Решение трансцендентных уравнений онлайн – Решение трансцендентных уравнений онлайн · Как пользоваться Контрольная Работа РУ

Решение трансцендентных уравнений онлайн · Как пользоваться Контрольная Работа РУ

Вы можете решать здесь все виды трансцендентых уравнений с помощью онлайн калькулятора с подробным решением!

Приведём примеры трансцедентых уравнений, решаемых данным сервисом:

Дано уравнение $$- \sin{\left (x \right )} + \cos^{2}{\left (x \right )} = 1$$ преобразуем $$- \left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )} = 0$$ $$- \sin^{2}{\left (x \right )} — \sin{\left (x \right )} = 0$$ Сделаем замену $$w = \sin{\left (x \right )}$$ Это уравнение вида
a*w^2 + b*w + c = 0
Квадратное уравнение можно решить с помощью дискриминанта.
Корни квадратного уравнения: $$w_{1} = \frac{\sqrt{D} — b}{2 a}$$ $$w_{2} = \frac{- \sqrt{D} — b}{2 a}$$ где D = b^2 — 4*a*c — это дискриминант.
Т.к. $$a = -1$$ $$b = -1$$ $$c = 0$$ , то D = b^2 — 4 * a * c = (-1)^2 — 4 * (-1) * (0) = 1

Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b — sqrt(D)) / (2*a)
или $$w_{1} = -1$$ $$w_{2} = 0$$ делаем обратную замену $$\sin{\left (x \right )} = w$$ Дано уравнение $$\sin{\left (x \right )} = w$$ — это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в $$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$ $$x = 2 \pi n — \operatorname{asin}{\left (w \right )} + \pi$$ Или $$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$ $$x = 2 \pi n — \operatorname{asin}{\left (w \right )} + \pi$$ , где n — любое целое число
подставляем w: $$x_{1} = 2 \pi n + \operatorname{asin}{\left (w_{1} \right )}$$ $$x_{1} = 2 \pi n + \operatorname{asin}{\left (-1 \right )}$$ $$x_{1} = 2 \pi n — \frac{\pi}{2}$$ $$x_{2} = 2 \pi n + \operatorname{asin}{\left (w_{2} \right )}$$ $$x_{2} = 2 \pi n + \operatorname{asin}{\left (0 \right )}$$ $$x_{2} = 2 \pi n$$ $$x_{3} = 2 \pi n — \operatorname{asin}{\left (w_{1} \right )} + \pi$$ $$x_{3} = 2 \pi n — \operatorname{asin}{\left (-1 \right )} + \pi$$ $$x_{3} = 2 \pi n + \frac{3 \pi}{2}$$ $$x_{4} = 2 \pi n — \operatorname{asin}{\left (w_{2} \right )} + \pi$$ $$x_{4} = 2 \pi n — \operatorname{asin}{\left (0 \right )} + \pi$$ $$x_{4} = 2 \pi n + \pi$$

Ещё для примера, уравнения содержащие:

являются трансцедентными уравнениями.

www.kontrolnaya-rabota.ru

Как решить трансцендентные уравнения

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Трансцендентное уравнение представляет собой уравнение, которое состоит из трансцендентной функции (иррациональные, логарифмические, показательные, тригонометрические и обратные тригонометрические) от неизвестного (переменного), например уравнения:

\[\sin x + \log_6 x=x\]

Решить данного рода уравнения означает:

1. Определить все системы значений параметров, при которых данное уравнение имеет решение.

Так же читайте нашу статью «Решить систему двух уравнений онлайн решателем»

2. Определить все решения для каждой определенной системы значений параметров, то есть для неизвестного и параметра должны быть указаны свои области допустимых значений.

Трансцендентные уравнения с параметрами состоят их множества разнообразных трансцендентных функций, именно поэтому способы решения данных уравнений в большей степени зависят от свойств функций. Проанализировав исходные данные, необходимо проверить уравнения на решение стандартными математическими способами.

Где можно решить трансцендентное уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

