в алгебраическом виде достаточно все его проекции умножить на это число:

bx = k · ax ; by = k · ay ; bz = k · az .

В строго геометрическом смысле при умножении на число начало вектора остаётся на месте, а «удлиняется» его конец. Однако на физических иллюстрациях часто остаётся на месте точка конца вектора, скажем точка приложения силы, хотя в общем случае этот вопрос всегда определяется физическим смыслом решаемой задачи.

Операция умножения на число является коммутативной  a · k = k · a  (от перемены мест сомножителей результат не меняется). При положительном множителе результирующий вектор сонаправлен с исходным, при отрицательном направление меняется на строго противоположное. Поэтому результат умножения вектора на число всегда 2.narod.ru/info/vectors.htm»коллинеарен с исходным вектором, за исключением случая, когда множитель или исходный вектор являются нулевыми — тогда результатом будет 2.narod.ru/info/vectors.htm»нулевой вектор, говорить о направлении которого некорректно.

Операция умножения на число является дистрибутивной  k · (a + b) = k · a + k · b  (произведение суммы векторов на число равно сумме произведений слагаемых на это же число).

Скалярное произведение векторов

Результатом скалярного перемножения векторов является число, равное произведению их модулей, умноженному на косинус угла между ними.

Вычисление скалярного произведения

В алгебраической форме скалярное произведение  d = a · b  вычисляется как

d = ax · bx + ay · by + az · bz .

Свойства скалярного произведения

Коммутативность:  a · b = b · a .

Дистрибутивность:  a · (b + c) = a · b + a · c .

Сочетательность (линейность) относительно скалярного множителя:  k · (a · b) = (k · a) · b = a · (k · b) .

Скалярный квадрат вектора равен квадрату его 2.narod.ru/info/vectors.htm»модуляa · a = |a|2  (норма вектора).

Векторное произведение

.Вычисление векторного произведения

В алгебраической форме векторное произведение  c = [a × b]  в правой системе координат вычисляется как

сx = ay · bz – az · by ; сy = az · bx – ax · bz ; сz = ax · by – ay · bx .

В левой системе координат знаки слагаемых меняются на противоположные.

Свойства векторного произведения

Антикоммутативность:  [a × b] = –[b × a] .

Дистрибутивность:  [a × (b + c)] = [a × b] + [a × c] .

Сочетательность относительно скалярного множителя:  k · [a × b] = [(k · a) × b] = [a × (k · b)] .

Смешанное произведение:  a · [b × c] = [a × b] · c .

Векторный квадрат вектора всегда является 2.narod.ru/info/vectors.htm»нулевым вектором[a × a] = 0 . Поэтому, когда говорят о «квадрате вектора» без уточнения типа перемножения, имеют в виду скалярный квадрат (квадрат модуля вектора).

studfiles.net

Понятие вектора. Действия с векторами, их свойства — сложение и вычитание векторов, умножение на число, коллинеарность. Скалярное умножение (произведение) векторов. Проекции, разложение векторов, координаты, действия в координатах, взаимное расположение





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Математика для самых маленьких. Шпаргалки. Детский сад, Школа.  / / Понятие вектора. Действия с векторами, их свойства — сложение и вычитание векторов, умножение на число, коллинеарность. Скалярное умножение (произведение) векторов. Проекции, разложение векторов, координаты, действия в координатах, взаимное расположение

Понятие вектора. Коллинеарные векторы. Действия с векторами и их свойства — сложение и
вычитание векторов, умножение вектора на число, критерий коллинеарности. Скалярное умножение
(произведение) векторов. Проекция вектора на вектор. Разложение векторов по неколлинеарным
векторам. Координаты вектора на плоскости. Действия с векторами в координатах на плоскости.
Взаимное расположение векторов. Разложение вектора по координатным векторам.

dpva.ru

Сложение и вычитание векторов [wiki.eduVdom.com]

Пусть $\overrightarrow{a}$ и $\overrightarrow{b}$ — два вектора (рис.1, а).


Сложение двух векторов

Рис.1

Возьмем произвольную точку О и построим вектор $\overrightarrow{ОА} = \overrightarrow{a}$ . Затем от точки А отложим вектор $\overrightarrow{AB} = \overrightarrow{b}$. Вектор $\overrightarrow{OB}$, соединяющий начало первого слагаемого вектора с концом второго (рис.1, б), называется суммой этих векторов и обозначается $\overrightarrow{a} + \overrightarrow{b}$$ (правило треугольника).

Ту же самую сумму векторов можно получить иным способом. Отложим от точки О векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{ОС} = \overrightarrow{b} $ (рис.1, в). Построим на этих векторах как на сторонах параллелограмм ОABC. Вектор $\overrightarrow{ОВ}$, служащий диагональю этого параллелограмма, проведенной из вершины О, является, очевидно, суммой векторов $\overrightarrow{a} + \overrightarrow{b}$ {правило параллелограмма). Из рисунка 1, в непосредственно следует, что сумма двух векторов обладает переместительным свойством: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

Действительно, каждый из векторов $\overrightarrow{a} + \overrightarrow{b} \,и\, = \overrightarrow{b} + \overrightarrow{a}$ равен одному и тому же вектору $\overrightarrow{OB}$ .



Пример 1. В треугольнике ABC АВ = 3, ВС = 4, ∠ В = 90°. Найти: $а)\,\ \overrightarrow{|АВ|} + \overrightarrow{|ВС|};\,\,\ б)\,\ |\overrightarrow{АВ} + \overrightarrow{ВС}|$ .

Решение

а) Имеем: $|\overrightarrow{АВ}| = АВ,\,\,\ |\overrightarrow{ВС}| = ВС$ и, значит, $|\overrightarrow{АВ}| + |\overrightarrow{BC}| = 7$ .

б) Так как $\overrightarrow{AB} + \overrightarrow{ВС} = \overrightarrow{АС} \,\,,\,\, то\,\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = |\overrightarrow{АС}| = АС$ .

Теперь, применяя теорему Пифагора, находим $$ AC = \sqrt{AB^2 + BC^2} = \sqrt{9 + 16} = 5 \\ т.е.\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = 5. $$

Понятие суммы векторов можно обобщить на случай любого конечного числа слагаемых векторов.

Пусть, например, даны три вектора $\overrightarrow{a}, \overrightarrow{b} \,и\, \overrightarrow{c}$ (рис.2).


Сложение трех векторов

Рис.2

Построив сначала сумму векторов $\overrightarrow{a} + \overrightarrow{b}$ , а затем прибавив к этой сумме вектор $\overrightarrow{c}$, получим вектор $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$ . На рисунке 2 $$ \overrightarrow{ОА} = \overrightarrow{a}\,; \overrightarrow{АВ} = b\,; \overrightarrow{ОВ} = \overrightarrow{a} + \overrightarrow{b}\,; \overrightarrow{BC} = \overrightarrow{c} \\ и \\ \overrightarrow{ОС} = \overrightarrow{ОВ} + \overrightarrow{ВС} = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} $$ Из рисунка 2 видно, что тот же вектор $\overrightarrow{ОС}$ мы получим, если к вектору $\overrightarrow{ОА} = \overrightarrow{a}$ прибавим вектор $\overrightarrow{АВ} = \overrightarrow{b} + \overrightarrow{c}$ . Таким образом, $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ , т. е. сумма векторов обладает сочетательным свойством. Поэтому сумму трех векторов $\overrightarrow{a}\,,\,\overrightarrow{b}\,,\,\overrightarrow{c}$ записывают просто $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ .

Разностью двух векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ называется третий вектор $\overrightarrow{c} = \overrightarrow{a} — \overrightarrow{b}$ , сумма которого с вычитаемым вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$. Таким образом, если $\overrightarrow{c} = \overrightarrow{a} — \overrightarrow{b}\,,\, то\, \overrightarrow{c} + \overrightarrow{b} = \overrightarrow{a}$ .

Из определения суммы двух векторов вытекает правило построения вектора-разности (рис.3).


Вычитание векторов

Рис.3

Откладываем векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{OB} = \overrightarrow{b}$ из общей точки О. Вектор $\overrightarrow{BA}$ , соединяющий концы уменьшаемого вектора $\overrightarrow{a}$ и вычитаемого вектора $\overrightarrow{b}$ и направленный от вычитаемого к уменьшаемому, является разностью $\overrightarrow{c} = \overrightarrow{a} — \overrightarrow{b}$ . Действительно, по правилу сложения векторов $\overrightarrow{ОВ} + \overrightarrow{ВА} = \overrightarrow{ОА} \text{ , или } \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a}$ .


Пример 2. Сторона равностороннего треугольника ABC равна а. Найти: $а) |\overrightarrow{ВА} — \overrightarrow{ВС}|\,;\,\ б)\,\,\ |\overrightarrow{АВ} — \overrightarrow{АС}|$ .

Решение а) Так как $\overrightarrow{ВА} — \overrightarrow{ВС} = \overrightarrow{СА}\text{ , а }|\overrightarrow{СА}| = а\text{ , то }|\overrightarrow{ВА} — \overrightarrow{ВС}| = а$ .

б) Так как $\overrightarrow{АВ} — \overrightarrow{АС} = \overrightarrow{СВ}\text{ , а }|\overrightarrow{СВ}| = а\text{ , то }|\overrightarrow{АВ} — \overrightarrow{АС}| = а$ .

Произведением вектора $\overrightarrow{a}$(обозначается $=\lambda\overrightarrow{a}$ или $\overrightarrow{a}\lambda$) на действительное число $\lambda$ называется вектор $\overrightarrow{b}$, коллинеарный вектору $\overrightarrow{a}$, имеющий длину, равную $|\lambda||\overrightarrow{a}|$, и то же направление, что и вектор $\overrightarrow{a}$, если $\lambda > 0$ , и направление, противоположное направлению вектора $\overrightarrow{a}$, если $\lambda < 0$ . Так, например, $2\overrightarrow{a}$ есть вектор, имеющий то же направление, что и вектор $\overrightarrow{a}$ , а длину, вдвое большую, чем вектор $\overrightarrow{a}$ (рис.4).


Умножение вектора на число

Рис.4

В случае, когда $\lambda = 0$ или $\overrightarrow{a} = 0$ , произведение $\lambda\overrightarrow{a}$ представляет собой нулевой вектор. Противоположный вектор $-\overrightarrow{a}$ можно рассматривать как результат умножения вектора $\overrightarrow{a}$ на $\lambda = -1$ (см. рис.4): $$ -\overrightarrow{a} = \ (-1)\overrightarrow{a} $$ Очевидно, что $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{0}$ .


Пример 3. Доказать, что если О, А, В и С — произвольные точки, то $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{ВС} + \overrightarrow{СО} = 0$ .

Решение. Сумма векторов $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{СВ} = \overrightarrow{ОС}$ , вектор $\overrightarrow{CO}$ — противоположный вектору $\overrightarrow{ОС}$ . Поэтому $\overrightarrow{ОС} + \overrightarrow{СО} = \overrightarrow{0}$ .

Пусть дан вектор $\overrightarrow{a}$. Рассмотрим единичный вектор $\overrightarrow{a_0}$ , коллинеарный вектору $\overrightarrow{a}$ и одинаково с ним направленный. Из определения умножения вектора на число следует, что $$ \overrightarrow{a} = |\overrightarrow{a}|\,\ \overrightarrow{a_0} $$ , т.е. каждый вектор равен произведению его модуля на единичный вектор того же направления. Далее из того же определения следует, что если $\overrightarrow{b} = \lambda\overrightarrow{a}$ , где $\overrightarrow{a}$ — ненулевой вектор, то векторы $\overrightarrow{a} \,и\, \overrightarrow{b}$ коллинеарны. Очевидно, что и обратно, из коллинеарности векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ следует, что $\overrightarrow{b} = \lambda\overrightarrow{a}$.

Таким образом, получаем следующую теорему.


Пример 4. Длина вектора AB равна 3, длина вектора AC равна 5. Косинус угла между этими векторами равен 1/15. Найдите длину вектора AB + AC.

Видео-решение.



www.wiki.eduvdom.com

Решение производные – как найти, вычислить и понять с нуля

примеры решения производных

Производная функции является основным понятием дифференциального исчисления. Она характеризует скорость изменения функции в указанной точке. Производная широко используется при решении целого ряда задач по математике, физике и другим наукам, в особенности при изучении скорости различного рода процессов. Именно поэтому мы собрали на сайте более 200 примеров решения производных и постоянно добавляем новые! Список тем находится в правом меню.

Перед изучением примеров вычисления производных советуем изучить теоретический материал по теме: прочитать определения, правила дифференцирования, таблицу производных и другой материал по производным.


Таблица производных и правила дифференцирования

Основные ссылки — таблица производных, правила дифференцирования и примеры решений (10 шт).

Пример

Задание. Найти производную функции

Решение. Так как производная суммы равна сумме производных, то

Воспользуемся формулами для производных показательной и обратной тригонометрической функций:

Ответ.

Больше примеров решений →


Производные сложных функций

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание.Найти производную функции

Решение. По правилу дифференцирования сложной функции:

В свою очередь производная также берется по правилу дифференцирования сложной функции:

Ответ.

Больше примеров решений →


Применение дифференциала в приближенных вычислениях

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Геометрический смысл производной

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Механический смысл производной

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Точка движется по закону . Чему равна скорость в момент времени ?

Решение. Найдем скорость точки как первую производную от перемещения:

В момент времени скорость равна

Ответ.

Больше примеров решений →


Уравнение касательной, нормали и угол между прямыми

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Записать уравнение касательной к графику функции в точке

Решение. Найдем значение функции в заданной точке:

Найдем производную заданной функции по правилу дифференцирования произведения:

Вычислим её значение в заданной точке

Используя формулу

запишем уравнение касательной:

Ответ. Уравнение касательной:

Больше примеров решений →


Производные высших порядков

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную второго порядка от функции

Решение. Находим первую производную как производную сложной функции:

Вторую производную находим как от произведения, предварительно вынеся по правилам дифференцирования коэффициент 3 за знак производной. Также будем учитывать, что первый множитель — — есть сложной функцией:

Ответ.

Больше примеров решений →


Механическое смысл второй производной

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Уравнение движения материальной точки вдоль оси имеет вид (м). Найти ускорение точки в момент времени c.

Решение. Ускорение заданной точки найдем, взяв вторую производную от перемещения по времени:

Первая производная

(м/с)

вторая производная

(м/с2)

В момент времени c

(м/с2)

Ответ. (м/с2)

Больше примеров решений →


Дифференциалы высших порядков

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти дифференциал третьего порядка функции

Решение. По формуле

Найдем третью производную заданной функции:

Тогда

Ответ.

Больше примеров решений →


Производная функции, заданной неявно

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Производная функции, заданной параметрически

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →


Логарифмическое дифференцирование

Основные ссылки — теоретический материал и примеры решений (10 шт).

Пример

Задание. Найти производную функции

Решение. Применим логарифмическое дифференцирование:

Тогда, продифференцировав левую и правую часть, будем иметь:

Отсюда получаем, что

Ответ.

Больше примеров решений →


Формулы Маклорена и Тейлора

Основные ссылки — теоретический материал и примеры решений (10 шт).

Больше примеров решений →

Вы поняли, как решать? Нет?

Помощь с решением

www.webmath.ru

Примеры решений производных

Страница содержит ссылки на 44 примера решений производных.

  • Попробуйте найти производные от приведенных ниже функций.
  • Нажмите на изображение или стрелку, чтобы попасть на страницу с подробным решением.

Примеры решений производных от явных функций

Найдите производные    следующих функций, зависящих от переменной x:
  Решение > > >
  Решение > > >
  Решение > > >
  > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >
  > > > Здесь , , , – постоянные.
  > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >

Примеры решений производных высших порядков от явных функций

Найти производные первого и второго порядка следующей функции:
.
Решение > > >

Найти производную третьего порядка:
.
Решение > > >

Найти производную шестого порядка следующей функции:
.
Решение > > >

Вычислить n-ю производную функции
.
Решение > > >

Найти n-ю производную следующей функции:
,
где и – постоянные.
Решение > > >

Примеры решения производных от функций, заданных параметрическим способом

Найдите производную от функции, заданной параметрическим способом:

Решение > > >

Найдите производную , где и выражены через параметр :

Решение > > >

Найдите производные второго    и третьего    порядка от функции, заданной параметрическим способом:

Решение > > >

Примеры решений производных от неявных функций

Найдите производную первого порядка от функции, заданной неявно уравнением:
.
Решение > > >

Найти производную второго порядка от неявно заданной функции:
.
Решение > > >

Найти производную третьего порядка при от функции, заданной уравнением:
.
Решение > > >

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Как найти производную? Примеры решений

Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.

Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная. Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.

И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы, например, освоить труднее.

Советую следующий порядок изучения темы: во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные.

Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещьПростейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть:Производные неявных и параметрически заданных функций.

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример: Пример 1

Найти производную функции Решение:

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь:

у нас была функция , которая в результате решения превратилась в функцию.

Говоря совсем просто, для того чтобы найти производную

функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным

исключением является экспоненциальная функция , которая

превращается сама в себя. Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначаютили.

ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) –ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:

, где– постоянное число; производную степенной функции:

, в частности:,,.

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.

Вреальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

Вэтой связи переходим к рассмотрению правил дифференцирования:

1) Постоянное число можно (и нужно) вынести за знак производной

, где– постоянное число (константа)Пример 2

Найти производную функции

Смотрим в таблицу производных. Производная косинуса там есть, но у нас .

Решаем:

Самое время использовать правило, выносим постоянный множитель за знак производной:

А теперь превращаем наш косинус по таблице:

Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:

Готово.

2) Производная суммы равна сумме производных

Найти производную функции

Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:

Применяем второе правило:

Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то

переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.

Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:

Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).

Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:

Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:

Все степени вида желательно снова представить в виде корней,

степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.

Пример 4

Найти производную функции

Попробуйте решить данный пример самостоятельно (ответ в конце урока).

3) Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Эта необычное правило (как, собственно, и другие)следует из определения производной. Но с теорией мы пока повременим – сейчас важнее научиться решать:

Пример 5

Найти производную функции

Здесь у нас произведение двух функций, зависящих от . Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Сложно? Вовсе нет, вполне доступно даже для чайника.

Пример 6

Найти производную функции

В данной функции содержится сумма и произведение двух функций – квадратного трехчленаи логарифма. Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:

Готово.

При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что.

Пример 7

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока)

4) Производная частного функций

В потолке открылся люк, не пугайся, это глюк. А вот это вот суровая действительность:

Пример 8

Найти производную функции

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:

Заодно избавляемся от скобок в числителе, которые теперь не нужны. Вообще говоря, постоянные множители при нахождении производной

можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.

Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:

Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:

Штрихов больше нет, задание выполнено.

На практике обычно (но не всегда) ответ упрощают «школьными» методами:

Пример 9

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока). Время от времени встречаются хитрые задачки:

Пример 10

Найти производную функции

Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?

Дело в том, что формула достаточно громоздка, и применять ее совсем не хочется.

В данном случае можно почленно поделить числитель на знаменатель. Преобразуем функцию:

Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:

Готово.

Пример 11

Найти производную функции

Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:

Произведение все-такидифференцировать проще:

Пример 12

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока).

5) Производная сложной функции

Данное правило также встречается очень часто. Но о нём рассказать можно очень много, поэтому я создал отдельный урок на тему Производная сложной функции.

Желаю успехов!

Ответы:

Пример 4: . В ходе решения

данного примера следует обратить внимание, на тот факт, что и– постоянные числа, не важно чему они равны, важно, что это — константы. Поэтомувыносится за знак производной, а.

Пример 7:

Пример 9:

Пример 12:

studfiles.net

Примеры производных | Математика

Изучить конкретные примеры нахождения производных с подробными пояснениями — лучший способ научиться находить производную самостоятельно.

После разбора производной степени, производной суммы и разности, производной произведения, производной частного и производной сложной функции настал черед рассмотреть примеры производных, в которых используются сразу несколько правил дифференцирования.

1) y=4x²cos(11-x²).

Данная функция представляет собой  произведение функций, где u=4x², v=cos(11-x²). По правилу дифференцирования произведения:

y’=(4x²)’· cos(11-x²)+(cos(11-x²))’·4x²=

первая из функций — степенная, вторая — сложная функция, где внешняя функция f=cos u, внутренняя u=11-x². Применяя соответствующие правила, имеем:

=4·2x·cos(11-x²)+(-sin(11-x²))·(11-x²)’·4x²=8x·cos(11-x²)-sin(11-x²)·(-2x)·4x²=8x·cos(11-x²)+8x³sin(11-x²).

   

Эта функция — частное. u=2sin3x-1, v=√x. По правилу дифференцирования частного:

   

В свою очередь, числитель представляет собой разность двух функций, первая из которых, sin3x — сложная (f=sin u, u=3x, а число выносим за знак производной). Применяем правила для дифференцирования разности и сложной функции, имеем:

   

   

Теперь выражениz в числителе приводим к общему знаменателю 2√x:

   

3) y=(lnx-tg7x)³

Это — сложная функция, внешняя функция f=u³, внутренняя u=lnx-tg7x. По правилу дифференцирования сложной функции: y’=3(lnx-tg7x)²·(lnx-tg7x)’=

в свою очередь, внутренняя функция представляет собой разность двух функций, где вторая — сложная функция (f=tgu, u=7x). Применяя правила для нахождения производной разности и сложной функции, получаем:

   

   

   

   

Это — сложная функция. Внешняя функция f — корень четвертой степени из u, внутренняя u=arctg10x. Преобразуем корень четвертой степени в степень с дробным показателем, затем дифференцируем:

   

   

В свою очередь, arctg10x — также сложная функция. Здесь внешняя функция f=arctgu, внутренняя u=10x:

   

Степень с дробным отрицательным показателем нужно преобразовать:

   

   

Это — пример производной частного:

   

свою очередь, числитель представляет собой производную произведения:

   

Первый множитель, в свою очередь — сложная функция. Внешняя функция — показательная, 4 в степени u, внутренняя — u=cos8x:

   

Внешняя функция f=cos u, внутренняя u=8x:

   

   

   

Это — пример производной, где сначала нужно применить правило дифференцирования суммы:

   

Первое слагаемое — произведение функций, второе — сложная функция (f=lnu, u=cosx), третье слагаемое — также сложная функция (f- е в степени u, u=5x):

   

   

   

   

Эта функция — сложная. Однако здесь можно применить свойства логарифмов, после чего дифференцировать функцию станет гораздо проще:

   

   

   

   

Примеры производных для самопроверки:

   

   

   

   

Показать решение

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

www.matematika.uznateshe.ru

Примеры вычисления производных

Для практического ознакомления с таблицей основных формул дифференцирования рассмотрим примеры.

Пример 1.

Вычислить производные

1)

2)

3)

4)

5)

6)

7)

Решение.

1) По формулам дифференцирования (1), (3), (9) получим

2) Вводим дробные и отрицательные степени и превращаем заданную функцию к виду

Используя формулы (3), (4), (9) находим

3) Данный пример вычисляем по правилу (6)

4) Производную функции ищем по правилу сложной функции (7)

5) Производные от функции

находим по правилу производной от произведения функций, и правилом производной от сложной функции

6) По правилу производной от сложной функции будем иметь

7) Много студентов которые еще толком не знают правил, сначала подносят к квадрату выражение в скобках

а затем проводят дифференцировки. Это неправильно, долго и трудно. Воспользовавшись правилом дифференцирования сложной функции получим

Если Вы будете подносить к квадрату, а затем дифференцировать то получите многочлен, который еще предстоит свести к компактному виду. Результат будет правильный, но зачем идти сложным путем, если за нас уже давно придумали правила дифференцирования, которые упрощают вычисления.

Изучайте их и пользуйтесь на практике.

yukhym.com

Производная функции одной переменной

В этой статье мы будем учиться находить производную от функции одной переменной. Дадим ее определение, вскользь затронем геометрический смысл. Разберемся с вопросом нахождения производной от сложной функции.

Итак, дадим определение производной: пусть в некоторой окрестности точки определена функция . Производной функции в точке называется предел, если он существует,

   

Из школы можно вспомнить формулу для нахождения касательной к функции в точке:  . То есть если говорить о геометрическом смысле производной, то обозначим производную функции в точке как угловой коэффициент или тангенс угла наклона касательной прямой к графику функции в этой точке.

Правила дифференцирования:

  1. Производная суммы равна сумме производных, то есть:  
  2. Производная произведения:  
  3. Вынесение константы за знак производной:  
  4. Производная частного:

Прежде чем перейти к задачам, необходимо обзавестись таблицей производных. В идеале вы должны ее знать наизусть, как таблицу умножения 🙂

Таблица производных

[свернуть]

Правилами дифференцирования и таблицей вооружились, двигаемся дальше.

Рассмотрим некоторую функцию . Как видим, функция зависит не просто от переменной , а от другой функции . Будем называть такую функцию сложной. Производная сложной функции вычисляется следующим образом:

Теперь всей необходимой теорией для решения стандартных задач на нахождение производной мы обладаем, а именно: правилами дифференцирования, таблицей производных и формулой производной от сложной функции. Давайте на примерах подробно разберемся с тем, как это работает.

Задачи на применение правила дифференцирования суммы

Пример 1. Найти производную функции

Решение:   Применяем правило дифференцирования суммы функций:

Заглядываем в таблицу производных и ищем там производную от и от

Всё, производная найдена. В ответ запишем

Пример 2. Найти производную функции , где

Решение:   Применяем правило дифференцирования суммы функций:

Открываем таблицу производных и находим производные от и

Производная найдена, в ответе записываем

Пример 3. Найти производную функции

Решение:

[свернуть]

Задачи на применение правила дифференцирования произведения

Пример 4. Найти производную функции

Решение:   Применим правило дифференцирования произведения:

Обращаемся к таблице производных и ищем там производные тангенса и

    или    

Производная найдена.

Пример 5. Найти производную функции

Решение:   Применим правило дифференцирования произведения:

Производная найдена.

Пример 6. Найти производную функции

Решение:

 

Производная найдена.

[свернуть]

Задачи с вынесением константы за знак производной

Это правило дифференцирования самое простое для понимания (редко у кого можно встретить здесь ошибки): мы просто выносим константу за знак производной и находим производную от оставшегося выражения.

Пример 7. Найти производную функции

Решение:   Видим константу , поэтому поступаем в соответствии с нашим правилом:

Всё, задача решена 🙂 Давайте, на всякий случай, рассмотрим еще одну такую задачу.

Пример 8. Найти производную функции

Решение:   Видим дробь. Производную от дроби находить пока не умеем, но может без проблем преобразовать выражение следующим образом:

Теперь константа очевидна, выносим и находим производную:

Производная найдена.

[свернуть]

Задачи на применения правила дифференцирования частного (дроби)

Ничего сложно в дифференцировании дробей нет, но на практике именно здесь чаще всего возникают ошибки, поэтому остановимся на этом моменте подробнее.

Пример 9. Найти производную функции

Решение:  Видим дробь. Мысленно повторяем для себя: «Производная дроби равна производной числителя, умноженной на знаменатель, минус производная знаменателя, умноженная на числитель, и всё это деленное на квадрат знаменателя«.

Числителем здесь является , а знаменателем — . Тогда, в соответствии с формулой, напишем:

Всё, производная успешно найдена.

Пример 10. Найти производную функции

Решение:  Рассматриваем выражение. Числителем служит , знаменателем — . По формуле получим:

В принципе, на этом этапе можно остановиться, производная найдена. Но, взглянув на числитель, несложно заметить и применить основное тригонометрическое тождество :

.

Вспомнив, что отношение синуса к косинусу есть тангенс, легко проверить получившийся ответ по таблице производных.

Пример 11. Найти производную функции

Решение:   Числитель здесь , знаменатель . По формуле производной для дроби запишем:

Производная найдена, но можно упростить полученное выражение, сделаем это:

Пример 12. Найти производную функции

Решение:   Числитель и знаменатель . Получаем:

Заметим, что здесь необязательно было пользоваться именно формулой для дроби, так как знаменатель представляет собой константу. Эту константу можно было вынести по предыдущему правилу дифференцирования.

[свернуть]

С правилами дифференцирования ознакомились. Переходим к дифференцированию сложной функции. Пока еще нет достаточного опыта, рекомендую на каждом шаге повторять для себя: «Производная сложной функции равна производной внешней функции на производную внутренней функции«.

Пример 13

Найти производную функции .

Решение:   Видим обыкновенный косинус, но воспользоваться таблицей производных сразу не можем, потому что зависит косинус не просто от , а от . Применяем формулу для сложной функции.

Необходимо очень чётко уяснить вопрос с тем, что является в некотором выражении внешней функцией, а что внутренней. Для этого нужно посмотреть на функцию как бы в целом (это может быть нечто очень громоздкое), понять, что это прежде всего: произведение, степень, дробь или что-то другое.

В данной задаче всё просто. Прежде всего наше выражение — это косинус. То есть косинус является внешней функцией. Внутренней функцией будет являться аргумент косинуса . Тогда по формуле запишем:

.

[свернуть]

В 13 и 14 примерах для нахождения производной достаточно было применить формулу для сложной функции всего один раз. Однако на практике чаще всего имеются выражения вида «функция от функции, зависящей от еще одной функции, которая зависит функции и т.д.». В этих случаях принцип нахождения производной не изменяется — мы просто используем формулу несколько раз.

Пример 15

Найти производную функции

Решение:    Имеем натуральный логарифм, который зависит от синуса, который зависит от некоторого выражения. Внешняя функция здесь сам логарифм, то есть , внутренняя — выражение под логарифмом, т.е. .

Производную первого множителя уже можем написать из таблицы производных (сделаем это позже, чтобы не возникло путаницы). Для нахождения производной второго множителя вновь используем формулу, полагая, что внешней функцией является синус, а внутренней — выражение :

Давайте для наглядности покажем на картинке процесс работы с выражением:

Функция слева от стрелки внешняя, справа внутренняя. Количество стрелок равно количеству применений формулы для сложной функции.

[свернуть]

Пример 16

Найти производную функции

Решение:   Нарисуем такую же картинку, как и в предыдущем примере:

Имеем три стрелки, то есть формулу для сложной функции будем последовательно применять именно три раза. На каждом шаге функция слева от стрелки — внешняя, справа — внутренняя.

Ответ получился некрасивым, но это нестрашно, потому что задания придумывал сам 🙂 Здесь все производные мы высчитываем на последнем шаге, чтобы не запутаться. На практике же чаще всего будет удобнее это делать после каждого применения формулы (для внешних функций).

[свернуть]

В первое время будет нелишним рисовать на черновике картинки из примеров 15 и 16 (понятно, применительно к своей задаче). Далее разберем пару примеров на комбинирование правил дифференцирования и формулы дифференцирования сложной функции.

Пример 17

Найти производную функции

Решение:   Видим произведение, поэтому по формуле дифференцирования произведения функций запишем:

Обе полученные функции под знаком производной сложные, поэтому дифференцируем их по соответствующему правилу:

[свернуть]

Пример 18

Найти производную функции

Решение:   Видим дробь, поэтому по формуле дифференцирования дробей запишем:

Обе полученные функции под знаком производной сложные, поэтому дифференцируем их по соответствующему правилу:

Опять получился не очень красивый ответ, но зато правильный 🙂

Здесь стоит заметить, что мы могли избавиться от дроби и перейти к произведению функций с помощью перенесения арксинуса в числитель (арксинус в этом случае получает степень ).

[свернуть]

На этом всё, спасибо за внимание!


higher-math.ru

Примеры решения производных

Пример. Производная суммы функций.

Дано: сумма функций .
Найти:
Вычислить производную суммы функций

Решение:
Исходя из того, что производная алгебраической суммы (разности) функций, имеющих производную, равна такой же сумме (разности) производных этих функций: используя формулы производных (ссылка), вычислим производную, заданной в условии задачи суммы функций:

Ответ: производная суммы функций равна

Пример. Производная произведения функций.

Дано: произведение функций .
Найти:
Вычислить производную произведения функций

Решение:
Исходя из того, что производная двух функций, имеющих производную, вычисляется по формуле: найдем производную, заданного в условии задачи произведения функций:

Ответ: производная произведения функций равна

Пример. Производная отношения функций.

Дано: отношение функций .
Найти:
Вычислить производную отношения функций

Решение:
Исходя из того, что производная отношения двух функций, имеющих производную, вычисляется по формуле: определим производную, заданного в условии задачи отношения функций:

Ответ: производная отношения функций равна

Пример. Производная сложной функций.

Дано: сложная функция .
Найти:
Вычислить производную сложной функции

Решение:
Исходя из того, что функция имеет производную в точке а функция имеет производную в точке причем сложная функция будет иметь производную в точке и в нашем случае получаем следующее а Тогда а значит

Ответ: производная сложной функции равна

Пример. Производная функции заданной параметрически.

Дано: функция заданная параметрически .
Найти:
Вычислить производную функции заданной параметрически.

Решение:
Исходя из того, что производная функции, заданной параметрически, то есть в виде соотношения где изменяется в пределах некоторого множества, определяется по формуле вычислим производную, заданной в задаче функции:

Производная параметрически заданной функции будет тоже функция, заданная параметрически:

Ответ: производная параметрически заданной функции равна

matematika.electrichelp.ru

Три признака подобия треугольников – Три признака подобия треугольников

Три признака подобия треугольников

Теорема 1. Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого.

Пусть в треугольниках ABC и А’В’С ∠A = ∠А’ ∠В = ∠B’ (в подобных треугольниках вершины соответственно равных углов часто обозначают одинаковыми буквами).

Доказать, что \(\Delta\)ABС \(\sim\) \(\Delta\)А’В’С (рис. 367).

Прежде всего отметим, что из равенства двух углов данных треугольников следует, что и третьи углы их равны, т. е. ∠C = ∠С’.

Отложим от вершины В, например, на стороне AB треугольника ABC отрезок ВМ, равный отрезку А’В’. Из точки М проведём прямую MN || АС. Мы получили \(\Delta\)MBN, который подобен \(\Delta\)ABC. Но \(\Delta\)MBN = \(\Delta\)А’В’С’, так как ∠В = ∠В’ по условию теоремы; сторона MB = A’B’ по построению; ∠BMN = ∠A’ (∠BMN и ∠А’ порознь равны одному и тому же ∠А).