www.pocketteacher.ru

Дифференциальные уравнения онлайн. Математика онлайн

Решение дифференциальных уравнений онлайн на Math34.biz для закреплеения студентами пройденного материала.                                                     И тренировки своих практических навыков. Дифференциальные уравнения онлайн. Дифуры онлайн, решение математики в режиме онлайн. Пошаговое решение математических задач онлайн. Порядок, или степень дифференциального уравнения — наивысший порядок производных, входящих в него. Дифференциальные уравнения онлайн. Процесс решения дифференциального уравнения называется интегрированием. Задача об интегрировании дифференциального уравнения считается решённой, если нахождение неизвестной функции удается привести к квадратуре, независимо от того, выражается ли полученный интеграл в конечном виде через известные функции или нет. Пошаговое решение дифференциальных уравнений онлайн. Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Дифференциальные уравнения онлайн. Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы. Пошаговое решение дифференциальных уравнений онлайн. В зависимости от комбинаций производных, функций, независимых переменных дифференциальные уравнения подразделяются на линейные и нелинейные, с постоянными или переменными коэффициентами, однородные или неоднородные. В связи с важностью приложений в отдельный класс выделены квазилинейные (линейные относительно старших производных) дифференциальные уравнения в частных производных. Решения дифференциальных уравнений подразделяются на общие и частные решения. Дифференциальные уравнения онлайн. Общие решения включают в себя неопределенные постоянные, а для уравнений в частных производных — произвольные функции от независимых переменных, которые могут быть уточнены из дополнительных условий интегрирования (начальных условий для обыкновенных дифференциальных уравнений, начальных и граничных условий для уравнений в частных производных). Пошаговое решение дифференциальных уравнений онлайн. После определения вида указанных постоянных и неопределенных функций решения становятся частными. Поиск решений обыкновенных дифференциальных уравнений привёл к установлению класса специальных функций — часто встречающихся в приложениях функций, не выражающихся через известные элементарные функции. Дифференциальные уравнения онлайн. Их свойства были подробно изучены, составлены таблицы значений, определены взаимные связи и т.д. Пошаговое решение дифференциальных уравнений на сайте Math34.biz. Множество перечисляемых чисел исследовать можно. Лучший ответ на поставленную задачу. Как найти в первом приближении исходящий вектор к области сходимости про Дифференциальные уравнения без выяснения найденного верхнего предела. Выбор очевиден для возрастания математических функций. Есть прогрессивный метод над уровнем исследования. Выровнять по начальному условию задачи решение дифференциальных поможет найти однозначное выбранное значение. Может быть так, что сможет неизвестную определить сразу. Как в предыдущем примере на указание решения для математической задачи, линейные дифференциальные уравнения есть ответ на поставленную конкретно задачу в указанные сроки. Локально не определено поддержание процедуры исследования. Будет так, что пример найдется для каждого студента и решение дифференциальных уравнений определит назначенный на ответственного исполнителя как минимум из двух значений. Взять на некотором отрезке функцию общего значения и предупредить по которой оси будет разрыв. Изучив дифференциальные уравнения онлайн, возможно однозначно показать на сколько важен результат, если таковой предусмотрен из начальных условий. Вырезать область из определения функции — это невозможно, так как локально нет определения по задаче. Будучи найденным из системы уравнений, ответ содержит в себе переменную, исчисляемую в общем смысле, но решить дифференциальное уравнение онлайн естественно получится без этого действия по определению сказанного условия. Рядом с промежутком отрезка видно как решение дифференциальных уравнений онлайн способно продвинуть результат исследований в положительную сторону на момент среза знаний у студентов. Лучшее не всегда получается путем общего принятого подхода к делу. На уровне двукратного увеличения можно с пользой просмотреть все необходимые линейные дифференциальные уравнения в естественном представлении, но возможность подсчитать числовое значение приведет к улучшению знаний. По любой методике в математике есть дифференциальные уравнения, которые представлены в различных по своей сути выражениях, такие как однородные или сложные. Проведя общий анализ исследования функции, станет ясно, что решение дифференциальных как множество возможностей представляет собой явную погрешность в значениях. Истинна в ней заключается в пространстве над линий абсцисс. Где-то в области определения сложной функции в некоторой точке её определения линейные дифференциальные уравнения смогут представить ответ в аналитическом виде. то есть в общем виде как суть. Не поменяется ничего при замене переменной. Однако нужно с особым интересом вглядываться в ответ. Меняет по сути калькулятор отношение в итоге, то есть как решение дифференциальных уравнений пропорционально глобальному значению обозначается в пределах искомого решения. В ряде случаев предупреждение о массовой ошибке неизбежно. Дифференциальные уравнения онлайн реализуют общее представление о задаче, но в итоге нужно как можно скорее предусмотреть положительные стороны векторного произведения. В математике не редки случаи заблуждения в теории чисел. Однозначно нужна будет проверка. Естественно лучше предоставить это право профессионалам в своем деле и решить дифференциальное уравнение онлайн помогут именно они, так как их опыт колоссальный и положительный. Разница на поверхностях фигур и площадь такова, что не решение дифференциальных уравнений онлайн позволит видеть, а множество не пересекаемых объектов таково, что линия параллельна оси. В итоге можно получить в два раза больше значений. Будучи не в явном виде, наше представление о правильности формально записи предусматривает линейные дифференциальные уравнения как в области просмотра, так и в отношении преднамеренного завышения качества результата. Несколько раз выходит в обзор решаемое на коллегии обсуждение на тему, интересную всем студентам. На протяжении всего изучения полного курса лекций, мы заострим наше пристальное внимание на дифференциальные уравнения и связные с ними области изучения науки, если тем самым не противоречить истине. Многих этапов можно избежать в начале пути. Если решение дифференциальных по-прежнему является принципиально чем-то новым для студентов, то старое вовсе не забывается, а прогрессирует в будущее с высокой скоростью развития. Изначально условия по задаче в математике расходятся, но это обозначено в абзаце справа. По истечению времени заданного по определению не исключены возможности пропорционального зависимого исхода на различных плоскостях движения вектора. Исправляется такой простой случай также как описываются линейные дифференциальные уравнения на калькуляторе в общем виде, так будет быстрее и взаимозачет расчетов не приведет к ошибочному мнению. Лишь пять названных по теории случаев могут раздвигать грани происходящего. Вручную рассчитать значение в цифрах поможет наше решение дифференциальных уравнений уже на первых этапах разложения функционального пространства. В нужных местах необходимо точку соприкосновения четырех линий представить в общем значении. Но если придется задачу вытеснить, то приравнять сложность будет просто. Исходных данных достаточно для оформления прилежащего катета и дифференциальные уравнения онлайн выглядят выровненными по левому краю и поверхность односторонняя направлена к ротору вектора. Выше верхнего предела возможны числовые значения сверх обозначенного условия. Принимать во внимание математическую формулу и решить дифференциальное уравнение онлайн за счет трех неизвестных в общем значении пропорции возможно. Локальный метод расчета признан действительным. Система координат прямоугольная в относительном движении плоскости. Общее решение дифференциальных уравнений онлайн позволяет однозначно сделать вывод в пользу расчетной прогонки сквозь матричные определения на всей прямой, расположенной выше графика заданной в явном виде функции. Решение насквозь проглядывается, если приложить вектор движения к точке соприкосновения трех полушарий. Цилиндр получается путем вращения прямоугольника вокруг стороны и линейные дифференциальные уравнения смогут показать направление движения точки по заданным выражениям её закона движения. Исходные данные верные и задача в математике взаимозаменяема при одном несложном условии. Однако в силу обстоятельств, в виду сложности постановочной подзадачи, дифференциальные уравнения упрощают процесс калькулировано числовых пространств на уровне трехмерного пространства. Легко доказать обратное, но этого возможно избежать, как в приведенном примере. В высшей математике предусмотрены следующие моменты: когда задача приводится к упрощенному виду, на неё следует распространить как можно большее усилие со стороны студентов. Взачет попадают наложенные друг на друга линии. Про решение дифференциальных по-прежнему возобновляет преимущество сказанного метода на кривой линии. Если распознать вначале не то, что нужно, то математическая формула составит новое значение выражения. Цель — оптимальный подход к решению поставленных профессором задания. Не стоит полагать, что линейные дифференциальные уравнения в упрощенном виде превзойдут ожидаемый результат. На конечно составленной поверхности разместим три вектора. ортогональные друг другу. Вычислим произведение. Проведем сложение большего числа символов и распишем из полученного выражения все переменные функции. Есть пропорция. Несколько действий, предшествующих окончанию вычисления, однозначного ответа на решение дифференциальных уравнений дадут не сразу, а только по истечению отведенного времени по оси ординат. Слева от точки разрыва, заданной в неявном виде от функции, проведем ось, ортогональную лучшему возрастающему вектору и дифференциальные уравнения онлайн расположим вдоль наименьшего граничного значения нижней грани математического объекта. Лишний аргумент присоединим в области разрыва функции. Правее от точек расположения кривой линии решить дифференциальное уравнение онлайн помогут написанные нами формулы приведения к общему знаменателю. Единственно верным подходом примем тот, что прольет свет на нерешенные задачи из теории в практику, в общем случае однозначно. Линии по направлению координат заданных точек ни разу не сомкнули крайнее положение квадрата, однако решение дифференциальных уравнений онлайн поможет в изучении математики и студентам, и нам, и просто начинающим людям в этой области. Речь идет о возможности подстановки аргумента значения во все значимые под линии одного поля. В принципе, как и следовало ожидать, наши линейные дифференциальные уравнения есть нечто обособленное в единое понятие приведенного смысла. В помощь студентам один из лучших среди аналогичных сервисов калькулятор. Пройдите все курсы и выберите оптимальный правильный для себя.

math24.biz

Решение уравнений с параметром онлайн · Как пользоваться Контрольная Работа РУ

Сайт решает несколько типов уравнений с параметрами:

  • линейные с параметром
  • квадратные с параметром

Например, если требуется решить линейное уравнение с параметром: (a^2-1)*x = 1 + a

Дано уравнение с параметром: $$x \left(a^{2} — 1\right) = a + 1$$ Коэффициент при x равен $$a^{2} — 1$$ тогда возможные случаи для a : $$a < -1$$ $$a = -1$$ $$a > -1 \wedge a < 1$$ $$a = 1$$ Рассмотри все случаи подробнее:
При $$a < -1$$ уравнение будет $$3 x + 1 = 0$$ его решение $$x = — \frac{1}{3}$$ При $$a = -1$$ уравнение будет $$0 = 0$$ его решение — любое x При $$a > -1 \wedge a < 1$$ уравнение будет $$- x — 1 = 0$$ его решение $$x = -1$$ При $$a = 1$$ уравнение будет $$-2 = 0$$ его решение: нет решений

Пример решения квадратного уравнения с параметром

(a^2-1)*x^2 = (8 + 9*a)*x + 1

Дано уравнение с параметром: $$x^{2} \left(a^{2} — 1\right) = x \left(9 a + 8\right) + 1$$ Коэффициент при x равен $$a^{2} — 1$$ тогда возможные случаи для a : $$a < -1$$ $$a = -1$$ $$a > -1 \wedge a < 1$$ $$a = 1$$ Рассмотри все случаи подробнее:
При $$a < -1$$ уравнение будет $$3 x^{2} + 10 x — 1 = 0$$ его решение $$x = — \frac{5}{3} + \frac{2 \sqrt{7}}{3}$$ $$x = — \frac{2 \sqrt{7}}{3} — \frac{5}{3}$$ При $$a = -1$$ уравнение будет $$x — 1 = 0$$ его решение $$x = 1$$ При $$a > -1 \wedge a < 1$$ уравнение будет $$- x^{2} — 8 x — 1 = 0$$ его решение $$x = -4 — \sqrt{15}$$ $$x = -4 + \sqrt{15}$$ При $$a = 1$$ уравнение будет $$- 17 x — 1 = 0$$ его решение $$x = — \frac{1}{17}$$