Если \(\Delta\)MBN \(\sim\) \(\Delta\)AВС, то \(\Delta\)А’В’С’ \(\sim\) \(\Delta\)ABC. Эта теорема выражает 1-й признак подобия треугольников.

Следствия. 1. Равносторонние треугольники подобны.

2. Равнобедренные треугольники подобны, если они имеют по равному углу при вершине или при основании.

3. Два прямоугольных треугольника подобны, если она имеют по равному острому углу.

4. Равнобедренные прямоугольные треугольники подобны.

Теорема 2. Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, лежащие между ними, равны.

Пусть в треугольниках ABC и А’В’С’ \(\frac{AB}{A’B’} = \frac{BC}{B’C’}\) и ∠В = ∠В’

Требуется доказать, что \(\Delta\)ABC \(\sim\) \(\Delta\)А’В’С’ (рис. 368).

Для доказательства отложим, например, на стороне AB треугольника ABC от вершины В отрезок ВМ, равный отрезку А’В’. Через точку М проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC.

Докажем, что \(\Delta\)MBN = \(\Delta\)А’В’С’. В этих треугольниках ∠В = ∠В’ по условию теоремы, MB = А’В’ по построению. Чтобы убедиться в равенстве сторон BN и В’С, составим пропорцию AB/MB = BC/BN (она вытекает из параллельности АС и MN) и сравним её с пропорцией, которая дана в условии теоремы: \(\frac{AB}{A’B’} = \frac{BC}{B’C’}\). В этих двух пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены,

т. е. В’С’ = BN. Отсюда следует равенство треугольников MBN и А’В’С’.

Так как \(\Delta\)MBN \(\sim\) \(\Delta\)А’В’С’, то, следовательно, и \(\Delta\)А’В’С’ \(\sim\) \(\Delta\)ABС.

Эта теорема выражает 2-й признак подобия треугольников.

Следствие. Прямоугольные треугольники подобны, если катеты одного из них пропорциональны катетам другого.

Теорема 3. Два треугольника подобны, если три стороны одного треугольника пропорциональны трём сторонам другого треугольника.

Пусть в треугольниках ABC и А’В’С’ \(\frac{AB}{A’B’} = \frac{BC}{B’C’} = \frac{AC}{A’C’}\) (рис. 369).

Требуется доказать, что \(\Delta\)ABC \(\sim\) \(\Delta\)А’В’С’

Для доказательства отложим на стороне AB треугольника ABC от вершины В отрезок BM = А’В’. Из точки M проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC. Следовательно, \(\frac{AB}{MB} = \frac{BC}{BN} = \frac{AC}{MN}\).

Докажем, что \(\Delta\)MBN = \(\Delta\)А’В’С’. Для доказательства сравним две пропорции

\(\frac{AB}{MB} = \frac{BC}{NB}\) и \(\frac{AB}{A’B’} = \frac{BC}{B’C’}\).
В этих пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены, т.е. BN = В’С’.

Сравним ещё две пропорции: \(\frac{AB}{MB} = \frac{AC}{MN}\) и \(\frac{AB}{A’B’} = \frac{AC}{A’C’}\) . В этих пропорциях также имеется по три равных члена, следовательно, равны и четвёртые члены их, т. е. MN =А’С’.

Оказалось, что три стороны \(\Delta\)BMN равны трём сторонам \(\Delta\)А’В’С’, а именно:

MB = А’В’, BN = В’С’ и MN = А’С’.

Следовательно, \(\Delta\)MBN = \(\Delta\)А’В’С’, а \(\Delta\)ABC \(\sim\) \(\Delta\)А’В’С’.

Эта теорема выражает 3-й признак подобия треугольников.

razdupli.ru

Третий признак подобия треугольников | Треугольники

Теорема

(Третий признак подобия треугольников — подобие треугольников по трём сторонам).

Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

Дано: ΔABC, ΔA1B1C1,

   

Доказать: ΔABC∼ ΔA1B1C1

Доказательство:

1) Отложим на луче A1B1 отрезок A1B2, A1B2=AB.

2) Через точку B2 проведём прямую B2С2, параллельную прямой B1C1.

3) В треугольниках A1B2C2 и A1B1C1:

Поэтому  ΔA1B2C2∼ΔA1B1C1 (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

   

4) Поскольку A1B2=AB, то

   

Так как по условию

   

то A1C2=AC и B2C2=BC.

5) В треугольниках ABC и A1B2C2:

  • A1B2=AB (по построению)
  • B2C2=BC (по доказанному)
  • A1C2=AC (по доказанному).

Значит, ΔABC=ΔA1B2C2 (по трём сторонам).

Из равенства треугольников следует равенство соответствующих углов:

  • ∠A=∠A1
  • ∠ABC=∠A1B2C2.

6) В треугольниках ABC и A1B1C1:

  • ∠A=∠A1 (по условию)
  • Так как ∠A1B2C2=∠A1B1C1, то и ∠ABC=∠A1B1C1.

Отсюда ΔABC∼ ΔA1B1C1 (по двум углам).

Что и требовалось доказать.

3-й признак подобия треугольников используется реже 1-го.

www.treugolniki.ru

Признаки подобия треугольников

Напомним для начала определение подобных треугольников.

Определение 1

Два треугольника называются подобными, если углы все углы одного треугольника соответственно равны углам другого и треугольника, и все сходственные стороны этих треугольников пропорциональны.

Для определения подобия треугольников существуют три признака подобия треугольников. Рассмотрим и докажем их.

Первый признак подобия треугольников

Теорема 1

Теорема 1: Если два угла одного треугольника соответственно равны двум углам второго треугольника, то такие треугольники подобны.

Доказательство.

Рассмотрим треугольники $ABC$ и $A_1B_1C_1$, у которых $\angle A=\angle A_1,\ \angle B=\angle B_1$. (рис. 1).

Рисунок 1. Иллюстрация теоремы 1

Нам нужно доказать, что $\angle C=\angle C_1,$ и что $\frac{AB}{A_1B_1}=\frac{BC}{{B_1C}_1}=\frac{AC}{A_1C_1}$.

По теореме о сумме углов треугольника, имеем:

Далее будем пользоваться следующей теоремой:

Теорема 2

Теорема 0: Если угол одного треугольника равен углу второго треугольника, то их площади относятся как произведения сторон, прилегающих к этому углу.

По теореме 0, получим

Из этих равенств, получим

Теорема доказана.

Второй признак подобия треугольников

Теорема 3

Теорема 2: Если две стороны одного треугольника пропорциональны соответствующим сторонам второго треугольника и углы между этими сторонами равны, то данные треугольники подобны.

Доказательство.

Рассмотрим треугольники $ABC$ и $A_1B_1C_1$, у которых $\angle A=\angle A_1$ и$\frac{AB}{A_1B_1}=\frac{AC}{A_1C_1}=k$ (рис. 2).

Рисунок 2. Иллюстрация теоремы 2

Используя теорему 1, видим, что для доказательства этой теоремы, достаточно доказать, что $\angle C=\angle C_1$. Построим треугольник $ACB_2$, так, что $\angle CAB_2=\angle A_1$, а $\angle B_2CA=\angle C_1$ (рис. 2).

Рисунок 3. Дополнительное построение

Треугольник $ACB_2$ подобен треугольнику $ABC$ (по теореме 1), следовательно,$\ \frac{AC}{A_1C_1}$ $=\frac{AB_2}{A_1B_1}$. По условию $\frac{AB}{A_1B_1}=\frac{AC}{A_1C_1}$, следовательно, $AB=AB_2$. Тогда треугольник $ACB_2$ равен треугольнику $ABC$ по двум сторонам и углу между ними. Следовательно, $\angle B_2CA=\angle C$, а так как $\angle B_2CA=\angle C_1,\ то\ \angle C=\angle C_1.$

По первому признаку подобия треугольника получаем доказательство теоремы.

Третий признак подобия треугольников

Теорема 4

Теорема 3: Если три стороны одного треугольника пропорциональны трем соответствующим сторонам второго треугольника, то такие треугольники подобны.

Доказательство.

Рассмотрим треугольники $ABC$ и $A_1B_1C_1$, у которых $\frac{AB}{A_1B_1}=\frac{BC}{{B_1C}_1}=\frac{AC}{A_1C_1}=k$.

Используя теорему 2, видим, что для доказательства этой теоремы, достаточно доказать, что $\angle A=\angle A_1$. Построим треугольник $ACB_2$, так, что $\angle CAB_2=\angle A_1$, а $\angle B_2CA=\angle C_1$ (рис. 3).

Рисунок 4. Дополнительное построение

Треугольник $ACB_2$ подобен треугольнику $ABC$ (по теореме 1), следовательно,$\ \frac{AC}{A_1C_1}$ $=\frac{AB_2}{A_1B_1}=\frac{CB_2}{C_1B_1}$. Принимая во внимание равенства$\frac{AB}{A_1B_1}=\frac{BC}{{B_1C}_1}=\frac{AC}{A_1C_1}$, получим, что $CB_2=CB,\ AB_2=AB$. Тогда треугольник $ACB_2$ равен треугольнику $ABC$ по трем сторонам. Следовательно, $\angle A=\angle A_1$.

Теорема доказана.

Пример задачи на использование признаков подобия

Пример 1

Доказать, что любые два равнобедренных треугольника, у которых углы между равными сторонами равны, являются подобными.

Решение.

Пусть даны равнобедренные треугольники $ABC$ и $A_1B_1C_1$ с $\angle A=\angle A_1.$ Так как треугольник $ABC$ равнобедренный, то

\[\angle B=\angle C=\frac{180-\angle A}{2}\]

Так как треугольник $A_1B_1C_1$ равнобедренный, то

\[\angle B_1=\angle C_1=\frac{180-A_1}{2}=\frac{180-\angle A}{2}=\angle B=\angle C\]

То есть $\angle B=\angle B_1,\ \ \angle C=\angle C_1$. По теореме 1, получаем, что треугольники $ABC$ и $A_1B_1C_1$ подобны.

ч. т. д.

spravochnick.ru

Признаки подобия треугольников

Прежде чем разобрать задачи, повторим признаки подобия треугольников и свойства подобных треугольников.

Для доказательства подобия произвольных треугольников в школьном курсе используют три признака.

I. Признак подобия треугольников по двум углам.

 

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

II. Признак подобия треугольников по двум сторонам и углу между ними.

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.

III. Признак подобия треугольников по трем сторонам.

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Признак подобия прямоугольных треугольников

Для подобия прямоугольных треугольников достаточно, чтобы у них было по одному острому углу.

Из подобия треугольников следует равенство соответствующих углов и пропорциональность сторон:

Периметры подобных треугольников пропорциональны:

   

k — коэффициент подобия.

Все линейные размеры подобных треугольников также пропорциональны, то есть отношение соответствующих биссектрис, высот, медиан также равно k.

Углы между соответствующими линиями подобных треугольников равны.

Площади подобных фигур относятся как квадраты их соответствующих линейных размеров:

   

 

 

 

 

www.uznateshe.ru

Третий признак подобия треугольников

Прежде, чем познакомиться с третьим признаком подобия треугольников, вспомним известные нам первый и второй.

Итак, первый признак подобия треугольников: если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

Второй признак подобия треугольников: если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между ними равны, то такие треугольники подобны.

Ну а теперь сформулируем третий признак подобия треугольников.

Теорема (3-й признак подобия треугольников). Если три стороны одного треугольника соответственно пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

Доказательство.

.

, , тогда  по 1-му признаку.

.

Получаем, что  , .

Тогда  по 3-му признаку.

Следовательно, .

Так как , то .

Следовательно, .

Что и требовалось доказать.

Давайте найдём среди следующих треугольников подобные.

У каждого из треугольников известны длин трёх его сторон, а тогда воспользуемся только что доказанным третьим признаком подобия треугольников.

Посмотрим внимательно на значения их длин и заметим, что стороны треугольника а пропорциональны сторонам треугольника в, а значит, эти треугольники подобны. При этом коэффициент подобия равен 2.

Задача. Подобны ли треугольники  и , если  см,  см,  см,  см,  см,  см?

Решение.

,

,

.

Значит, .

Следовательно, .

Ответ: .

Задача. Докажите, что прямоугольные треугольники  и  подобны, если стороны  и  треугольника соответственно равны  см и  см, а стороны  и  треугольника соответственно равны  см и  см.

Решение.

,,

 (см).

, ,

 (см).

; ; .

Значит, .

Следовательно,  по 3-му признаку.

Что и требовалось доказать.

Итак, сегодня на уроке мы познакомились с ещё одним признаком подобия треугольников: если три стороны одного треугольника соответственно пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

Также мы закрепили материал на практике.

videouroki.net

Сформулируйте 3 признака подобия треугольников

Три стороны, три угла и три бисектриссы.

вроде если все стороны пропорциональны, углы равны, а треть не помню, там какая та крыса чтоль тоже пропорциональна

по стороне и 2-ум углам между ними. по 2-ум углам и стор. между ними и по 3-ём сторонам.

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, тогда эти треугольники подобны. Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, тогда эти треугольники подобны. Если три стороны одного треугольника пропорциональны трем сходственным сторонам другого, то треугольники подобны.

touch.otvet.mail.ru

Третий признак подобия треугольников. Видеоурок. Геометрия 8 Класс

Треугольники называются подобными, если углы соответственно равны, а сходственные стороны пропорциональны.

Имеем два треугольника ,  (см. Рис. 1).

Сходственные стороны – те стороны, которые лежат против равных углов.

Рис. 1. Подобные треугольники

Определение:

:

Проверять все равенства не нужно, существуют признаки подобия.

Первый признак подобия

Если хотя бы по два соответствующих угла треугольников равны, то эти треугольники подобны.

Второй признак подобия

По углу и пропорциональности прилежащих сторон.

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Дано:

Доказать:

Доказательство

Чтобы доказать третий признак, мы можем использовать второй признак, так как там есть пропорциональность сторон и нам останется доказать равенство угла, например, что . То есть мы докажем, что эти углы равны, сошлемся на второй признак, и третий признак будет доказан.

Вспомогательное построение: (см. Рис. 2).

Построим треугольник : – по первому признаку подобия.

Рис. 2. Доказательство третьего признака

Раз эти треугольники подобны, то можно выписать пропорциональность их сторон, сравнить с данной пропорциональностью и получить важные выводы.

Сравним с пропорциональностью сторон исходных треугольников.

Значит,  и .

Из сравнения двух равенств следует, что треугольник  равен треугольнику  по трем сторонам.

Из равенства треугольников вытекает:

Итак, в двух исходных треугольниках имеем равные углы  и  и прилежащие стороны пропорциональны, значит, эти треугольники подобны по второму признаку подобия треугольников.

Что и требовалось доказать.

Специфика третьего признака подобия треугольников заключается в том, что в нем не фигурируют углы. Есть пропорциональность сходственных сторон. А как найти равные углы?

Перейдем к задачам.

По данным рисунка определите подобие треугольников, отметьте равные углы (см. Рис. 3).

Рис. 3. Условие задачи 1

Решение

Заметим пропорциональность сторон

 – по третьему признаку

Отметим равные углы (см. Рис. 4).

Рис. 4. Подобные углы треугольников

Ответ:  и  подобны.

По данным рисунка определить подобие треугольников (см. Рис. 5).

Решение

Рис. 5. Иллюстрация к задаче 2

Эти треугольники существуют, т. к. их самые большие стороны меньше, чем сумма двух других сторон:

Пропорциональности сторон не наблюдаем.

.

Ответ:  и  не подобны.

Стороны  равны 1; 3; 5. Стороны  равны 2; 6; 10. Определить подобие треугольников.

Решение

 – эти пары отрезков пропорциональны.

Однако треугольники с такими сторонами не существуют.

Ответ:  и  не существуют.

Дано: , ,  (см. Рис. 6).

Найти: ; .

Решение

Рис. 6. Иллюстрация к задаче 4

1.                   – по третьему признаку

Стороны одного треугольника выражены через стороны другого треугольника.

Отсюда важное свойство периметров подобных треугольников – их отношение равно коэффициенту подобия.

2.         Чтобы найти площадь, нужно найти высоту, поэтому проведем  – высоту в первом треугольнике: (см. Рис. 7).

Также проведем высоту во втором треугольнике:

Рис.7. Иллюстрация к задаче 4

Тогда имеем прямоугольные треугольники, которые подобны по первому признаку:

Найдем коэффициент их подобия :

Теперь мы готовы сравнить площади:

Итак, отношение площадей подобных треугольников равно квадрату коэффициенту их подобия.

Ответ: 1. ; 2. .

Дано: ; ; ; ; ; .

По данным рисунка 8 докажите, что .

Рис. 8. Условие задачи 5

Доказательство

Есть два треугольника с известными сторонами:  и .

Проверим пропорциональность или непропорциональность этих сторон.

Для подобия нужно, чтобы выполнялось равенство: .

 (по третьему признаку)

Мы видим, что сторона  лежит против угла , стор

interneturok.ru

Горизонтальная прямая это – Горизонтальная прямая | Начертательная геометрия

Проецирование прямой | Мир сварки

 Проецирование прямой

Прямая линия в пространстве определяется положением двух ее точек, например А и В, достаточно выполнить комплексный чертеж этих двух точек, затем соединить одноименные проекции, получим соответственно горизонтальную, фронтальную и профильную проекции прямой.