www.kontrolnaya-rabota.ru

Квадратное уравнение. Решение квадратного уравнения онлайн

Пошаговое решение квадратного уравнения онлайн на Math34.biz для практических навыков школьников и студентов.                                            Как известно корень уравнения находится путем решения уравнения и нахождения значений неизвестной переменной. Квадратное уравнение онлайн это сервис для определения как минимум одного кратного или двух разных решений уравнения. Мы помогаем нашим студентам и делаем решение квадратных уравнений онлайн более удобным и качественным по сравнению с другими аналогичными сайтами по математике. Если вам преподаватель говорит найдите корень уравнения, то это напрямую означает применить известную формулу и выразить x1 и x2 через отношение коэффициентов соответствующих членов выражения. Math34 позволяет в любое время найти корни квадратного уравнения онлайн, не задерживаясь на промежуточных решениях и позволяя вам все время быть в концентрации по выполнению основного задания. Допустим вы знаете как выглядит формула квадратного уравнения, но в чем суть и как она выводится далеко не все учащиеся представляют себе и им сложно это объяснить путем логического представления пока на практике сами все не увидят воочию. Со школьной скамью нам твердили, что корень уравнения есть действительное число и если дискриминант меньше нуля, то коней как бы и нет в принципе. Однако в старших классах, а бывает даже на подготовительных курсах при поступлении в университет, вдруг оказывается, что все-таки есть корни у таких уравнений, но они в поле комплексных чисел. И тут, возвращаясь назад и представив дискриминант квадратного уравнения по нашей формуле, мы видим, что отрицательное значение под корнем дает некую мнимую единицу, обозначаемую латинской буквой i и квадрат, которой дает значение -1. Разумеется многие школьники знают, как решать квадратные уравнения с числовыми значениям коэффициентов, но у них же встает вопрос о том, что представляет собой уравнение с параметрами. Даже представление через обобщенную формулу, не дает полной картины происходящего и только более запутывает учащихся, однако, сервис Math34 выдает решение квадратных уравнений онлайн даже с параметрами, более того, показывает корни уравнения подставив некоторые конкретные числа у параметров. А вы сами попробуйте найдите корень уравнения за считанные секунды при громоздких коэффициентах. Вряд ли вам это под силу. А вот калькулятор уравнений за несколько секунд определит решение, и более того приводятся квадратные уравнения и примеры к ним с возможностью сразу их решить и научиться правильно пользоваться калькулятором. Давным-давно известна формула корней квадратного уравнения и ей пользуются повсеместно все студенты и школьники на контрольных и экзаменах, поскольку без этих базовых знай ни у кого нет шансов на успешное окончание учебного года. Представим себе, что вам известен корень уравнения заранее до того, как приходится его найти, то есть своего рода некая подсказка с целью вас подстегнуть и промотивировать. Но все равно, чтобы найти квадратное уравнение и определить его из текстовой задачи, вам придется вникнуть в суть постановки задачи. После его составления и приведения к стандартной записи, решить квадратное уравнение онлайн поможет сайт Math34 и выдаст в режиме реального времени все его корни. Однако мы рекомендуем вам самостоятельно это проделать и все-таки сами найдите корень уравнения без подсказок компьютера, так как хоть калькулятор квадратных уравнений онлайн и хороший помощник, но может сыграть свами злую шутку на устном экзамене, когда вас спросит учитель при нем решить квадратное уравнение через дискриминант и вы не сможете этого сделать сразу. Уделите максимум своего времени этой важнейшей теме математики и найдите корень уравнения хотя бы для самого элементарного примера. Как вы знаете, корень уравнения находится, решая это самое уравнение и найдя значение неизвестной переменной. Уравнения онлайн на Math34 — это сервис, позволяющий определить по крайней мере один или два различных решения уравнения. Мы помогаем студентам, и мы решаем квадратные уравнения онлайн, ведь это наиболее удобно и качественно по сравнению с другими сайтами математической направленности. Если учитель твердит, чтобы вам найти корень уравнения, знайте есть способ, чтобы применить формулу, известную всем и добиться нахождения x1 и x2 по соотношению коэффициентов соответствующих элементов выражения. Math34 позволяет в любой момент найти корни квадратного уравнения онлайн, без остановки в промежуточных решениях и поможет продолжить выполнение основной задачи. Предположим, что вы знаете, как записывается формула квадратного уравнения, но то, как корни будут найдены и сколько их будет, не всех учащихся это волнует, и трудно объяснить и понять логически на практике, пока сами не смогут увидеть собственными глазами как все решается. С начальных классов в школе мы учимся и как только доходит очередь до квадратного уравнения — это фактически препятствие перед многими учениками. Однако, в классах постарше, а иногда даже на подготовительных курсах в университете, чтобы научиться находить все корни квадратных уравнений, вдруг оказывается, что все эти уравнения имеют корни не только действительные, но еще и в области комплексных чисел. И здесь, как бы взглянув под другим углом, оказывается дискриминант квадратного уравнения в нашей формуле с отрицательным покоренным значением, и мы видим, что корень из отрицательного значения дает мнимую единицу, что обозначается буквой латинского алфавита и записывается как i. Конечно, много детей школьного возраста знают, как решать квадратные уравнения с коэффициентами, но они задают вопрос, что такое уравнение с параметрами? Даже выведенные формулы не дают полную картину того, что происходит, и не факт, что легко все перепутать именно в такой ситуации, и все больше и больше студентов в этом сами убеждаются, но наша программа выдает решение и Math34 онлайн решает квадратные уравнения с параметрами, показывая корни уравнения, перечисляя ряд параметров с подставленными числовыми значениями для демонстрации. Необычным получается случай, когда корень уравнения нельзя отыскать аналитическим путем, потому что пример в иррациональных функциях. Но можно практически всегда предположить, как квадратное уравнение онлайн записать по виду двух не равных его корней. Помимо стандартного хода действий, студенты прибегают к изощренным методам, которые решение квадратных уравнений онлайн не могут в точности описать в отличие от нормального процесса работы. Дважды подряд найдите корень уравнения, и вы увидите его отличие от тех, которые предоставит какой-нибудь сервис по решению математики онлайн. Мы поможем определить однозначность такого решения, в котором корни квадратного уравнения онлайн по хорошо известной всем формуле квадратного уравнения, представляют собой ничто иное как сумму и произведение двух чисел, являющимися коэффициентами во втором и третьем его слагаемых. Отсюда всегда возможно сделать однозначность вывода, если корень уравнения есть важное условие для дальнейшего хода решения, потому что дискриминант квадратного уравнения в режиме онлайн