Проекция прямой – всегда прямая, кроме тех случаев, когда прямая перпендикулярна к одной из плоскостей, и проекция этой прямой на эту плоскость будет изображаться в виде точки.

Чтобы положение прямой в пространстве было определенным, необходимо иметь не менее двух проекций отрезка (рис.1).


Рис.1. Проекции прямой

Прямая общего положения – прямая, наклонная ко всем плоскостям проекций.

Прямая частного положения – прямая, параллельная хотя бы к одной из плоскостей проекций.

Условно частные положения прямых можно разбить на три группы.

Первая группа

Прямые параллельные двум плоскостям проекций и перпендикулярные к третьей.

Горизонтально проецирующая прямая – прямая, перпендикулярная горизонтальной плоскости проекций (рис.2).


Рис.2. Горизонтально проецирующая прямая

Фронтально проецирующая прямая – прямая, перпендикулярная фронтальной плоскости проекций (рис.3).


Рис.3. Фронтально проецирующая прямая

Профильно проецирующая прямая – прямая, перпендикулярная профильной плоскости проекций (рис.4).


Рис.4. Профильно проецирующая прямая
Вторая группа

Прямые параллельны одной плоскости проекций, а к двум другим направлены под углом.

Горизонтальная прямая – прямая, параллельная горизонтальной плоскости проекций (рис.5).


Рис.5. Горизонтальная прямая

Фронтальная прямая – прямая, параллельная фронтальной плоскости проекций (рис.6).


Рис.6. Фронтальная прямая

Профильная прямая – прямая, параллельная профильной плоскости проекций (рис.7).


Рис.7. Профильная прямая
Третья группа

Прямые, лежащие в плоскостях проекций (рис.8).


Рис.8. Прямая, лежащая в плоскостях проекций:
а) в горизонтальной; б) в фронтальной; в) в профильной

 Пример проецирования прямой

Например:

Построить недостающую проекцию прямой (рис.9).


Рис.9 Проецирование прямой

Для того, чтобы спроецировать прямую, необходимо спроецировать точки, принадлежащие этой прямой.

Находим точки пересечения координатных осей и проекционных линий (рис.10).


Рис.10 Проецирование прямой

Переносим циркулем точки Ау и Ву с yП1 на yП3 (рис.11).


Рис.11 Проецирование прямой

Соединяем проекционные линии из точек АуП3 и Аz, а также ВуП3 и Bz (рис.12), получаем точки А′″ и B′″.


Рис.12 Проецирование прямой

Соединяем точки А′″ и B′″ и получаем третью проекцию прямой (рис.13).


Рис.13 Проецирование прямой

weldworld.ru

Проекции прямой

При проецировании прямой на какую-либо плоскость проекций проецирующие лучи, проходящие через точки прямой, образуют проецирующую плоскость, которая пересекает плоскость проекции по прямой (рис. 4.18). Следовательно, проекцией отрезка будет отрезок прямой. Чаще всего проекция отрезка меньше самого отрезка, так как его проекция (ab) является частью катета прямоугольной: треугольника (ВbМ), а отрезок (АВ) — частью гипотенузы. Так как Mb < MB, то и ab<AB. Отношение проекции отрезка к его натуральной величине называют коэффициентом искажения.

Рис. 4.17.

Коэффициент искажения обозначают буквой К,

К= аb/AB ≤1

Если отрезок прямой параллелен плоскости проекций, при проецировании образуется прямоугольник, в котором сам отрезок и его проекция являются противоположными сторонами этого прямоугольника. Следовательно ВС=bс. В этом случае коэффициент искажения К= аb/AB =1, т. е. отрезок проецируется без искажения.

Положение прямой в пространстве можно определить двумя ее точками, поэтому, чтобы задать прямую на эпюре, достаточно задать проекции двух ее точек (рис. 4.18), т.е. проекции отрезка этой прямой. Данные проекции отрезка прямой полностью определяют положение прямой в пространстве.

Рис. 4.18.

Сравнивая координаты точек А и В, являющихся концами отрезка, можно представить себе, как располагается отрезок в пространстве. Точка В находится выше точки А относительно плоскости Н, так как b’bх>а’ах, т. е. ZB>ZA, и точка В ближе к плоскости V, чем точка А, так как bbx<aax, т. е. YB<YA.

Различные случаи расположения прямых относительно плоскостей проекций

Прямая общего положения — прямая, не параллельная ни одной из плоскостей проекций (рис. 4.18), т. е. ни одна из проекций этой прямой не параллельна какой-либо оси проекций.

Горизонтальная прямая — прямая, параллельная плоскости Н. Все точки прямой находятся на одинаковом расстоянии от плоскости Н (рис. 4.19, а), т. е. координаты Z всех точек отрезка ВС равны между собой, ВЬ= = Сс — b’bx—c’cx — ZH = Zc- Фронтальная проекция горизонтальной прямой параллельна оси Ох (рис. 4.19,б). Положение второй проекции относительно оси Ох определяется положением самой прямой, Угол наклона горизонтальной прямой к плоскости V — р. На плос­кость Н отрезок горизонтальной прямой проецируется в натуральную величину.

Рис. 4.19.

Фронтальная прямая — прямая, параллельная плоскости V. Все точки прямой находятся на одинаковом расстоянии от плоскости V (рис. 4.20, а), т. е. координаты Y всех точек отрезка CD равны между собой. Горизонтальная проекция фронтальной прямой параллельна оси Ох (рис. 4.20,б). Положение второй проекции относительно оси Ох опреде­ляется положением самой прямой. Угол наклона фронтальной прямой к горизонтальной плоскости H равен α. На плоскость V отрезок фронтальной прямой проецируется в натуральную величину.

Рис. 4.20.

Профильная прямая — прямая, параллельная плоскости H. Все точки прямой находятся на одинаковом расстоянии от плоскости W (рис. 4.21,а), т. е. координаты X всех точек отрезка DE равны между собой. Фронтальная проекция профильной прямой параллельна оси Oz, а горизонтальная проекция — оси Оу (рис. 4.21,б). Положение профильной проекции определяется положением самой профильной прямой. Угол наклона профильной прямой к плоскости Н — α, к плоскости V — β. На плоскость W отрезок профильной прямой проецируется в натуральную величину.

Рис. 4.21.

Прямые, перпендикулярные одной из плоскостей проекций, называют проецирующими прямыми.

Горизонтально-проецирующая прямая перпендикулярна плоскости H. Проекция такой прямой на плоскости Н является точкой, а ее фронтальная проекция перпендикулярна оси Ох и параллельна оси Оz (рис. 4.22). На плоскость V прямая проецируется в натуральную величину.

Фронтально-проецирующая прямая перпендикулярна плоскости V. Проекция этой прямой на плоскость V является точкой, а ее горизонтальная проекция перпендикулярна оси Ох и параллельна оси Оу (рис. 4.23). На плоскость Н прямая проецируется в натуральную величину.

Профильно-проецирующая прямая перпендикулярна плоскости W. Проекция этой прямой на плоскость W является точкой. Ее горизонтальная проекция перпендикулярна оси Оу и параллельна оси Ох, а фронтальная — перпендикулярна оси Oz и параллельна оси Ох (рис. 4.24). На плоскости Н и V прямая проецируется в натуральную величину.

Рис. 4.22.

Рис. 4.23.

Рис. 4.24.

Точка, принадлежащая прямой. Если точка лежит на прямой, то ее проекции лежат на одноименных проекциях этой прямой и на одной линии проекционной связи. На рис. 4.25,а точка М лежит на прямой CD. Ее горизонтальная проекция т (рис. 4.25,б) лежит на горизонтальной проекции прямой cd, а фронтальная проекция т’ — на фронтальной проекции прямой c’d’.

Обычно по двум проекциям можно определить взаимное расположение точки и прямой. Точка 5 принадлежит прямой CD (рис. 4.25,б), так как ее проекции лежат на про­должении одноименных проекций прямой и на одной линии проекционной связи. Только одна проекция точки F (горизонтальная) лежит на одноименной проекции прямой ей, поэтому точка F не принадлежит прямой CD (рис. 4.25, а и б).

Рис. 4.25.

Если прямая параллельна одной из плоскостей проекций, о взаимном расположении прямой и точки можно получить представление на плоскости проекций, параллельной данной прямой. Для горизонтальной прямой — на плоскости, для фронтальной прямой — на плоскости V, для профильной прямой — на плоскости W.

На рис. 4.25, в и г показаны частные случаи расположения точки и прямой, когда только две проекции точки F лежат на одноименных проекциях прямой CD, и сама точка F не принадлежит прямой CD, так как третья проекция точки не лежит на проекции прямой.

studfiles.net

Лекция 2

2.2. Проецирование прямой

Рис. 2.5

Аксиома евклидовой геометрии гласит: «Через две точки проходит единственная прямая». В связи с этим построение проекций прямой линии на КЧ сводится к построению проекций двух точек ей принадлежащих.

Построим проекции прямой d, которой принадлежат точкиАиВ. Спроецировав их на плоскости проекций, а затем соединив между собой одноименные проекции, получаем проекции прямой (рис.2.5).

Рис. 2.6

На КЧ прямая может быть задана проекциями двух точек (отрезком) или, на основании инвариантного свойства 21, непосредственно своими проекциями (рис. 2.5 б, 2.6).

2.2.1. Положение прямой относительно плоскостей проекций

По расположению относительно плоскостей проекций различают прямые общего и частного положения.

Прямые не параллельные и не перпендикулярные ни одной из плоскостей проекций называются прямыми общего положения.

Признаки и свойства прямой общего положения:

  1. На КЧ ни одна из проекций прямой общего положения, не параллельна осям проекций (или не перпендикулярна линиям связи) (рис. 2.5, 2.6).

  2. Длина отрезка, принадлежащего прямой общего положения проецируется на любую плоскость проекций с искажением: каждая проекция отрезка короче его натуральной величины.

Прямые общего положения могут быть восходящими или нисходящими.

Прямая называется восходящей, если по мере удаления от наблюдателя она повышается.

Прямая называется нисходящей, если по мере удаления от наблюдателя она понижается.

Для того, чтобы определить по КЧ положение прямой, необходимо обратить внимание на то, как дальняя от наблюдателя точка отрезка прямой расположена относительно ближайшей точки: выше или ниже, правее или левее. На рисунке 2.5 изображена восходящая вправо прямая, т.к. наиболее удаленная точка Врасполагается правее и выше ближайшей точкиА.

Признак восходящих и нисходящих прямых:

  1. На КЧ горизонтальная и фронтальная проекции имеют уклон в одну сторону относительно оси проекций (рис. 2.7 – прямая l).

  2. У нисходящих прямых обе проекции наклонены в разные стороны относительно оси проекций (рис. 2.7 – прямая k).

Рис. 2.7

Прямые частного положения подразделяются на прямые уровня и проецирующие прямые.

Прямые, параллельные одной из плоскостей проекций, называются прямыми уровня.

Существует три вида прямых уровня: горизонталь, фронталь и профильная прямая.

  1. Горизонталь (h) – прямая, параллельная горизонтальной плоскости проекций.

Признаки и свойства горизонтали:

  1. На КЧ фронтальная проекция горизонтали располагается параллельно оси(или в безосном чертеже перпендикулярно линиямсвязи).

  2. На горизонтальную плоскость проекций без искажения проецируются отрезок, принадлежащий горизонтали (), и углы наклона его к фронтальной () и профильной () плоскостям проекций.

Рис. 2.8

  1. Фронталь (f)прямая, параллельная фронтальной плоскости проекций.

Рис. 2.9

Признаки и свойства фронтали:

  1. На КЧ горизонтальная проекция фронтали располагается параллельно оси(или в безосном чертеже перпендикулярно линиям связи).

  2. На фронтальную плоскость проекций проецируются без искажения отрезок, принадлежащий фронтали (), и углы наклона его к горизонтальной () и профильной () плоскостям проекций.

  1. Профильная прямаяпрямая, параллельная профильной плоскости проекций.

Признаки и свойства профильной прямой:

  1. На КЧ фронтальная и горизонтальная проекции отрезка профильной прямой располагаются перпендикулярно осих.

  2. На профильную плоскость проекций проецируются без искажения отрезок, принадлежащий профильной прямой (), и углы наклона его к фронтальной () и горизонтальной () плоскостям проекций.

Рис. 2.10

Прямые, перпендикулярные одной из плоскостей проекций, называются проецирующими прямыми.

Существует три вида проецирующих прямых: горизонтально-проецирующая, фронтально-проецирующая и профильно-проецирующая прямая.

Проекцией проецирующей прямой на плоскость проекций, к которой она перпендикулярна, является точка (след прямой). Все точки, принадлежащие проецирующей прямой, проецируются на ее след.

1. Горизонтально-проецирующая прямая – прямая, перпендикулярная горизонтальной плоскости проекций.

Рис. 2.11

2. Фронтально-проецирующая прямая – прямая, перпендикулярная фронтальной плоскости проекций.

Рис. 2.12

3. Профильно-проецирующая прямая – прямая, перпендикулярная профильной плоскости проекций.

Рис. 2.13

К числу частных случаев расположения прямых можно отнести и прямые, лежащие непосредственно в плоскостях проекций. Их называют прямыми нулевого уровня. На рис. 2.14 приведены примеры таких прямых: горизонтальhи профильно-проецирующая прямаяjрасполагаются на горизонтальной плоскости проекций, следовательно их фронтальные проекции находятся на оси; фронтальfи профильно-проецирующая прямаярлежат во фронтальной плоскости проекций, а значит их горизонтальные проекции на КЧ совпадают с осью.

Рис. 2.14

studfiles.net

Какое положение называется горизонтальным, что означает слово горизонталь

Горизонтальность, горизонталь, горизонтальный – все эти слова обозначают положение предмета или любого объекта, в том числе живого, описываемого в переносном смысле, по отношению к земле. Если посмотреть с некоторой дистанции на беспорядочное скопление предметов, то можно увидеть, что объекты превращаются в горизонтальные цепочки, в конченом итоге — в горизонтальные линии.

Вконтакте

Одноклассники

Facebook

Мой мир

Twitter

Рассмотрим примеры, что значит по горизонтали?

  • Мы смотрим вдаль – видим горизонт. Как расположена линия горизонта? Горизонтально. Чему? Земле.
  • Мы легли отдыхать – приняли горизонтальное положение. В какой позиции находится наше тело? В горизонтальной. По отношению к чему? К дивану. К полу. К земле.
  • Читаем письмо или книгу. Как расположены строки? По горизонтали. Относительно чего?
  • Летит птица – горизонтально. Чему? Земле.
  • Река течёт – горизонтально. Чему? Земле.

Здесь мы можем привести массу примеров, но теперь понятно, что горизонтальность означает параллельное положение линий, предметов, объектов или конструкций по отношению к земле или другому предмету (объекту, конструкции), но который должен быть расположен обязательно параллельно опять-таки земле. Чтобы было проще представить, что же такое горизонталь, горизонтальность или горизонт впредь предлагаем ориентироваться именно на расположение объекта по отношению в конечном счёте к поверхности земли.

Это интересно: разность чисел — что это, как ее найти?

Горизонтальная линия

Рисуем горизонтальную линию на листе бумаги. Если лист бумаги лежит на столе – лист расположен горизонтально. Рисунок линии выполняется слева направо или справа налево – нарисована горизонтальная линия. Нарисовать на листе можно что угодно: вертикальные лини (сверху вниз или снизу вверх), диагональ, любой рисунок. При этом лист расположен всё равно горизонтально. Чему? Столу. Полу. Нижнему этажу дома. Земле.

Горизонталь – самая знакомая из всех, базовая линия. Она в каких угодно смыслах служит основой любой композиции. Даже её визуальная тяжесть напоминает о том, что горизонтальная поверхность есть фундаментальная держащая основа. Она параллельна земле. Не зря изображение горизонтальной линии выражает вес, спокойствие, мир и стабильность.

Горизонтальность, как психологическое понятие

Горизонтальность линий в рисунках можно рассматривать через знание психологии. Прямые линии подразумевают некую разделительную черту. Человек, как зритель, может оставаться снаружи, заглядывая за неё, или перешагнуть этот горизонт, так сказать «переступить за черту». Прямые и чёткие линии выражают смелость и настойчивость, тонкие и изгибающиеся горизонтали – деликатность и мягкость.

Горизонталь – топографическое определение

Самое простое определение этому слову можно найти в многочисленных словарях и энциклопедиях разных направлений. Чаще всего такое название применяется в отношении изогипс, т. е., линий, соединяющих точки, находящиеся на одинаковой абсолютной высоте над уровнем моря или любой другой взятой за основу плоскости.

Вот как расшифровывает это понятие Энциклопедический толковый словарь И.А. Ефрона и Ф.А. Брокгауза:

  • Горизонтали – (изогипсы) линии, соединяющие на местности точки, лежащие на одной и той же высоте над уровнем моря или какой-то основной плоскости, принятой за основание.

Вот что можно прочитать в Техническом железнодорожном словаре:

  • Горизонтали – линии на карте или плане местности, полученные от пересечения земной поверхности горизонтальными плоскостями, стоящими друг от друга на одинаковом расстоянии.

Выдержка из Геологической энциклопедии:

  • Горизонтали это линии, соединяющие точки одной высоты над уровнем моря. С помощью горизонталей на топографических картах отображаются особенности рельефа различных участков земной коры.

И в конце приведём текст определения из Справочника технического переводчика (отрасль машиностроение):

  • Горизонтали – линии на поверхности, параллельные горизонтальной плоскости проекций.

Определение в профессиональном росте

У профессионалов есть такое понятие, как вектор карьеры. Многочисленные и очень сейчас популярные тренинги по достижению результатов в профессиональной деятельности и продвижении по лестнице к успешной карьере, выносят на обсуждение идеи, которые подразумевают рост потенциала человека как по вертикали, так и по горизонтали. По вертикали понятно, перешагивая ступени одну за другой, т. е., двигаясь вверх, индивид поднимается по вертикали. А что со вторым вариантом?

Здесь надо вспомнить шутливый принцип канадского педагога Питера Лоуренса, говорящий о том, что при подъёме по вертикали есть предел, та ступень, выше которой человек подняться не в состоянии. Ну что ж, доля правды в этом есть. Но, мало кто согласен остановиться на том, в чём он хорош. Значит, есть смысл продолжить рост в другом направлении.

Рост по горизонтали означает углубление специалиста в экспертную область. Индивид становится отличным мастером и непревзойдённым экспертом в конкретном виде деятельности, конкретном направлении. Он делает свою работу, у него те же обязанности, но при этом освоены и применяются новые инструменты к выполнению возложенных задач. С некоторым временем его работа становится качественнее и выполняется виртуознее, за что профессионал больше ценится начальством и внешними партнёрами.

Другой вариант развития профессиональной деятельности по горизонтали – это переход в параллельное направление, приобретение в нём новых навыков, в том числе и во многих других областях. Это необходимо, когда в компании практикуют перестановку сотрудников из одного блока в другой. Например, из финансового отдела в логистику. С одной стороны, специалист вносит в это новое подразделение знания из других областей, с другой – учится всё время новому. Сотрудник сильно развивается личностно, что непременно скажется на его профессиональных качествах.

Многие профессионалы вполне остаются довольны ростом по горизонтали и не нуждаются в росте по вертикали, мотивируя это таким немаловажным бонусом, как меньшая ответственность. Самое главное, что в этом случае человек должен понять, в какой своей роли он будет наиболее успешен, ценен для профессии и эффективен для результата. Здесь надо хорошо продумать свои шаги по карьерной лестнице и быть честным с собой самим. Тем более что не все хотят быть руководителями.

obrazovanie.guru

Вертикальная прямая (горизонтально-проецирующая) — Мегаобучалка

ЛЕКЦИЯ №2

ПРЯМЫЕ частного положения.

Прямые общего вида.

ПРЯМЫЕ частного положения

Относительно плоскостей проекций прямые могут располагаться по разному. Если они параллельны или перпендикулярны плоскостям проекций, то говорят , что это прямые частного положения.

Горизонталь

Прямая, параллельная горизонтальной плоскости, называется горизонталью,h // Г (рисунок 2-1). На фронтальной проекции (виде спереди) она всегда перпендикулярна вертикальным линиям связи, а на виде сверху составляет с ними некоторый угол α(реконструкцией чертежа определяем положение прямой в пространстве). На виде сверху отрезок АВ, взятый на прямой, изображается в натуральную величину; здесь же можно определить угол α наклона прямой к фронтальной плоскости и угол γ — наклона ее к профильной плоскости.

На горизонтальной проекции (виде сверху) горизонталь проецируется без искажения.

4.2 Фронталь

 

Прямая, параллельная фронтальной плоскости, называется фронталью. f // Ф (рисунок 2-2). На горизонтальной проекции (виде сверху) фронталь всегда перпендикулярна вертикальным линиям связи, а на фронтальной проекции (виде спереди) составляет с ними некоторый угол. Отрезок СD, взятый на прямой, на виде спереди изображается без искажений. Здесь же определяются углы наклона прямой к горизонтальной плоскости b и к профильной плоскости П γ.

Фронталь проецируется без искажения на фронтальной проекции (виде спереди).

 

Профильная прямая

 

Прямая, параллельная профильной плоскости, называется профильной прямой р.р//П (рисунок 2-3). На видах спереди и сверху такая прямая всегда совпадает по направлению с вертикальными линиями связи. Эти виды не определяют наглядно положение прямой в пространстве, поэтому необходимо построить ее изображение на виде слева, где определяются углы наклона прямой к фронтальной a и горизонтальной b плоскостям уровня. Отрезок EF, взятый на прямой р, на виде слева изображается в натуральную величину.

Положение прямой в пространстве определяется положением 2-х любых ее точек (например Е и F). Для построения точек Е и F на виде сверху необходимо наметить положение баз отсчета глубин, а затем, замерив глубины точек, отложить их на виде сверху. Удобно при выборе баз отсчета проводить их через одну из имеющихся точек. Так при выборе базы отсчета глубин ее проводят через дальнюю от наблюдателя точку — Е. Тогда задача построения 3-го вида упрощается — нужно строить на нем на одну точку меньше – F.



Профильная прямая проецируется без искажения на профильной проекции (виде слева).

Вертикальная прямая (горизонтально-проецирующая)

Это прямая, перпендикулярная горизонтальной плоскости Г.

Отрезок, отложенный на данной прямой, на видах спереди и слева изображается в натуральную величину (рисунок 2-4), а на виде сверху — как точка, совпадающая с проекцией прямой i. Точки А и В называются горизонтально-конкурирующими (совпадающими).

 

 

megaobuchalka.ru

Прямая. Прямые уровня

Поскольку положение прямой в пространстве однозначно определяется двумя точками, то и для определения положения проекций прямой также достаточно зафиксировать проекции двух точек. Поэтому для построения проекций прямой можно использовать все правила, касающиеся проецирования точки.

 

2.1. Прямые частного и общего положения

 

2.1.1. Прямые уровня

 

Прямой уровня называется прямая, параллельная одной из плоскостей проекций. Поскольку плоскостей проекций три, то и прямых уровня тоже три.

Исходя из положения прямых уровня в пространстве, их проекции выглядят как показано на рис. 2.1.

а)Прямая, параллельная горизонтальной плоскости проекций П1, называется горизонтальной прямой уровня или горизонталью и обозначается h.

б) Прямая, параллельная фронтальной плоскости проекций П2, называется фронтальной прямой уровня или фронталью и обозначается f.

в) Прямая, параллельная профильной плоскости проекций П3, называется профильной линией уровня и обозначается p.

Рис. 2.1. Линии уровня на комплексном чертеже: а) горизонтальная; б) фронтальная; в) профильная.

Горизонталь характерна тем, что ее фронтальная проекция параллельна оси ОХ. Фронталь характерна тем, что ее горизонтальная проекция параллельна оси ОХ.

Очевидно, что если прямая параллельна какой-либо плоскости, то на эту плоскость она проецируется в натуральную величину (без искажений). Поэтому h1, f2, p3 – это натуральная величина соответствующих прямых h, f, p.

a — угол наклона прямой уровня к П1,

b — угол наклона прямой уровня к П2,

g — угол наклона прямой уровня к П3.

 

Проецирующие прямые.Проецирующей прямой называется прямая перпендикулярная одной из плоскостей проекций, а следовательно, параллельная двум другим плоскостям проекций.

Исходя из положения проецирующих прямых в пространстве, их проекции выглядят как показано на рис. 2.2.

а)Прямая, перпендикулярная горизонтальной плоскости проекций П1, называется горизонтально-проецирующей прямой и обозначается i.

б)Прямая, перпендикулярная фронтальной плоскости проекций П2, называется фронтально-проецирующей прямой и обозначается j.



в)Прямая, перпендикулярная профильной плоскости проекций П3, называется профильно-проецирующей прямой обозначается r.

 

Рис. 2.2. Проецирующие прямые на комплексном чертеже: а) горизонтально-проецирующая; б) фронтально-проецирующая; в) профильно–проецирующая.

 

У проецирующих прямых две проекции параллельны плоскостям проекций. Поэтому i2, i3, j1, j3, r1, r2 – это натуральные величины соответствующих прямых i, j, r.

 

 

Прямая общего положения.Прямой общего положения называется прямая, занимающая общее положение в пространстве, т.е. не параллельная ни к одной из плоскостей проекций, а следовательно, расположенная к каждой из них под углом.

Рис. 2.3. Прямая общего положения на комплексном чертеже.

 

Естественно, что ни одна из проекций прямой общего положения не показывает ее натуральную величину, а также угол наклона к одной из плоскостей проекций (рис. 2.3).

 

Определение натуральной величины отрезка прямой и углов наклона его к плоскостям проекций методом прямоугольного треугольника.Одним из методов определения натуральной величины отрезка прямой является метод прямоугольного треугольника, который можно сформулировать так: натуральной величиной отрезка является гипотенуза прямоугольного треугольника, одним из катетов которого служит горизонтальная (фронтальная) проекция отрезка, другим – разность расстояний от граничных точек фронтальной (горизонтальной) проекции отрезка до оси ОХ. При этом углом наклона отрезка к горизонтальной (фронтальной) плоскости проекции является угол между гипотенузой прямоугольного треугольника и горизонтальной (фронтальной) проекцией отрезка.

В соответствии с этим построения необходимо выполнять в следующей последовательности. Из любой точки (например, D1) отрезка С1D1 проведем перпендикуляр к нему (рис. 2.4.).

На нем, отложив отрезок длиной Dz, получим точку D*. После соединения точек D* и С1 получаем прямоугольный треугольник С1D1D*, в котором С1D* — натуральная величина отрезка СD, a — угол наклона отрезка СD к плоскости П1. Для определения угла наклона к плоскости П2 проведем аналогичные построения на фронтальной проекции.

Рис. 2.4. Определение натуральной величины отрезка прямой способом прямоугольного треугольника.

 

Взаимное положение прямых в пространстве. Конкурирующие точки.Прямые в пространстве могут занимать по отношению друг к другу одно из трех положений: а) быть параллельными; б) пересекаться; в) скрещиваться, т.е. не пересекаться, но и не быть параллельными. Рассмотрим на рис. 2.5 как при этом располагаются их проекции. Поскольку профильные проекции прямых можно построить по двум имеющимся, то на рис. 2.5 ограничимся двухкартинным комплексным чертежом.

В соответствии с одним из свойств ортогонального проецирования, если прямые параллельны, то их одноименные проекции параллельны (рис. 2.5а). Если прямые пересекаются, то их проекции пересекаются, причем точки пересечения проекций лежат на одной линии проекционной связи (А – точка пересечения прямых с и d). Если прямые скрещиваются, то их проекции пересекаются, но точки пересечения проекций не лежат на одной линии проекционной связи (на рис. 2.5в точки С1 и В2) не лежат на одной линии проекционной связи. Тогда, следуя по вертикальной линии связи от точки С1, получим на каждой из прямых n2 и m2 соответственно две проекции: точки С2 и другой точки D2, а следовательно, на пересечении n1 и m1 лежат две точки С1 и D1, слившиеся в одну.

Точки, лежащие на одном проецирующем луче, называются конкурирующими.. Точки, горизонтальные проекции которых совпадают, называются горизонтально–конкурирующими (на рис. 2.5в см. точки C и D), а если совпадают фронтальные проекции, то точки называются фронтально-конкурирующими (на рис. 2.5в — точки В и Е).

При этом конкурирующие точки расположены на разном расстоянии от плоскостей проекций. Фронтально-конкурирующая точка, расположенная ближе к П2, будет закрыта от наблюдателя точкой, расположенной дальше от П2, а следовательно, ближе к наблюдателю. Значит, ее горизонтальная проекция расположена дальше от ОХ. Тогда в нашем примере точка Е – видимая, а точка В – невидимая. Аналогично С – видимая , а D – невидимая. Таким образом, видимой является точка, у которой проекция расположена дальше от оси ОХ. Чтобы различать точки на чертеже, невидимую заключают в круглые скобки.

 

Рис. 2.5. Двухкартинный комплексный чертеж прямых, занимающих по отношению друг к другу следующее положение: а) а êêb; б) с Ç d; в) n ¸ m

 



Дата добавления: 2018-01-22; просмотров: 381;


znatock.org

§ 3. Прямые частного положения

Прямые частного положения – это прямые, которые либо параллельны (табл. 3.1), либо перпендикулярны одной из плоскостей проекций (табл. 3.2).

Прямые уровня

Всякую линию, параллельную плоскости проекций, называют линией уровня. В начертательной геометрии различают три основные линии уровня: горизонталь, фронталь и профильную линии (табл. 3.1).

Таблица 3.1

Прямые уровня

Определение

Наглядное

изображение

Комплексный

чертеж

Горизонталью называют всякую линию, параллельную горизонтальной плоскости p1: A2B2   || Оx;

A3B3i || y.

A1B1 – натуральная величина отрезка,

b – угол наклона к p2

Фронталью называют линию, параллельную фронтальной плоскости p2:

A1B1i  || Оx; A2B2 – натуральная величина; А3B3 i || z;

– угол наклона к p1

 

Профильной линией называют линию, параллельную профильной плоскости p 3; A2B2i || z; A1B1i|| y;

A3B3 – натуральная величина отрезка,

– угол наклона к p1;

– угол наклона к p 2

 

Проецирующие прямые

Проецирующими прямыми называют прямые, расположенные перпендикулярно к плоскостям проекций p1, p2, p3. Различают три основные проецирующие прямые: горизонтальную, фронтальную и профильную.

Если прямая перпендикулярна какой-либо из плоскостей проекций, то на эту плоскость она проецируется в виде точки. Две другие ее проекции параллельны осям и равны натуральной величине отрезка (табл. 3.2).

Таблица 3.2

Проецирующие прямые

Определение

Наглядное изображение

Комплексный чертеж

Горизонтально проецирующей прямой называют прямую, перпендикулярную к плоскости p1; A2B2 – натуральная величина AB, в плоскости p1 отрезок АВ проецируется в точку А1 В1

Фронтально проецирующей прямой называют прямую, перпендикулярную к плоскости p2; AB || p1 и ABp2, А1В1 – натуральная величина АВ, в плоскости p2 отрезок проецируется в точку А2В2

Профильно проецирующей прямой называют прямую, перпендикулярную к плоскости p3; AB || p1 и AB || p2, А1В1 и А2В2 – натуральные величины отрезка АВ, А3В3 проецируется на p3 в точку

При сравнительном анализе изображений прямых частного положения на комплексном чертеже (табл. 3.1 и 3.2) следует:

1. Прямая уровня проецируется в натуральную величину на ту плоскость, которой она параллельна. Две остальные ее проекции обязательно параллельны осям проекций.

2. Проекция прямой уровня, к той плоскости, которой она параллельна, составляет с осями проекций углы, равные углам наклона линии уровня с плоскостями проекций.

3. Если прямая перпендикулярна плоскости проекций, то ее проекцией на эту плоскость является точка, а вторая проекция располагается перпендикулярно осям проекций.

studfiles.net

Формула квадрат синус квадрат – Синус в квадрате, формула и примеры

Косинус квадрат и синус квадрат

Разбираемся с простыми понятиями: синус и косинус и вычисление косинуса в квадрате и синуса в квадрате.

Синус и косинус изучаются в тригонометрии (науке о треугольниках с прямым углом).

Поэтому для начала вспомним основные понятия прямоугольного треугольника:

Гипотенуза — сторона, которая всегда лежит напротив прямого угла (угла в 90 градусов). Гипотенуза — это самая длинная сторона треугольника с прямым углом.

Оставшиеся две стороны в прямоугольном треугольнике называются катетами.

Также следует помнить, что три угла в треугольнике всегда имеют сумму в 180°.

Теперь переходим к косинусу и синусу угла альфа (∠α) (так можно назвать любой непрямой угол в треугольнике или использовать в качестве обозначение икс — «x», что не меняет сути).

Синус угла альфа (sin ∠α) — это отношение противолежащего катета (сторона, лежащая напротив соответствующего угла) к гипотенузе. Если смотреть по рисунку, то sin ∠ABC = AC / BC

Косинус угла альфа (cos ∠α) — отношение прилежащего к углу катета к гипотенузе. Если снова смотреть по рисунку выше, то cos ∠ABC = AB / BC

И просто для напоминания: косинус и синус никогда не будут больше единицы, так как любой катит короче гипотенузы (а гипотенуза — это самая длинная сторона любого треугольника, ведь самая длинная сторона расположена напротив самого большого угла в треугольнике).

Косинус в квадрате, синус в квадрате

Теперь переходим к основным тригонометрическим формулам: вычисление косинуса в квадрате и синуса в квадрате.

Для их вычисления следует запомнить основное тригонометрическое тождество:

sin2α + cos2α = 1 (синус квадрат плюс косинус квадрат одного угла всегда равняются единице).