бесполезно искать, если не знать элементарную формулу, выведенную учеными еще несколько веков назад. Очень часто всех школьников, да и не только школьников, но и студентов разных курсов, мучает извечный вопрос — как решать квадратные уравнения в лоб? Ответ очевиден, нужно применить формулу и просто подставить в нее свободные коэффициенты, даже если они с переменными значениями, и вывести решение квадратных уравнений онлайн прямо в несколько строк на листе бумаги, как это положено делать образованным учащимся. Сделайте все сами, не поленитесь и изучите школьный материал, затем найдите корень уравнения и сравните полученный ответ с тем. что на последней странице учебника, либо загляните в решебник, либо определите квадратные уравнения через примеры на сайте Math34.biz, заменив в форме ввода условий на свои значения. А если же записать условие в обобщенном виде, то есть с буквенными, или как их принято называть, в символьном виде, то вам откроется формула корней квадратного уравнения в параметрическом виде. Что это означает? А то, что при замене параметров на какие-либо конкретные числа, то есть решая конкретный пример, получается совершенно определенный и точный ответ. даже если корни не из области действительных чисел, а комплексных. Хочется отметить тот факт, что комплексный корень уравнения находится тем же самым методом, что и действительные значения и найти квадратное уравнение по комплексным числам, а именно вид этого квадратного выражения, тоже довольно просто и быстро, если применить знаменитую теорему Виета, следуя которой необходимо найти коэффициенты уравнения перемножением и сложением заданных чисел. мы же поможем всем быстро и определенно точно решить квадратное уравнение онлайн на нашем ресурсе, поскольку сайт автоматизирован и вы найдете корень уравнения в считанные секунды. Мощный и современный калькулятор квадратных уравнений онлайн безошибочно и совершенно бесплатно предоставит ответ на все интересующие вас поставленные задачи. Срочность и беспрецедентность — основа взаимодействия сайта. Вы вводите значение — сайт выдает решение. Квадратное уравнение через дискриминант решается на серверной стороне, но вы видите всю картину действий постфактум, но целиком и сразу в появляющемся изображении. Пусть вам твердят: «найдите корень уравнения»! Но что же это, по сути, означает и как это делается не многие знают. А вы сможете все проделать сами, благодаря Math34.biz с сопутствующими сервисами. Попробуйте сами и найдите корень уравнения в течение нескольких секунд с коэффициентами. Вряд ли что-либо у вас получится дельное. Вот калькулятор уравнений несколько секунд определяет решения и, кроме того, представляет квадратные уравнения и примеры для них с возможностью решить эту задачу и научиться правильно использовать калькулятор. Несколько веков известна формула для корней квадратного уравнения и ее использование широко применяется всеми учениками, для подготовки к тестам на экзамене, так как без этих базовых знаний человек не имеет шансов на успех в учебном году. Представьте себе, что вы знали заранее корень уравнения прежде, чем найти его, иначе говоря своего рода шпаргалка от учителя, чтобы проверить ваши знания и как вы умеете решать. Но все же, чтобы найти квадратное уравнение и определить его по тексту задачи, необходимо понять суть самой задачи и выстроить цепочку действий. Как только это будет сделано и все приведено к стандартной записи, решить квадратное уравнение онлайн поможет Math34 прямо в браузере и отобразит в реальном времени все имеющиеся корни, если таковые имеются для уравнения. Тем не менее, мы рекомендуем это сделать самим, и все же найти корень уравнения самостоятельно, не используя компьютер. Разумеется, как каждый калькулятор уравнения онлайн и хороший помогатор, он поможет вам, но может и сыграть свами злую шутку при устной сдаче экзамена, когда вас просит учитель, чтобы решили при нем квадратное уравнение. Пожалуйста, используйте максимальную отдачу сил и вашего времени на эту важную тему математики, ведь найти корень уравнения будет проще после усиленного курса подготовки. Начнем с самого начала и корень уравнения представим, как разность двух аргументов, заданных при помощи случайных чисел. Тогда наше квадратное уравнение онлайн примет вид линейного уравнения второй степени и решение квадратных уравнений онлайн можно будет произвести прямо на сайте Math34 в реальном времени. Если не терять времени и приступить к работе немедленно, можно успеть сделать гораздо больше задач. О пользе математики для человечества сказано не мало важного и великие ученые в свое столетие внесли колоссальный в вклад в развитие науки. Попробуйте найдите корень уравнения с десятичными коэффициентами, не имея под рукой хорошего калькулятора. В этом случае корни квадратного уравнения онлайн поможет решить лишь один единственный в своем роде и не повторимый сервис по решению математики онлайн — Math34. Представить, например, что формула квадратного уравнения не известна нам. Останется только гадать какие же числа подставить в уравнение, чтобы оно приводилось в тождество. Попытаемся хотя бы самостоятельно найти корень уравнения, не прибегая к вычислительной технике попусту. Так сказать, включим мозги и пошевелим извилинами для того, чтобы записать дискриминант квадратного уравнения онлайн в своей тетради. Школьная тетрадь позволяет ученикам подглядывать формулы на обороте математического издания и подсказывает порой как решать квадратные уравнения. Тема стара как мир именно про решение квадратных уравнений онлайн, и мы не будем этому уделять много времени, так как предполагается, что все всё давно знают и вы попробуйте сами найдите корень уравнения перед началом выполнения более сложного задания на нахождение корней системы уравнений. На нашем сайте представлены квадратные уравнения и примеры к ним, более того вы можете самостоятельно изменять коэффициенты, что математически не возбраняется, после чего получите решение на более схожую задачу. Известна ли вам формула корней квадратного уравнения и нужно ли ее повторить. зависав на доске? Наверное, нет. Поскольку такие формулы имеются в каждой школьной тетради по математике или физике для средних классов. А знаете ли вы, что еще в девятом веке ученые не знали, как найти корень уравнения и вычисляли его графически, точнее сказать, перенося прикладные задачи по строительству на бумагу того времени — пергамент. И им в отличие от вас невозможно было найти квадратное уравнение в считанные секунды, поскольку у них даже формул не было для этого, а вам решить квадратное уравнение онлайн можно прямо здесь и сейчас, нажав всего несколько клавиш на клавиатуре. Постарайтесь выучить данную тему самостоятельно используя классические примеры и попробуйте найдите корень уравнения без подсказок, но с проверкой после окончательного решения задачи, а в помощь для этого послужит калькулятор квадратных уравнений онлайн на Math34. Это классный калькулятор — мечта школяра! Не забывайте решать квадратное уравнение через дискриминант или по формуле Виета для линейных уравнений. Решите задачу и найдите корень уравнения по классическим формулам, а если встанет проблема, то не беда, поможет как всегда Math34.