Из тригонометрического тождества делаем выводы о синусе:

sin2α = 1 — cos2α

или более сложный вариант формулы: синус квадрат альфа равен единице минус косинус двойного угла альфа и всё это делить на два.

sin2α = (1 – cos(2α)) / 2

​​​​​​​Из тригонометрического тождества делаем выводы о косинусе:

cos2α = 1 — sin2α

или более сложный вариант формулы: косинус квадрат альфа равен единице плюс косинус двойного угла альфа и также делим всё на два.

cos2α = (1 + cos(2α)) / 2

Эти две более сложные формулы синуса в квадрате и косинуса в квадрате называют еще «понижение степени для квадратов тригонометрических функций». Т.е. была вторая степень, понизили до первой и вычисления стали удобнее.

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

uchilegko.info

Косинус в квадрате, формула и примеры

ОПРЕДЕЛЕНИЕ Квадрат косинуса можно выразить следующим образом

   

Эта формула называется формулой понижения степени косинуса.

Примеры решения задач

ПРИМЕР 2
Задание Упростить выражение

   

Решение Упростим выражение с помощью формулы квадрата косинуса:

   

   

Преобразуем каждый из членов разности следующим образом:

   

и

   

Тогда

   

Полученное выражение представляет собой правую часть формулы произведения синусов, т.е.

   

Ответ
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Квадрат — синус — Большая Энциклопедия Нефти и Газа, статья, страница 1

Квадрат — синус

Cтраница 1

Квадраты синусов определяют на выходе вторую гармонику.  [1]

Преобразуя квадрат синуса, находим.  [2]

Сумма квадратов синуса и косинуса одного угла равна единице.  [3]

Среднее значение квадрата синуса и квадрата косинуса равно, как известно, половине.  [4]

Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заменить линейными функциями от синуса и косинуса двойного угла. Такие замены делать выгодно, так как они понижают порядок уравнения.  [5]

Для исследования суммы квадратов синусов этих углов воспользуйтесь теоремой косинусов.  [6]

Доказать, что сумма квадратов синусов трех углов, образуемых произвольным лучом с ребрами прямого трехгранного угла, равна двум.  [7]

Так как в выражении (5.21) присутствует квадрат синуса, то мгновенная мощность всегда является положительной величиной. Положительный знак мгновенной мощности отражает тот факт, что происходит, односторонний процесс поглощения энергии в цепи переменного тока.  [9]

Эту теорему можно сформулировать так: квадрат синуса любого угла плюс квадрат косинуса того же угла равен единице.  [10]

Для получения подобного ряда следует взять отношения квадрата синуса 6 — каждой из линий Кка дифракционной картины рент-генограммы к квадрату синуса 9i первой линии.  [11]

Для получения подобного ряда следует взять отношения квадрата синуса в — каждой из линий ХЛа дифракционной картины рентгенограммы к квадрату синуса 0Г первой линии.  [13]

Формула или закон, известный обычно как закон квадрата синуса сопротивления воздуха Ньютона, относится к силе, действующей на наклонную плоскую пластину, омываемую равномерным воздушным потоком.  [14]

Косинус двойного угла равен квадрату косинуса данного угла минус квадрат синуса того же угла.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Формулы (тождества) синус, косинус, тангенс, котангенс тройного угла


1. Формула стороны квадрата через диагональ

 

 

a — сторона квадрата

d — диагональ квадрата

 

Формула стороны квадрата, (a):


 

 

2. Формула стороны квадрата через радиус вписанной окружности

 

a — сторона квадрата

R — радиус вписанной окружности

D — диаметр вписанной окружности

 

Формула стороны квадрата, (a):


 

3. Формула стороны квадрата через радиус описанной окружности

 

a — сторона квадрата

R — радиус описанной окружности

D — диаметр описанной окружности

d — диагональ

 

 

Формула стороны квадрата, (a):


 

4. Формула стороны квадрата через площадь и периметр

 

a — сторона квадрата

S — площадь квадрата

P — периметр квадрата

 

 

Формула стороны квадрата, (a):


 

5. Формула стороны квадрата через линию выходящую из угла на середину стороны квадрата

 

a — сторона квадрата

C — линия выходящая из угла на середину стороны квадрата

 

 

Формула стороны квадрата, (a):



 

Формула площади квадрата

Формула периметра квадрата

Все формулы по геометрии


Диагонали прямоугольника равны между собой. Диагональ делит прямоугольник на два равных прямоугольных треугольника ABC и ACD. Диагональ равна диаметру описанной окружности.

 

1. Формулы длины диагонали в прямоугольнике.

 

dдиагональ прямоугольника

a, b — стороны

α, β — углы полученные от деления, диагональю, прямого угла

 

 

Формула диагонали через стороны, (d):

 

 

Формулы диагонали через сторону и угол, (d):

 

Формулы величины углов через диагональ и стороны, (α, β):

 

 

2. Формулы углов между диагоналями в прямоугольнике.

 

d — диагонали прямоугольника

a, b — стороны

α, β — углы между диагоналями

 

 

Формулы углов между диагоналями через стороны и диагональ, (α, β ):

 




1. Формулы диагонали квадрата через стороны, площадь, периметр

a — сторона квадрата

S — площадь квадрата

P — периметр квадрата

d — диагональ квадрата

 

Формулы диагонали квадрата, (d ):


 

 

2. Формула диагонали квадрата через радиус вписанной окружности

 

R — радиус вписанной окружности

D — диаметр вписанной окружности

d — диагональ квадрата

 

 

Формула диагонали квадрата, (d ):


 

3. Формула диагонали квадрата через радиус описанной окружности

 

R — радиус описанной окружности

D — диаметр описанной окружности

d — диагональ

 

 

Формула диагонали квадрата, (d ):


 

4. Формула диагонали квадрата через линию выходящую из угла на середину стороны квадрата

 

 

C — линия выходящая из угла на середину стороны квадрата

d — диагональ

 

 

Формула диагонали квадрата, (d ):



 

Формула площади квадрата

Формула периметра квадрата

Все формулы по геометрии

www-formula.ru

Тригонометрические тождества и преобразования

Для решения некоторых задач будет полезной таблица тригонометрических тождеств, которая позволит гораздо проще совершать преобразования функций:

Простейшие тригонометрические тождества

Частное от деления синуса угла альфа на косинус того же угла равно тангенсу этого угла (Формула 1). См. также доказательство правильности преобразования простейших тригонометрических тождеств. 
Частное от деления косинуса угла альфа на синус того же угла равно котангенсу этого же угла (Формула 2)
Секанс угла равен единице, деленной на косинус этого же самого угла (Формула 3)
Сумма квадратов синуса и косинуса одного и того же угла равна единице (Формула 4). см. также доказательство суммы квадратов косинуса и синуса.
Сумма единицы и тангенса угла равна отношению единицы к квадрату косинуса этого угла (Формула 5)
Единица плюс котангенс угла равна частному от деления единицы на синус квадрат этого угла (Формула 6)
Произведение тангенса на котангенс одного и того же угла равно единице (Формула 7).

Преобразование отрицательных углов тригонометрических функций (четность и нечетность)

Для того, чтобы избавиться от отрицательного значения градусной меры угла при вычислении синуса, косинуса или тангенса, можно воспользоваться следующими тригонометрическими преобразованиями (тождествами), основанными на принципах четности или нечетности тригонометрических функций.


Как видно, косинус и секанс является четной функцией, синус, тангенс и котангенс — нечетные функции.

Синус отрицательного угла равен отрицательному значению синуса этого же самого положительного угла (минус синус альфа).
Косинус «минус альфа» даст тоже самое значение, что и косинус угла альфа.
Тангенс минус альфа равен минус тангенс альфа.

Формулы приведения двойного угла (синус, косинус, тангенс и котангенс двойного угла)

Если необходимо разделить угол пополам, или наоборот, перейти от двойного угла к одинарному, можно воспользоваться следующими тригонометрическими тождествами:


Преобразование двойного угла (синуса двойного угла, косинуса двойного угла и тангенса двойного угла) в одинарный происходит по следующим правилам:

Синус двойного угла равен удвоенному произведению синуса на косинус одинарного угла

Косинус двойного угла равен разности квадрата косинуса одинарного угла и квадрата синуса этого угла

Косинус двойного угла равен удвоенному квадрату косинуса одинарного угла минус единица

Косинус двойного угла равен единице минус двойной синус квадрат одинарного угла

Тангенс двойного угла равен дроби, числитель которой — удвоенный тангенс одинарного угла, а знаменатель равен единице минус тангенс квадрат одинарного угла.

Котангенс двойного угла равен дроби, числитель которой — квадрат котангенса одинарного угла минус единица, а знаменатель равен удвоенному котангенсу одинарного угла

Формулы универсальной тригонометрической подстановки

Указанные ниже формулы преобразования могут пригодиться, когда нужно аргумент тригонометрической функции ( sin α, cos α, tg α) разделить на два и привести выражение к значению половины угла. Из значения α получаем  α/2 .

Данные формулы называются формулами универсальной тригонометрической подстановки. Их ценность заключается в том, что тригонометрическое выражение с их помощью сводится к выражению тангенса половины угла, вне зависимости от того, какие тригонометрические функции (sin cos tg ctg) были в выражении изначально. После этого уравнение с тангенсом половины угла решить гораздо проще.

Тригонометрические тождества преобразования половины угла

Указанные ниже формулы тригонометрического преобразования половинной величины угла к его целому значению.
Значение аргумента тригонометрической функции α/2 приводится к значению аргумента тригонометрической функции α.

Тригонометрические формулы сложения углов

cos (α — β) = cos α · cos β + sin α · sin β

sin (α + β) = sin α · cos β + sin β · cos α 

sin (α — β) = sin α · cos β — sin β · cos α 
cos (α + β) = cos α · cos β — sin α · sin β 

Тангенс и котангенс суммы углов альфа и бета могут быть преобразованы по следующим правилам преобразования тригонометрических функций:

Тангенс суммы углов равен дроби, числитель которой — сумма тангенса первого и тангенса второго угла, а знаменатель — единица минус произведение тангенса первого угла на тангенс второго угла.

Тангенс разности углов равен дроби, числитель которой равен разности тангенса уменьшаемого угла и тангенса вычитаемого угла, а знаменатель — единице плюс произведение тангенсов этих углов.

Котангенс суммы углов равен дроби, числитель которой равен произведению котангенсов этих углов плюс единица, а знаменатель равен разности котангенса второго угла и котангенса первого угла.

Котангенс разности углов равен дроби, числитель которой — произведение котангенсов этих углов минус единица, а знаменатель равен сумме котангенсов этих углов.

Данные тригонометрические тождества удобно применять, когда нужно вычислить, например, тангенс 105 градусов (tg 105). Если его представить как tg (45 + 60), то можно воспользоваться приведенными тождественными преобразованиями тангенса суммы углов, после чего просто подставить табличные значения тангенса 45 и тангенса 60 градусов.

Формулы преобразования суммы или разности тригонометрических функций

Выражения, представляющие собой сумму вида sin α + sin β можно преобразовать с помощью следующих формул:

Формулы тройного угла — преобразование sin3α cos3α tg3α в sinα cosα tgα

Иногда необходимо преобразовать тройную величину угла так, чтобы аргументом тригонометрической функции вместо 3α стал угол α.
В этом случае можно воспользоваться формулами (тождествами) преобразования тройного угла:

Формулы преобразования произведения тригонометрических функций

Если возникает необходимость преобразовать произведение синусов разных углов косинусов разных углов или даже произведения синуса на косинус, то можно воспользоваться следующими тригонометрическими тождествами:

В этом случае произведение функций синуса, косинуса или тангенса разных углов будет преобразовано в сумму или разность.

Формулы приведения тригонометрических функций

Пользоваться таблицей приведения нужно следующим образом. В строке выбираем функцию, которая нас интересует. В столбце — угол. Например, синус угла (α+90) на пересечении первой строки и первого столбца выясняем, что sin (α+90)  = cos α .

См. также Полный список формул приведения тригонометрических функций.


Угол α + 90
α + π/2
α + 180
α + π
α + 270
α + 3π/2
90 — α
π/2- α
180 — α
π- α
270 — α
3π/2- α
360 — α
2π- α
sin cos α -sin α -cos α cos α sin α -cos α -sin α
cos -sin α -cos α sin α sin α -cos α -sin α cos α
tg -ctg α tg α -ctg α ctg α -tg α ctg α -tg α
ctg -tg α ctg α -tg α tg α -ctg α tg α -ctg α
 Начать курс обучения

profmeter.com.ua

Квадрат — синус — Большая Энциклопедия Нефти и Газа, статья, страница 3

Квадрат — синус

Cтраница 3

Итак, дифференциал котангенса какой-либо дуги равняется дифференциалу дуги, взятому с обратным знаком и разделенному на квадрат синуса той же дуги.  [31]

Например, можно взять k k 2 и попробовать построить фильтры поч-свой косинусный член, и сумма квадратов синусов делится на две части.  [32]

Какая формула называется формулой: а) синуса двойного угла; б) косинуса двойного угла; в) квадрата синуса половинного угла; г) квадрата косинуса половинного угла.  [33]

Для получения подобного ряда следует взять отношения квадрата синуса 6 — каждой из линий Кка дифракционной картины рент-генограммы к квадрату синуса 9i первой линии.  [34]

Для получения подобного ряда следует взять отношения квадрата синуса в — каждой из линий ХЛа дифракционной картины рентгенограммы к квадрату синуса 0Г первой линии.  [35]

Действительно, при различных значениях числа п, например при п пг и п — 2 N — 1, квадраты синусов угла nnJN и n ( N — n / N ( а следовательно, и частоты) будут одинаковы, хотя фазы колебаний будут различны. IN 2л — ( fv Эги пары одинаковых частот называются вырожденными.  [36]

Если в уравнении есть синус или косинус в четной степени, то степень уравнения может быть понижена с помощью формул 14 и 15, выражающих соответственно квадраты синуса и косинуса угла через косинус двойного угла.  [37]

В процессе колебаний кинетическая энергия переходит в потенциальную и обратно. Это видно из приведенных выражений: значение кинетической энергии определяется квадратом синуса, а потенциальной — квадратом косинуса одного и того же аргумента.  [38]

Предположим, что и — Ulm sin ю U2m sin co2 /, причем со2 и о1 вообще не кратны друг другу. Подставим это выражение для и в формулу для i и заменим квадраты синусов выражениями через косинусы двойных углов, а произведение синусов через косинусы разности и суммы углов.  [39]

Из (98.5) следует, что плотность энергии в каждый момент времени в разных точках пространства различна. В одной и той же точке плотность энергии изменяется со временем по закону квадрата синуса.  [40]

Из (98.5) следует, что плотность энергии в каждый момент времени в разных точках пространства различна. В одной и той же точке плотность энергии изменяется со временем по закону квадрата синуса.  [41]

Эта добавочная составляющая ЭДС вызывает появление погрешностей. Аналогично в косинусной обмотке при нагрузке поперечным потоком Ф9 индуцируется добавочная ЭДС ECtI, пропорциональная току нагрузки и квадрату синуса 0, которая также вызывает появление погрешностей.  [42]

Формула (13.16) выражает условие существования телеанастигматической линзы. Рассматривая ее, видим, что величина Г — увеличение телеанастигматической линзы — всегда должна быть положительной, так как она определяется отношением квадратов синусов углов в. Сами же эти углы могут иметь как одинаковые, так и различные знаки.  [43]

Результаты этих опытов, опубликованные в отчете Новые эксперименты о сопротивлении жидкостей ( 1777 г.), подвергали сомнению одно из существенных положений теории сопротивления Ньютона, а именно пропорциональность сопротивления тела квадрату синуса угла между направлениями скорости потока и касательной к поверхности тел. В настоящее время формула Ньютона применяется для приближенного решения ряда задач газовой динамики.  [44]

Страницы:      1    2    3    4

www.ngpedia.ru

Формулы (тождества) синус, косинус, тангенс, котангенс двойного угла


Формулы преобразования функций двойного угла (2α) в выражение через одинарный угол (α)

 

sin(2α)- через sin и cos:

 

sin(2α)- через tg и ctg:

 

 

cos(2α)- через sin и cos:

 

cos(2α)- через tg и ctg:

 

tg(2α):

 

сtg(2α):


Подробности
Автор: Administrator

www-formula.ru

Правило пропорций – Пропорции | Формулы с примерами

Пропорции | Формулы с примерами

Что такое пропорция?

Определение
Пропорция — это верное равенство двух отношений.

Где a ? 0, b ? 0, c ? 0, d ? 0.

a и d — называют крайними членами пропорции;
b и c — называют средними членами пропорции.

Пример
3  =  18   или 3 : 5 = 18 : 30;
5 30
7  =  21   или 7 : 3 = 21 : 9;
3 9
12  =  48   или 12 : 15 = 48 : 60.
15 60

Основное свойство пропорции

Свойство

Произведение крайних членов пропорции равно произведению ее средних членов.

Пример
12  =  24 , значит 12 • 8 = 4 • 24;
4 8
11  =  33 , значит 11 • 21 = 7 • 33;
7 21
23  =  69 , значит 23 • 42 = 14 • 69.
14 42

Обратное свойство

Свойство Пример
11 • 4 = 2 • 22 значит,  11  =  22 ;
2 4
21 • 6 = 42 • 3 значит,  21  =  42 ;
3 6
33 • 21 = 7 • 99 значит,  33  =  99 .
7 21

Производные пропорции

Правило
Пример
4  =  8  или  7  =  14  или  8  =  17  или  4  =  7 ;
7 14 4 8 4 7 8 14
5  =  10  или  6  =  12  или  10  =  12  или  5  =  6 ;
6 12 5 10 5 6 10 12
9  =  18  или  3  =  6  или  6  =  18  или  9  =  3 .
3 6 9 18 3 9 18 6

Правило
! По трем известным членам пропорции всегда можно найти
ее неизвестный член.