math24.biz

Интегралы онлайн. Математика онлайн

Интегралы онлайн на Math34.biz для закрепления студентами и школьниками пройденного материала.                                                     И тренировки своих практических навыков. Полноценное решение интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса. Пошаговое вычисление интегралов онлайн на сайте Math34.biz. Всякий раз, как только приступать решать интеграл онлайн, нужно выявить его тип, без этого нельзя применять ни один метод, если не считать интеграл табличным. Не всякий табличный интеграл виден явно из заданного примера, иногда нужно преобразовать исходную функцию, чтобы найти первообразную. На практике решение интегралов сводится к интерпретированию задачи по нахождению исходной, то есть первообразной из бесконечного семейства функций, но если заданы пределы интегрирования, то по формуле Ньютона-Лейбница остается лишь одна единственная функция, к которой применять расчеты. Интегралы онлайн — неопределенный интеграл онлайн и определенный интеграл онлайн. Интеграл функции онлайн — сумма каких-либо чисел, предназначенных для их интегрирования. Поэтому, неформально, определенный интеграл онлайн является площадью между графиком функции и осью абсцисс в пределах интегрирования. Примеры решения задач с интегралами. Позвольте нам вычислить сложный интеграл по одной переменной и связать его ответ с дальнейшим решением задачи. Можно, что говорится, в лоб найти интеграл от подынтегральной функции. Любой интеграл с высокой точность определяет площадь ограниченной линиями фигуры. Это является одним из его геометрических смыслов. Этот метод облегчает положение студентов. Несколько этапов, по сути, не окажут особого влияния на векторный анализ. Интеграл функции онлайн является основным понятием интегрального исчисления. Онлайн вычисление интегралов бесплатно на Math34.biz любой сложности. Решение неопределенных интегралов. Согласно основной теореме анализа, интегрирование является операцией, обратной дифференцированию, чем помогает решать дифференциальные уравнения. Существует несколько различных определений операции интегрирования, отличающихся в технических деталях. Однако все они совместимы, то есть любые два способа интегрирования, если их можно применить к данной функции, дадут один и тот же результат. Наиболее простым является интеграл Римана — определенный интеграл или неопределенный интеграл. Неформально интеграл функции одной переменной можно ввести как площади под графика (фигуры, заключенной между графиком функции и осью абсцисс). Любая такая подзадача способна обосновать, что вычислить интеграл будет крайне необходимо в самом начале важного подхода. Не забудьте это! Пытаясь найти эту площадь, можно рассматривать фигуры, состоящие из некоторого количества вертикальных прямоугольников, основания которых составляют вместе отрезок интегрирования и получаются при разбиении отрезка на соответствующее количество маленьких отрезков. Решение интегралов онлайн. Пошаговое вычисление интеграла онлайн на сайте Math34.biz. Интеграл онлайн — неопределенный интеграл онлайн и определенный интеграл онлайн. Решение интегралов онлайн: неопределенный интеграл онлайн и определенный интеграл онлайн. Калькулятор решает интегралы c описанием действий подробно и бесплатно! Неопределённый интеграл онлайн для функции — это совокупность всех первообразных данной функции. Если функция определена и непрерывна на промежутке, то для нее есть первообразная функция (или семейство первообразных). Интеграл лишь определяет выражение, условия для которого задаются вами по факту возникновения такой потребности. Лучше тщательно подойти к этому делу и испытать внутреннее удовлетворение от проделанной работы. Но вычислить интеграл способ отличным от классического, порой приводит к неожиданным результатам и удивляться этому нельзя. Радует тот факт, который окажет положительный резонанс на происходящее. Список определенных интегралов и неопределенных интегралов интегралов с полным подробным пошаговым решением. Все интегралы с подробным решением в режиме онлайн. Неопределенный интеграл. Нахождение неопределенного интеграла онлайн является очень частой задачей в высшей математике и других технических разделах науки. Основные методы интегрирования. Определение интеграла, определенный и неопределенный интеграл, таблица интегралов, формула Ньютона-Лейбница. И снова найти ваш интеграл можно по таблице интегральных выражений, однако к этому еще нужно прийти, поскольку не все так просто, как может казаться на первый взгляд. Задумайтесь о выполненных зданиях раньше, чем найдутся ошибки. Определённый интеграл и методы его вычисления. Определённый интеграл онлайн с переменным верхним пределом. Решение интегралов онлайн. Любой пример, который поможет вычислить интеграл по табличным формулам, будет полезным руководством к действию для студентов любого уровня подготовки. Важнейший шаг на пути к правильному ответу. Пошаговое вычисление интегралов онлайн на сайте Math34.biz. Интегралы онлайн. Неопределенные интегралы, содержащие экспоненциальные и логарифмические функции. Решение интегралов онлайн — вы получите подробное решение для разных типов интегралов: неопределённых, определённых, несобственных. Калькулятор Определённых Интегралов вычисляет определенный интеграл онлайн от функции на промежутке с использованием численного интегрирования. Интеграл функции — аналог суммы последовательности. Неформально говоря, определённый интеграл является площадью части графика функции. Решение интеграла онлайн. Пошаговое вычисление интеграла онлайн на сайте Math34.biz. Интеграл онлайн — неопределенный интеграл онлайн и определенный интеграл онлайн. Зачастую такой интеграл определяет насколько тело тяжелее сравниваемого с ним объекта такой же плотности, и неважно, какой он формы, потому что поверхность не впитывает воду. Решение интегралов онлайн. Пошаговое вычисление интегралов на Math34.biz. Интегралы онлайн — неопределенный интеграл онлайн и определенный интеграл онлайн. Как найти интеграл онлайн знает каждый студент младших курсов. На базе школьной программы этот раздел математики также изучается, но не подробно, а лишь азы такой сложной и важной темы. В большинстве случаев студенты приступают к изучению интегралов с обширной теории, которой предшествуют тоже важные темы, такие как производная и предельные переходы — они же пределы. Решение интегралов постепенно начинается с самых элементарных примеров от простых функций, и завершается применением множества подходов и правил, предложенных еще в прошлом веке и даже намного раньше. Интегральное исчисление носит ознакомительный характер в лицеях и школах, то есть в средних учебных заведениях. Наш сайт Math34.biz всегда поможет вам и решение интегралов онлайн станет для вас обыденным, а самое главное понятным занятием. На базе данного ресурса вы с легкостью сможете достичь совершенства в этом математическом разделе. Постигая шаг за шагом изучаемые правила, например, такие как интегрирование, по частям или применение метода Чебышева, вы с легкость решите на максимальное количество баллов любой тест. Так как же все-таки нам вычислить интеграл, применяя известную всем таблицу интегралов, но так, чтобы решение было правильным, корректным и с максимально возможным точным ответом? Как научиться этому и возможно ли это сделать обычному первокурснику в кратчайшие сроки? На этот вопрос ответим утвердительно — можно! При этом вы не только сможете решить любой пример, но и достигнете уровня высококлассного инженера. Секрет прост как никогда — необходимо приложить максимальное усилие, уделить необходимое количество времени на самоподготовку. К сожалению еще никто не придумал иного способа! Но не все так облачно, как кажется на первый взгляд. Если вы обратитесь к нашему сервису Math34.biz с данным вопросом, то мы облегчим вам жизнь, потому что наш сайт может вычислять интегралы онлайн подробно, при этом с очень высокой скоростью и безупречно точным ответом. По своей сути интеграл не определяет, как влияет отношение аргументов на устойчивость системы в целом. Лишь бы все уравновесилась. Наряду с тем как вы будете познавать азы данной математической темы, сервис может найти интеграл от любой подынтегральной функции, если этот интеграл, возможно, разрешить в элементарных функциях. В противном случае для не берущихся в элементарных функциях интегралов на практике не требуется найти ответ в аналитическом или, другими словами, в явном виде. Все вычисления интегралов сводятся к определению первообразной функции от заданной подынтегральной функции. Для этого вычисляют сначала неопределенный интеграл по всем законам математики онлайн. потом при необходимости подставляют верхний и нижний значения интеграла. Если не требуется определить или вычислить числовое значение неопределённого интеграла, то к полученной первообразной функции прибавляют константу, тем самым определяя семейство первообразных функций. Особое место в науке и вообще в любой инженерной области, в том числе механике сплошных сред, интегрирование описывает целые механические системы, их движения и многое другое. Во многих случаях составленный интеграл определяет закон движения материальной точки. Это очень важный инструмент в изучении прикладных наук. Отталкиваясь от этого, нельзя не сказать о масштабных вычислениях для определения законов существования и поведения механических систем. Калькулятор решения интегралов онлайн на сайте Math34.biz — это мощный инструмент для профессиональных инженеров. Мы вам это однозначно гарантируем, но вычислить ваш интеграл сможем только после того, как вы введете в область подынтегральной функции корректное выражение. Не бойтесь ошибиться, все поправимо в этом деле! Обычно решение интегралов сводится к применению табличных функций из известных всем учебников или энциклопедий. Как любой другой неопределенный интеграл будет рассчитан по стандартной формуле без особых грубых нареканий. Легко и непринужденно студенты первых курсов схватывают налету изученный материал и для них найти интеграл порой занимает не более двух минут. А если студент выучил таблицу интегралов, то вообще может в уме определять ответы. Разворачивать функции по переменным относительно поверхностей изначально означает правильное векторное направление в некоторой точке абсцисс. Непредсказуемое поведение линий поверхности принимает определенные интегралы за базис в ответном источнике математических функций. Левый край шара не касается цилиндра, в который вписан круг, если смотреть срез в плоскости. Сумма маленьких площадей, разбитых на сотни кусочно-непрерывных функций есть интеграл онлайн от заданной функции. Механический смысл интеграла заключается во многих прикладных задачах, это и определение объема тел, и вычисление массы тела. Тройные и двойные интегралы участвуют как раз этих расчетах. Мы настаиваем на том, чтобы решение интегралов онлайн производилось только под наблюдением опытных преподавателей и через многочисленные проверки. Как раз для этого существуют отличные калькуляторы, одним из которых является Math34.biz. Нас спрашивают часто об успеваемости учеников, которые не посещают лекции, прогуливают их без причин, как же им удается найти интеграл самим. Мы отвечаем, что студенты народ свободный и вполне могут проходить обучение экстерном, готовясь к зачету или экзамену в комфортных домашних условиях. За считанные секунды наш сервис поможет каждому желающему вычислить интеграл от любой заданной функции по переменной. Проверить полученный результат следует взятием производной от первообразной функции. При этом константа от решения интеграла обращается в ноль. Это правило, очевидно, для всех. По мере обоснования разнонаправленных операций неопределенный интеграл зачастую сводят к разбиению области на мелкие части. Однако некоторые студенты и школьники пренебрегают данным требованием. Как всегда интегралы онлайн подробно может решить наш сервис Math34.biz и никаких ограничений по количеству запросов нет, все бесплатно и доступно каждому. Существует не много таких сайтов, которые в считанные секунды выдают пошаговый ответ, а главное с высокой точностью и в удобном виде. В последнем примере на пятой странице домашнего задания встретилось такое, которое показывает на необходимость вычислить интеграл поэтапно. Но не нужно забывать и о том, как имеется возможность найти интеграл с помощью готового сервиса, проверенного временем и испытанного на тысячах решенных примеров в режиме онлайн. Как такой интеграл определяет движение системы, нам вполне ясно и наглядно об этом свидетельствует характер движения вязкой жидкости, которое и описывается данной системой уравнений.

math24.biz

Решение рациональных чисел – правила, примеры, решения, арифметические действия с рациональными числами

Действия с рациональными числами

Сложение

При сложении двух рациональных чисел с одинаковым знаком складываются их модули и перед суммой ставится их общий знак.