Пример
15  =  x , значит x = 15 • 14  = 15 • 2 = 30;
7 14 7
21  =  x , значит x = 21 • 9  = 21 • 3 = 63;
3 9 3
33  =  99 , значит x = 4 • 99  = 4 • 3 = 12.
4 x 33

Отношения

Определение
Отношением двух чисел a и b называется их частное a : b.

Показывает во сколько раз a больше b или какую часть число a составляет от b.1

Примеры отношений

Пример 1
Отношение числа 16 к числу 4 равно 16 : 4 = 4, т.е. 16 в 4 раза больше чем,
чем 4.

Пример 2
Отношение числа 4 к числу 12 равно 4 : 12 = 13, т.е. 4 составляет треть
от числа 12.

Пример 3
Масса стакана с жидкостью равна 440г. Стакан весит 40г. Какую часть
всей массы составляет масса стакана? Во сколько раз масса стакана с
жидкостью больше массы жидкости?

Решение:

Масса стакана составляет 40 : 440 =  1 11 часть полной массы.
Масса жидкости равна 440 — 40 = 400г; масса стакана с жидкостью больше массы самой жидкости в 440 : 400 = 1,1 раза.

formula-xyz.ru

Составить пропорцию

Составить пропорцию. В этой статье хочу поговорить с вами о пропорции. Понимать, что такое пропорция, уметь составлять её – это очень важно, она действительно спасает. Это вроде бы маленькая и незначительная «буковка» в большом алфавите математики, но без неё математика  обречена быть хромой  и неполноценной. Для начала напомню, что такое пропорция. Это равенство вида:

что тоже самое (это разная форма записи).

Пример:

Говорят – один относится к двум также, как четыре относится к восьми. То есть это равенство двух отношений (в данном примере отношения числовые).

Основное правило пропорции:

a:b=c:d

произведение крайних членов равно произведению средних

то есть

a∙d=b∙c

*Если какая-либо величина в пропорции неизвестна, ее всегда можно найти. 

Если рассматривать форму записи вида:

то можно использовать следующее правило, его называют «правило креста»: записывается равенство произведений элементов (чисел или выражений) стоящих по диагонали

a∙d=b∙c

Как видите результат тот же.

Если три элемента пропорции известны, то мы всегда можем найти четвёртый.

Именно в этом суть пользы и необходимость пропорции при решении задач.

Давайте рассмотрим все варианты, где неизвестная величина х находится в «любом месте» пропорции, где a, b,  c – числа:

Величина стоящая по диагонали от х записывается в знаменатель дроби, а известные величины стоящие по диагонали записываются в числитель, как произведение. Его запоминать не обязательно, вы и так всё верно вычислите, если усвоили основное правило пропорции.

Теперь главный вопрос, связанный с названием статьи. Когда пропорция спасает и где используется? Например:

1. Прежде всего это задачи на проценты. Мы рассматривали их в статьях «Задачи на проценты. Часть 1!» и «Задачи на проценты. Часть 2!».

2. Многие формулы заданы в виде пропорций:

    > теорема синусов

    > отношение элементов в треугольнике

    > теорема тангенсов

> теорема Фалеса и другие.

3. В задачах по геометрии в условии часто задаётся отношение сторон (других элементов) или площадей, например 1:2, 2:3  и прочие.

4. Перевод единиц измерения, причём пропорция используется для перевода единиц как в одной  мере, так и для перевода из одной меры в другую:

  —  часы в минуты (и наоборот).

  —  единицы объёма, площади.

  —  длины, например мили в километры (и наоборот).

  —  градусы в радианы  (и наоборот).

здесь без составления пропорции не обойтись.

Ключевой момент в том, что нужно правильно установить соответствие, рассмотрим простые примеры:

Необходимо определить число, которое составляет 35%  от 700.

В задачах на проценты за 100% принимается та величина, с которой сравниваем. Неизвестное число обозначим как х. Установим соответствие:

Можно сказать, что семисот тридцати пяти соответствует 100 процентов.

Иксу соответствует 35 процентов. Значит,

700    –    100%

х       –     35 %

Решаем

Ответ: 245

Переведём 50 минут в часы.

Мы знаем, что одному часу соответствует 60 минут. Обозначим соответсвие — x часов это 50 минут. Значит

1    –    60

х    –    50

Решаем:

То есть 50 минут это пять шестых часа.

Ответ: 5/6

Николай Петрович проехал 3 километра. Сколько это будет в милях (учесть, что 1 миля это 1,6 км)?

Известно, что 1 миля это 1,6 километра. Число миль, которые проехал Николай Петрович примем за х. Можем установить соответствие:

Одной миле соответствует 1,6 километра.

Икс миль это три километра.

1    –    1,6

х    –    3

Ответ: 1,875 миль

Вы знаете, что для перевода  градусов в радианы (и обратно) существуют  формулы. Я их не записываю, так как запоминать их считаю излишним, и так вам в памяти приходится держать много информации. Вы всегда сможете перевести градусы в радианы (и обратно), если воспользуетесь пропорцией.

Переведём 65 градусов в радианную меру.

Главное это запомнить, что 180 градусов это Пи радиан.

Обозначим искомую величину как х. Устанавливаем соответствие.

Ста восьмидесяти градусам соответствует Пи радиан.

Шестидесяти пяти градусам соответствует х радиан.

Если записать отношение в общем виде, то получится

То есть, если необходимо перевести градусы в радианы, то подставляете в эту пропорцию градусы и вычисляете радианы; если необходимо перевести радианы в градусы, то подставляете радианы  и вычисляете градусы.

Можете изучить статью по этой теме на блоге. Материал в ней изложен несколько по иному, но принцип тот же. На этом закончу. Обязательно будет ещё что-нибудь интересненькое, не пропустите!

Если вспомнить само определение математики, то в нём есть такие слова: математика изучает количественные ОТНОШЕНИЯ (ОТНОШЕНИЯ — здесь ключевое слово). Как видите в самом определении математики заложена пропорция. Вообщем, математика без пропорции это не математика!!!

Всего доброго!

С уважением, Александр 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

matematikalegko.ru

Как составить и рассчитать пропорцию: онлайн калькулятор

Онлайн калькулятор пропорций

Формула пропорций

Пропо́рция — это равенство двух отношений, когда a:b=c:d

средние
члены
1:10=7:70
крайние члены
0,1=0,1
1 10 = 7 70

Основные свойства пропорции

Произведение крайних членов равно произведению средних членов (крест-накрест): если a:b=c:d, то a⋅d=b⋅c

1
10 ✕ 7
70

1  70 = 10  7

Обращение пропорции: если a:b=c:d, то b:a=d:c

1
10 7
70

10
1 = 70
7

Перестановка средних членов: если a:b=c:d, то a:c=b:d

1
10 7
70

1
7 = 10
70

Перестановка крайних членов: если a:b=c:d, то d:b=c:a

1
10 7
70

70
10 = 7
1

Решение пропорции с одним неизвестным | Уравнение

1 : 10 = x : 70



1
10 = x
70

Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение

x = 1  70
10 = 7

Как посчитать пропорцию

Задача: нужно пить 1 таблетку активированного угля на 10 килограмм веса. Сколько таблеток нужно выпить, если человек весит 70 кг?

Составим пропорцию:
1 таблетка — 10 кг
x таблеток — 70 кг

Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение:
1 таблетка
x таблеток ✕ 10 кг
70 кг

x = 1  70 : 10 = 7

Ответ: 7 таблеток

Задача: за пять часов Вася пишет две статьи. Сколько статей он напишет за 20 часов?

Составим пропорцию:
2 статьи — 5 часов 
x статей — 20 часов

x = 2  20 : 5 = 8

Ответ: 8 статей

Будущим выпускникам школ могу сказать, что умение составлять пропорции мне пригодилось и при расчёте процентов, и для того, чтобы пропорционально уменьшать картинки, и в HTML-вёрстке интернет-страницы, и в бытовых ситуациях.

shpargalkablog.ru

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике — Арифметика

Пропорции, члены пропорции. Основное свойство пропорции

      Частное от деления числа   a   на число   b   называют отношением числа   a   к числу   b.

      Число   a   называют предыдущим членом отношения, число   b   – последующим членом отношения.

      Пропорцией называют равенство двух отношений:

.

      Иногда пропорцию записывают так:

a : b = c : d .

      И в одной, и во второй формах записи пропорции числа   a   и   d   называют крайними членами пропорции, а числа   b   и   c   – средними членами пропорции.

      Для любой пропорции справедливо следующее равенство, которое называют основным свойством пропорции:

      Словесно это равенство можно сформулировать так: произведение крайних членов пропорции равно произведению средних членов пропорции.

      Для того, чтобы доказать основное свойство пропорции, умножим пропорцию на выражение   .

      В результате получим:

что и требовалось доказать.

      Основное свойство пропорции позволяет по трем любым известным членам пропорции найти четвертый неизвестный член пропорции. Покажем это на двух примерах.

      Пример 1. Найти неизвестный член пропорции   x ,   если

      Решение. Воспользовавшись основным свойством пропорции, получаем:

      Ответ:   3,15 .

      Пример 2. Найти неизвестный член пропорции   x ,   если

      Решение. Воспользовавшись основным свойством пропорции, получаем:

      Ответ: .

      Из основного свойства пропорции легко вытекают также свойства пропорции, которые называют перестановкой членов пропорции. Эти свойства формулируются так: если

.

то

Производные пропорции

      Справедливы также свойства пропорции, которые называют производными пропорциями. Эти свойства формулируются так: если

,

то

      В качестве примера докажем первое из указанных свойств (остальные свойства доказываются аналогично). Для этого к обеим частям пропорции

.

достаточно прибавить 1. В результате получаем,

что и требовалось.

      Замечание. Последнее из свойств пропорций является наиболее общим и может быть доказано, например, с помощью основного свойства пропорции.

Свойства равных отношений

      Если выполнено соотношение

то выполнено и соотношение

где

k1 ,  k2 , … kn

– произвольные числа, которые не могут все одновременно равняться нулю.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Что такое пропорция | Математика

Здесь мы рассмотрим, что такое пропорция, как называются члены пропорции и основное свойство пропорции.

Определение пропорции:

Пропорция — это равенство двух отношений.

С помощью букв пропорцию записывают так:

   

или

   

Читают: «a относится к b как c относится к d» или «отношение a к b равно отношению c к d».

Числа a и d называют крайними членами пропорции, числа b и c — средними членами пропорции:

Примеры пропорций:

1) 4,8:1,6=3,6:1,2

Здесь 4,8 и 1,2 — крайние члены пропорции, 1,6 и 3,6 — средние члены пропорции.

   

Здесь 2,1 и 6 — крайние члены пропорция, 8,4 и 1,5 — средние члены пропорции.

Основное свойство пропорции:

Произведение крайних членов пропорции равно произведению ее средних членов.

   

   

Отсюда следует, что

   

Таким образом, если в пропорции поменять местами крайние члены или средние члены, то получим новые верные пропорции.

Пропорция- это равенство.  Если это равенство содержит переменную, значение которой надо найти, то оно является уравнением. Как решать пропорции, мы рассмотрим в следующий раз.
Кроме того,  пропорции используются для решения некоторых задач. В частности,  пропорции существенно облегчают решение задач на проценты.  Позже мы рассмотрим также решение задач с помощью пропорций.

www.for6cl.uznateshe.ru

Пропорция

Продолжаем изучать соотношения. В данном уроке мы познакомимся с пропорцией.

Что такое пропорция?

Пропорцией называют равенство двух отношений. Например, отношение  равно отношению 

Данная пропорция читается следующим образом:

Десять так относится к пяти, как два относится к одному

Предположим, что в классе 10 девочек и 5 мальчиков

Запишем отношение десяти девочек к пяти мальчикам:

10 : 5

Преобразуем данное отношение в дробь

Выполнив деление в этой дроби, мы получим 2. То есть десять девочек так будут относиться к пяти мальчикам, что на одного мальчика будет приходиться две девочки

Теперь рассмотрим другой класс в котором две девочки и один мальчик

Запишем отношение двух девочек к одному мальчику:

2 : 1

Преобразуем данное отношение в дробь:

Выполнив деление в этой дроби, мы снова получим 2. То есть две девочки так будут относиться к одному мальчику, что на этого одного мальчика будут приходиться две девочки:

Можно сделать вывод, что отношение  пропорционально отношению . Поэтому оно и читалось как «десять так относится к пяти, как два относится к одному».

В нашем примере десять девочек так относятся к пяти мальчикам, как и две девочки относятся к одному мальчику.

Пример 2. Рассмотрим отношение 12 девочек к 3 мальчикам

а также отношение 12 девочек к 2 мальчикам

Данные отношения не являются пропорциональными. Другими словами, мы не можем записать, что , поскольку первое отношение, как видно на рисунке показывает, что на одного мальчика приходятся четыре девочки, а второе отношение показывает, что на одного мальчика приходятся шесть девочек.

Поэтому отношение  не пропорционально отношению .

Из рассмотренных примеров видно, что пропорция составляется из дробей. Первая рассмотренная нами пропорция  состоит из двух дробей. Если выполнить деление в этих дробях, то получим, что 2=2. Понятно, что 2 равно 2.

Вторая рассмотренная нами пропорция была . Мы пришли к выводу, что она составлена неправильно, поэтому поставили между дробями  и  знак не равно (≠). Если выполнить деление в этих дробях, получим числа 4 и 6. Понятно, что 4 не равно 6.

Рассмотрим пропорцию . Данная пропорция составлена правильно, поскольку отношения    и    равны между собой:

Можно проверить это, выполнив деление в этих дробях, то есть разделить 4 на 2, а 8 на 4. В результате с двух сторон получатся двойки. А 2 равно 2

2 = 2

Все числа, находящиеся в пропорции (числители и знаменатели обеих дробей) называются членами пропорции. Эти члены подразделяются на два вида: крайние члены и средние члены.

В нашей пропорции    крайние члены это 4 и 4, а средние члены это 2 и 8

Почему крайние члены называют крайними, а средние средними? Если записать пропорцию не в дробном, а в обычном виде, то сразу станет всё понятно:

4 : 2 = 8 : 4

Числа 4 и 4 располагаются с краю, поэтому их назвали крайними, а числа 2 и 8 располагаются посередине, поэтому их назвали средними:

С помощью переменных пропорцию можно записать так:

Данное выражение можно прочесть следующим образом:

a так относится к b, как c относится к d

Смысл данного предложения уже понятен. Речь идет о членах, участвующих в соотношении. a и d — это крайние члены пропорции, b и c — средние члены пропорции.


Основное свойство пропорции

Основное свойство пропорции выглядит следующим образом:

Произведение крайних членов пропорции равно произведению её средних членов.

Мы знаем, что произведение это ни что иное, как обычное умножение. Чтобы проверить правильно ли составлена пропорция, нужно перемножить её крайние и средние члены. Если произведение крайних членов будет равно произведению средних членов, то такая пропорция составлена правильно.

Например, проверим правильно ли составлена пропорция . Для этого перемножим её крайние и средние члены. Легко заметить, что крайние и средние члены пропорции располагаются «крест-накрест», поэтому в умножении нет ничего сложного. Перемножаем члены пропорции «крест-накрест»:

4 × 4 = 16 — произведение крайних членов пропорции равно 16.

2 × 8 = 16 — произведение средних членов пропорции так же равно 16.

4 × 4 = 2 × 8

16 = 16

4 × 4 = 2 × 8 — произведение крайних членов равно произведению средних членов. Значит пропорция  составлена правильно.


Пример 2. Проверить правильно ли составлена пропорция

Проверим равно ли произведение крайних членов пропорции произведению её средних членов. Перемножим члены пропорции крест-накрест:

2 × 6 = 12 — произведение крайних членов пропорции равно 12

3 × 1 = 3 — произведение средних членов пропорции равно 3

2 × 6 ≠ 3 × 1

12 ≠ 3

2 × 6 ≠ 3 × 1 — произведение крайних членов пропорции НЕ равно произведению её средних членов. Значит пропорция  составлена неправильно.

Поэтому в пропорции  разумнее заменить знак равенства (=) на знак не равно (≠)


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Навигация по записям

spacemath.xyz

Пропорция

Если у двух отношений одинаковое частное, то их можно соединить знаком равенства, тогда это равенство будет уже пропорцией.

Определение, Равенство двух отношений называется пропорцией.

Пропорции можно записывать в виде частного двух натуральных чисел, обыкновенными дробями, численно и буквенно. Например:
2 : 3 = 8 : 12;

Буквенная запись пропорции a : b = c : d — это общий
вид пропорции, где:

a и d — это крайние члены пропорции;

b и c — это средние члены пропорции.

Основное свойство пропорции: a * d = b * c

Правило . Произведение средних членов истинной пропорции равно произведению ее крайних членов.

Правило. Средние и крайние члены пропорции можно менять местами, от этого пропорция не изменится.

Например, для истинной пропорции a : b = c : d верно: a * d = b * c

Истинными будут и пропорции a : b = b : d, d : b = c : a, d : c = b : a.

В пропорции один из ее членов можно заменить буквой (обозначить буквой неизвестный член пропорции).

Например: 2 : 3 = x : 12 или x : 3 = 8 : 12.

В первом примере неизвестен средний член пропорции, а во втором — ее крайний член.

Пропорция с одним неизвестным часто встречается в решении задач (значение неизвестного — это ответ на вопрос задачи). Вычислить любой член пропорции можно по следующем правилу.

Правило . Неизвестный крайний член пропорции равен частному произведения средних членов пропорции и известного крайнего члена.

Неизвестный средний член пропорции равен частному произведения крайних членов пропорции и известного среднего члена.

Определение неизвестного члена пропорции :

x : b = c : d, x = (b * c) : d
a : b = c : x, x = (b * c) : a
a : x = c : d, x = (a * d) : c
a : b = x : d, x = (a * d) : b


shkolo.ru

Паралелограм це – Паралелограм — Вікіпедія

Параллелограмм. Свойства и признаки параллелограмма

Определение параллелограмма

 

Параллелограмм – четырехугольник, у которого противоположные стороны попарно  параллельны.

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Свойства параллелограмма

 

1. Противоположные стороны параллелограмма  попарно равны

2. Противоположные углы параллелограмма попарно равны

 

3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов

4. Сумма всех углов равна 360°

 

 

5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

 

 

 

 

6. Точка пересечения диагоналей является центром симметрии параллелограмма

 

 

 

7. Диагонали   параллелограмма и стороны
связаны следующим соотношением:

 

 

8. Биссектриса отсекает от параллелограмма равнобедренный треугольник

 

 

Признаки параллелограмма

 

Четырехугольник является параллелограммом, если выполняется хотя бы одно из следующих условий:

1. Противоположные стороны попарно равны:

2. Противоположные углы попарно равны:

3. Диагонали пересекаются и в точке пересечения делятся пополам

4. Противоположные стороны равны и параллельны:

5.

 

Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства  применяются в задачах:


Формулы площади параллелограмма смотрите здесь.

Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.

 

 

egemaximum.ru

Паралелограм та його властивості. Ознаки паралелограма

Паралелограм та його властивості. Ознаки паралелограма

Великий клас чотирикутників становлять паралелограми.

Чотирикутник, у якого протилежні сторони паралельні, називається паралелограмом.

Висотою паралелограма називається відрізок, що є перпендикуляром до прямої, яка містить протилежну сторону.

У паралелограма з кожної його вершини можна провести по дві висоти. Висоти, проведені з вершин тупих кутів паралелограма, лежать у паралелограмі; висоти, проведені з гострих тупих кутів паралелограма, лежать зовні паралелограма.

Властивості паралелограма

У паралелограмі протилежні сторони рівні.

У паралелограмі протилежні кути рівні.

У паралелограмі сума кутів, прилеглих до однієї сторони, дорівнює 180°.

Діагоналі паралелограма перетинаються і точкою перетину діляться навпіл.

Діагоналі паралелограма ділять його на два рівні трикутники.

Ознаки паралелограма

Якщо діагоналі чотирикутника перетинаються й у точці перетину діляться навпіл, то цей чотирикутник паралелограм.

Якщо в чотирикутнику дві протилежні сторони паралельні і рівні, то цей чотирикутник паралелограм.

Якщо в чотирикутнику протилежні сторони попарно рівні, то цей чотирикутник паралелограм.

Якщо в чотирикутнику протилежні кути попарно рівні, то цей чотирикутник паралелограм.

Властивість діагоналей паралелограма:

Діагоналі паралелограма перетинаються й у точці перетину діляться навпіл.

Властивість протилежних сторін і кутів паралелограма:

У паралелограма протилежні сторони й кути рівні.

Це цікаво.

Якщо провести бісектриси двох протилежних кутів паралелограма, то вони будуть паралельні або співпадуть.

Якщо провести бісектриси двох кутів, прилеглих до однієї сторони паралелограма, то вони будуть перпендикулярні.

shkolyar.in.ua

Параллелограмм. Определение, свойства и признаки

Свойства параллелограмма

1. Противоположные стороны тождественны.

Доказательство

Первым делом проведем диагональ AC. Получаются два треугольника: ABC и ADC.

Так как ABCD — параллелограмм, то справедливо следующее:

AD || BC \Rightarrow \angle 1 = \angle 2 как лежащие накрест.

AB || CD \Rightarrow \angle3 = \angle 4 как лежащие накрест.

Следовательно, \triangle ABC = \triangle ADC (по второму признаку: \angle 1 = \angle 2, \angle 3 = \angle 4 и AC — общая).

И, значит, \triangle ABC = \triangle ADC, то AB = CD и AD = BC.

Доказано!

2. Противоположные углы тождественны.

Доказательство

Согласно доказательству свойства 1 мы знаем, что \angle 1 = \angle 2, \angle 3 = \angle 4. Таким образом сумма противоположных углов равна: \angle 1 + \angle 3 = \angle 2 + \angle 4. Учитывая, что \triangle ABC = \triangle ADC получаем \angle A = \angle C, \angle B = \angle D.

Доказано!

3. Диагонали разделены пополам точкой пересечения.

Доказательство

Проведем еще одну диагональ.

По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD. Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \triangle AOB = \triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов \angle 2 и \angle 1) и AO = OC (напротив углов \angle 3 и \angle 4 соответственно).

Доказано!

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?». То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.

AB = CD; AB || CD \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим подробнее. Почему AD || BC?

\triangle ABC = \triangle ADC по свойству 1: AB = CD, AC — общая и \angle 1 = \angle 2 как накрест лежащие при параллельных AB и CD и секущей AC.

Но если \triangle ABC = \triangle ADC, то \angle 3 = \angle 4 (лежат напротив AB и CD соответственно). И следовательно AD || BC (\angle 3 и \angle 4 — накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.

AB = CD, AD = BC \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим данный признак. Еще раз проведем диагональ AC.

По свойству 1 \triangle ABC = \triangle ACD.

Из этого следует, что: \angle 1 = \angle 2 \Rightarrow AD || BC и \angle 3 = \angle 4 \Rightarrow AB || CD, то есть ABCD — параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.

\angle A = \angle C, \angle B = \angle D \Rightarrow ABCD — параллелограмм.

Доказательство

2 \alpha + 2 \beta = 360^{\circ} (поскольку ABCD — четырехугольник, а \angle A = \angle C, \angle B = \angle D по условию).

Получается, \alpha + \beta = 180^{\circ}. Но \alpha и \beta являются внутренними односторонними при секущей AB.

И то, что \alpha + \beta = 180^{\circ} говорит и о том, что AD || BC.

При этом \alpha и \beta — внутренние односторонние при секущей AD. И это значит AB || CD.

Третий признак верен.

4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.

AO = OC; BO = OD \Rightarrow параллелограмм.

Доказательство

BO = OD; AO = OC, \angle 1 = \angle 2 как вертикальные \Rightarrow \triangle AOB = \triangle COD, \Rightarrow \angle 3 = \angle 4, и \Rightarrow AB || CD.

Аналогично BO = OD; AO = OC, \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8, и \Rightarrow AD || BC.

Четвертый признак верен.

academyege.ru

Параллелограмм — это… Что такое Параллелограмм?

Параллелограмм

Параллелогра́мм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

Свойства

  • Противоположные стороны параллелограмма равны.
    .
  • Противоположные углы параллелограмма равны.
  • Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
    .
  • Сумма углов, прилежащих к одной стороне, равна 180°.
  • Точка пересечения диагоналей является центром симметрии параллелограмма.
  • Сумма всех углов равна 360°.
  • Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон:

пусть а — длина стороны AB, b — длина стороны BC, и  — длины диагоналей; тогда

Доказательство  

Проведя диагональ BD, мы получим два треугольника: ABD и BCD, которые равны, т.к. одна сторона у них общая, а соответственные углы при стороне BD равны как накрест лежащие при параллельных прямых , , где BD — секущая. Из равенства треугольников следует: и ∠A = ∠С Противоположные углы ∠B и ∠D также равны, т.к. они представляют собой суммы равных углов.

Наконец, углы, прилежащие к одной стороне, например ∠A и ∠D, дают в сумме 180°, так как это углы внутренние односторонние при параллельных прямых.

По теореме косинусов: Поскольку , то Складывая полученные равенства:

  • Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.

Признаки параллелограмма

Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:

1. Если в четырёхугольнике противоположенные стороны попарно равны, то четырёхугольник параллелограмм 2. Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник параллелограмм 3. Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник параллелограмм

Площадь параллелограмма

, где a — сторона, h — высота проведенная к этой стороне.
, где a и b — стороны, а  — угол между сторонами a и b.
.

См. также

dic.academic.ru

Площа паралелограма

Паралелограмом називають чотирикутник у якого протилежні сторони паралельні між собою. Основні задачі в школі з даної теми полягають у обчисленні площі паралелограма, його периметру, висоти, діагоналей. Вказані величини та формули для їх обчислення будуть наведені нижче.

Властивості паралелограма

Протилежні сторони паралелограма, як і протилежні кути рівні між собою: AB=CD, BC=AD,

Діагоналі паралелограма в точці перетину діляться на дві рівні частини :

АО=OC, OB=OD.

Кути, прилеглі до будь-якої сторони (сусідні кути) в сумі рівні 180 градусів.


Кожна з діагоналей паралелограма ділять його на два однакові за площею і геометричнирівні трикутникими розмірами трикутники.

Ще одна чудова властивість, яку часту застосовують при розв’язуванні задач полягає в тому, що сума квадратів діагоналей в паралелограмі рівна сумі квадратів усіх сторін:

AC^2+BD^2=2*(AB^2+BC^2).

Основні ознаки паралелограмів:

1. Чотирикутник у якого протилежні сторони попарно паралельні є паралелограмом.
2. Чотирикутник з рівними протилежними сторонами є паралелограмом.
3. Чотирикутник з рівними і паралельними протилежними сторонами є паралелограмом.
4. Якщо діагоналі чотирикутника в точці перетину діляться навпіл то це паралелограм .
5. Чотирикутник у якого протилежні кути попарно рівні є паралелограмом

Бісектриси паралелограма

Бісектриси протилежних кутів у паралелограмі можуть бути паралельними або співпадати.

Бісектриси сусідніх кутів (прилеглі до однієї сторони) перетинаються під прямим кутом (перпендикулярні).

Висота паралелограма

Висота паралелограма — це відрізок, який проведений з кута перпендикулярно до основи. З цього слідує, що з кожного кута можна провести дві висоти.

Формула площі паралелограма

Площа паралелограма рівна добутку сторони на висоту проведену до неї. Формула площі наступна

Друга формула не менш популярна при обчисленнях і визначається так: Площа паралелограма рівна добутку сусідніх сторін на синус кута між ними

На основі наведених формул Ви будете знати, як обчислити площу паралелограма.

Периметр паралелограма

Формула для обчислення периметру паралелограма має вигляд

тобто периметр рівний подвоєному значенню суми сторін. Задачі на паралелограм будуть розглянуті в сусідніх матеріалах, а поки що вивчайте формули. Більшість задач з обчислення сторін, діагоналей паралелограма достатньо прості і зводяться до знання теореми синусів та теореми Піфагора.

yukhym.com

понятие и свойства, примеры изображений

 

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны. На следующем рисунке представлен параллелограмм ABCD. У него сторона AB параллельна стороне CD, а сторона BC параллельна стороне AD.

Как вы уже успели догадаться, параллелограмм является выпуклым четырехугольником. Рассмотрим основные свойства параллелограмма.

Свойства параллелограмма

1. В параллелограмме противоположные углы и противоположные стороны равны. Докажем это свойство — рассмотрим параллелограмм, представленный на следующем рисунке.

Диагональ BD разделяет его на два равных треугольника: ABD и CBD. Они равны по стороне BD и двум прилежащим к ней углам, так как углы накрест лежащие при секущей BD параллельных прямых BC и AD и AB и CD соответственно. Следовательно, AB = CD и 
BC = AD. А из равенства углов 1, 2 ,3 и 4 следует, что угол A = угол1 +угол3 = угол2 + угол4 = угол С.

2. Диагонали параллелограмма точкой пересечения делятся пополам. Пусть точка О есть точка пересечения диагоналей AC и BD параллелограмма ABCD.

Тогда треугольник AOB и треугольник COD равны между собой, по стороне и двум прилежащим к ней углам. (AB=CD так как это противоположные стороны параллелограмма. А угол1 = угол2 и угол3 = угол4 как накрест лежащие углы при пересечении прямых AB и CD секущими AC и BD соответственно.) Из этого следует, что AO = OC и OB = OD, что и требовалось доказать.

Все основные свойства проиллюстрированы на следующих трех рисунках.

Нужна помощь в учебе?



Предыдущая тема: Выпуклый многоугольник: теорема и задача
Следующая тема:&nbsp&nbsp&nbspПризнаки параллелограмма: доказательства и рисунки

Все неприличные комментарии будут удаляться.

www.nado5.ru

Параллелограмм. Определение, свойства и признаки

Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.

Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны. Площадь параллелограмма равна произведению его основания (a) на высоту (h). Также можно найте его площадь через две стороны и угол и через диагонали.

Свойства параллелограмма

1. Противоположные стороны тождественны

Первым делом проведем диагональ \( AC \). Получаются два треугольника: \( ABC \) и \( ADC \).

Так как \( ABCD \) — параллелограмм, то справедливо следующее:

\( AD || BC \Rightarrow \angle 1 = \angle 2 \) как лежащие накрест.

\( AB || CD \Rightarrow \angle3 = \angle 4 \) как лежащие накрест.

Следовательно, \( \triangle ABC = \triangle ADC \) (по второму признаку: \( \angle 1 = \angle 2, \angle 3 = \angle 4 \) и \( AC \) — общая).

И, значит, \( \triangle ABC = \triangle ADC \), то \( AB = CD \) и \( AD = BC \).

2. Противоположные углы тождественны

Согласно доказательству свойства 1 мы знаем, что \( \angle 1 = \angle 2, \angle 3 = \angle 4 \). Таким образом сумма противоположных углов равна: \( \angle 1 + \angle 3 = \angle 2 + \angle 4 \). Учитывая, что \( \triangle ABC = \triangle ADC \) получаем \( \angle A = \angle C \), \( \angle B = \angle D \).

3. Диагонали разделены пополам точкой пересечения

По свойству 1 мы знаем, что противоположные стороны тождественны: \( AB = CD \). Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \( \triangle AOB = \triangle COD \) по второму признаку равенства треугольников (два угла и сторона между ними). То есть, \( BO = OD \) (напротив углов \( \angle 2 \) и \( \angle 1 \)) и \( AO = OC \) (напротив углов \( \angle 3 \) и \( \angle 4 \) соответственно).

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?». То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны

\( AB = CD \); \( AB || CD \Rightarrow ABCD \) — параллелограмм.

Рассмотрим подробнее. Почему \( AD || BC \)?

\( \triangle ABC = \triangle ADC \) по свойству 1: \( AB = CD \), \( \angle 1 = \angle 2 \) как накрест лежащие при параллельных \( AB \) и \( CD \) и секущей \( AC \).

Но если \( \triangle ABC = \triangle ADC \), то \( \angle 3 = \angle 4 \) (лежат напротив \( AD || BC \) (\( \angle 3 \) и \( \angle 4 \) — накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны

\( AB = CD \), \( AD = BC \Rightarrow ABCD \) — параллелограмм.

Рассмотрим данный признак. Еще раз проведем диагональ \( AC \).

По свойству 1 \( \triangle ABC = \triangle ACD \).

Из этого следует, что: \( \angle 1 = \angle 2 \Rightarrow AD || BC \) и \( \angle 3 = \angle 4 \Rightarrow AB || CD \), то есть \( ABCD \) — параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны

\( \angle A = \angle C \), \( \angle B = \angle D \Rightarrow ABCD \) — параллелограмм.

\( 2 \alpha + 2 \beta = 360^{\circ} \) (поскольку \( \angle A = \angle C \), \( \angle B = \angle D \) по условию).

Получается, \( \alpha + \beta = 180^{\circ} \). Но \( \alpha \) и \( \beta \) являются внутренними односторонними при секущей \( AB \).

И то, что \( \alpha + \beta = 180^{\circ} \) говорит и о том, что \( AD || BC \).

При этом \( \alpha \) и \( \beta \) — внутренние односторонние при секущей \( AB || CD \).

Третий признак верен.

4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам

\( AO = OC \); \( BO = OD \Rightarrow \) параллелограмм.

\( BO = OD \); \( AO = OC \), \( \angle 1 = \angle 2 \) как вертикальные \( \Rightarrow \triangle AOB = \triangle COD \), \( \Rightarrow \angle 3 = \angle 4 \), и \( \Rightarrow AB || CD \).

Аналогично \( BO = OD \); \( AO = OC \), \( \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8 \), и \( \Rightarrow AD || BC \).

Четвертый признак верен.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!