Пример 1. Найти сумму 2,5 + 3,2.

Решение. Так как модуль положительного числа равен самому числу, то в данном примере числа можно просто сложить:

2,5 + 3,2 = 5,7

Пример 2. Найти сумму (-2,5) + (-3,2).

Решение. Сначала надо сложить модули слагаемых:

2,5 + 3,2 = 5,7

Так как сумма двух отрицательных чисел должна быть отрицательным числом, то решение будет выглядеть так:

(-2,5) + (-3,2) = -5,7

Из данных примеров следует, что в результате сложения двух положительных чисел получится положительное число, а в результате сложения двух отрицательных чисел – отрицательное число.

При сложении двух рациональных чисел с разными знаками нужно взять их модули и из большего вычесть меньший, в результате ставится знак того числа, у которого модуль больше.

Другими словами, можно просто, не обращая внимания на знаки, вычесть из большего числа меньшее и у получившегося результата поставить знак большего числа:

Примеры:

(-4,7) + (+12) = 7,3,   так как   12 — 4,7 = 7,3

9 + (-15) = -6,   так как   15 — 9 = 6

Из данных примеров следует, что в результате сложения двух чисел с разными знаками может получится как положительное, так и отрицательное число.

Сумма двух противоположных чисел равна нулю:

(-7) + 7 = 0

Вычитание

Вычитание одного рационального числа из другого можно заменить сложением, при этом уменьшаемое берётся со своим знаком, а вычитаемое с противоположным:

(+10) — (+3,4) = (+10) + (-3,4) = 6,6

(+10) — (-3,4) = (+10) + (+3,4) = 13,4

(-10) — (-3,4) = (-10) + (+3,4) = -6,6

(-10) — (+3,4) = (-10) + (-3,4) = -13,4

Из данных примеров следует, что чтобы из одного числа вычесть другое, надо к уменьшаемому прибавить число, противоположное вычитаемому.

Умножение

При умножении двух рациональных чисел умножаются их модули. Перед произведением ставится знак плюс, если знаки сомножителей одинаковы, и минус, если они разные:

3 · 5 = 15

3 · (-5) = -15

-3 · 5 = -15

-3 · (-5) = 15

Ниже представлена схема (правило знаков при умножении):

+·+=+
+·=
·+=
·=+

Из данных примеров следует, что в результате умножения двух чисел с разными знаками получится отрицательное число, а результате умножения двух чисел с одинаковыми знаками – положительное.

При умножении любого числа на -1 получится число противоположное данному:

-1,5 · (-1) = 1,5

2,5 · (-1) = -2,5

Деление

При делении одного рационального числа на другое делят модуль первого числа на модуль второго. Перед частным ставится знак плюс, если знаки делимого и делителя одинаковы, и минус, если они разные:

15 : 5 = 3

15 : (-5) = -3

-15 : 5 = -3

-15 : (-5) = 3

При делении используется то же правило, что и для умножения. Ниже представлена схема (правило знаков при делении):

+:+=+
+:=
:+=
:=+

Из данных примеров следует, что частное двух чисел с разными знаками – отрицательное число, а частное двух чисел с одинаковыми знаками – положительное число.

При делении любого числа на -1 получится число противоположное данному:

-1,5 : (-1) = 1,5

2,5 : (-1) = -2,5

naobumium.info

Рациональные числа

Тема рациональных чисел достаточно обширна. О ней можно говорить бесконечно и писать целые труды, каждый раз удивляясь новым фишкам.

Чтобы не допускать в будущем ошибок, в данном уроке мы немного углубимся в тему рациональных чисел, почерпнём из неё необходимые сведения и двинемся дальше.

Что такое рациональное число

Рациональное число — это число, которое может быть представлено в виде дроби  , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.

К рациональным числам относятся следующие категории чисел:

  • целые числа (например −2, −1, 0 1, 2 и т.д.)
  • обыкновенные дроби (например ,  ,    и т.п.)
  • смешанные числа (например ,  ,    и т.п.)
  • десятичные дроби (например 0,2 и т.п.)
  • бесконечные периодические дроби (например 0,(3) и т.п.)

Каждое число из этой категории может быть представлено в виде дроби .

Примеры:

Пример 1. Целое число 2 может быть представлено в виде дроби . Значит число 2 относится не только к целым числам, но и к рациональным.


Пример 2. Смешанное число может быть представлено в виде дроби . Данная дробь получается путём перевода смешанного числа в неправильную дробь

Значит смешанное число относится к рациональным числам.


Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему десятичных дробей.

Поскольку десятичная дробь 0,2 может быть представлена в виде дроби , значит она тоже относится к рациональным числам.


Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби . Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему периодические дроби.

Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби  , значит она тоже относится к рациональным числам.


В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа.

Рациональные числа на координатной прямой

Координатную прямую мы рассматривали, когда изучали отрицательные числа. Напомним, что это прямая линия на которой лежат множество точек. Выглядит следующим образом:

На этом рисунке приведен небольшой фрагмент координатной прямой от −5 до 5.

Отметить на координатной прямой целые числа вида 2, 0, −3 не составляет особого труда.

Намного интереснее дела обстоят с остальными числами: с обыкновенными дробями, смешанными числами, десятичными дробями и т.д. Эти числа лежат между целыми числами и этих чисел бесконечно много.

Например, отметим на координатной прямой рациональное число . Данное число располагается ровно между нулём и единицей

Попробуем понять, почему дробь  вдруг расположилась между нулём и единицей.

Как уже говорилось выше, между целыми числами лежат остальные числа — обыкновенные дроби, десятичные дроби, смешанные числа и т.д. К примеру, если увеличить участок координатной прямой от 0 до 1, то можно увидеть следующую картину

Видно, что между целыми числами 0 и 1 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 0,5. Внимательное рассмотрение этого рисунка даёт ответ на вопрос почему дробь расположилась именно там.

Дробь означает разделить 1 на 2. А если разделить 1 на 2, то мы получим 0,5

Десятичную дробь 0,5 можно замаскировать и под другие дроби. Из основного свойства дроби мы знаем, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то значение дроби не изменится.

Если числитель и знаменатель дроби умножить на любое число, например на число 4, то мы получим новую дробь , а эта дробь также как и  равна 0,5

А значит на координатной прямой дробь можно расположить там же, где и располагалась дробь


Пример 2. Попробуем отметить на координатной рациональное число . Данное число располагается ровно между числами 1 и 2

Значение дроби равно 1,5

Если увеличить участок координатной прямой от 1 до 2, то мы увидим следующую картину:

Видно, что между целыми числами 1 и 2 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 1,5.


Мы увеличивали определенные отрезки на координатной прямой, чтобы увидеть остальные числа, лежащие на этом отрезке. В результате, мы обнаруживали десятичные дроби, которые имели после запятой одну цифру.

Но это были не единственные числа, лежащие на этих отрезках. Чисел, лежащих на координатной прямой бесконечно много.

Нетрудно догадаться, что между десятичными дробями, имеющими после запятой одну цифру, лежат уже другие десятичные дроби, имеющие после запятой две цифры. Другими словами, сотые части отрезка.

К примеру, попробуем увидеть числа, которые лежат между десятичными дробями 0,1 и 0,2

Ещё пример. Десятичные дроби, имеющие две цифры после запятой и лежащие между нулём и рациональным числом 0,1 выглядят так:


Пример 3. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться очень близко к нулю

Значение дроби равно 0,02

Если мы увеличим отрезок от 0 до 0,1 то увидим где точно расположилось рациональное число

Видно, что наше рациональное число расположилось там же, где и десятичная дробь 0,02.


Пример 4. Отметим на координатной прямой рациональное число 0, (3)

Рациональное число 0, (3) является бесконечной периодической дробью. Его дробная часть никогда не заканчивается, она бесконечная

0,33333….и так далее до бесконечности..

И поскольку у числа 0,(3) дробная часть является бесконечной, это означает, что мы не сможем найти точное место на координатной прямой, где это число располагается. Мы можем лишь указать это место приблизительно.

Рациональное число 0,33333… будет располагаться очень близко к обычной десятичной дроби 0,3

Данный рисунок не показывает точное место расположения числа 0,(3). Это лишь иллюстрация, показывающая как близко может располагаться периодическая дробь 0,(3) к обычной десятичной дроби 0,3.


Пример 5. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться посередине между числами 2 и 3

это есть 2 (две целых) и (одна вторая). Дробь по другому ещё называют «половиной». Поэтому мы отметили на координатной прямой два целых отрезка и ещё половину отрезка.

Если перевести смешанное число в неправильную дробь, то получим обыкновенную дробь . Эта дробь на координатной прямой будет располагаться там же, где и дробь

Значение дроби равно 2,5

Если увеличить участок координатной прямой от 2 до 3, то мы увидим следующую картину:

Видно, что наше рациональное число  расположилось там же, где и десятичная дробь 2,5


Минус перед рациональным числом

В предыдущем уроке, который назвался умножение и деление целых чисел мы научились делить целые числа. В роли делимого и делителя могли стоять как положительные, так и отрицательные числа.

Рассмотрим простейшее выражение

(−6) : 2 = −3

В данном выражении делимое (−6) является отрицательным числом.

Теперь рассмотрим второе выражение

6 : (−2) = −3

Здесь уже отрицательным числом является делитель (−2). Но в обоих случаях мы получаем один и тот же ответ −3.

Учитывая, что любое деление можно записать в виде дроби, мы можем рассмотренные выше примеры также записать в виде дроби:

А поскольку в обоих случаях значение дроби одинаково, минус стоящий либо в числителе либо в знаменателе можно сделать общим, поставив его перед дробью

Поэтому между выражениями      и    и    можно поставить знак равенства, потому что они несут одно и то же значение

В дальнейшем работая с дробями, если минус будет нам встречаться в числителе или в знаменателе, мы будем делать этот минус общим, ставя его перед дробью.

Противоположные рациональные числа

Как и целое число, рациональное число имеет своё противоположное число.

Например, для рационального числа противоположным числом является . Располагается оно на координатной прямой симметрично расположению   относительно начала координат. Другими словами, оба этих числа равноудалены от начала координат

Перевод смешанных чисел в неправильные дроби

Мы знаем что для того, чтобы перевести смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части и прибавить к числителю дробной части. Полученное число будет числителем новой дроби, а знаменатель остаётся прежним..

Например, переведём смешанное число   в неправильную дробь

Умножим целую часть на знаменатель дробной части и прибавим числитель дробной части:

(2 × 2) + 1

Вычислим данное выражение:

(2 × 2) + 1 = 4 + 1 = 5

Полученное число 5 будет числителем новой дроби, а знаменатель останется прежним:

Полностью данная процедура записывается следующим образом:

Чтобы вернуть изначальное смешанное число, достаточно выделить целую часть в дроби

Но этот способ перевода смешанного числа в неправильную дробь применим только в том случае, если смешанное число является положительным. Для отрицательного числа данный способ не сработает.

Рассмотрим дробь . Выделим в этой дроби целую часть. Получим

Чтобы вернуть изначальную дробь нужно перевести смешанное число   в неправильную дробь. Но если мы воспользуемся старым правилом, а именно умножим целую часть на знаменатель дробной части и к полученному числу прибавим числитель дробной части, то получим следующее противоречие:

Мы получили дробь , а должны были получить дробь .

Делаем вывод, что смешанное число в неправильную дробь переведено неправильно:

Чтобы правильно перевести отрицательное смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части, и из полученного числа вычесть числитель дробной части. В этом случае у нас всё встанет на свои места

Отрицательное смешанное число является противоположным для смешанного числа . Если положительное смешанное число располагается в правой части и выглядит так

то отрицательное смешанное число будет располагаться в левой части симметрично относительное начала координат

И если читается как «две целых и одна вторая», то читается как «минус две целых и минус одна вторая». Поскольку числа −2 и располагаются в левой части координатной прямой — они оба являются отрицательными.

Любое смешанное число можно записать в развёрнутом виде. Положительное смешанное число в развёрнутом виде записывается как .

А отрицательное смешанное число записывается как

Теперь мы можем понять, почему смешанное число расположилось в левой части координатной прямой. Минус перед двойкой указывает, что мы сдвинулись от нуля на два шага влево, в результате оказались в точке, где находится число −2

Затем, начиная от числа −2 сдвинулись ещё влево на шага. А поскольку значение равно −0,5 то наш шаг будет половиной от полного шага.

В итоге, мы окажемся посередине между числами −3 и −2


Пример 2. Выделить в неправильной дроби целую часть, затем полученное смешанное число обратно перевести в неправильную дробь

Выполним первую часть задания, а именно выделим в неправильной дроби целую часть

Выполним вторую часть задания, а именно переведём полученное смешанное число в неправильную дробь. Для этого умножим целую часть на знаменатель дробной части и из полученного числа вычтем числитель дробной части:


Если нет желания путаться и привыкать к новому правилу, то можно  смешанное число заключить в скобки, а минус оставить за скобкой. Тогда можно будет применить старое доброе правило: умножить целую часть на знаменатель дробной части и к полученному числу прибавить числитель дробной части.

Выполним предыдущее задание этим способом, а именно переведём смешанное число в неправильную дробь


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Навигация по записям

spacemath.xyz

Рациональные числа, понятие и примеры.

Рациональные числа вы с ними уже знакомы, осталось только обобщить и сформулировать правила. Так какие числа называются рациональными числами? Рассмотрим подробно в этой теме урока.

Понятие рациональных чисел.

Определение:
Рациональные числа – это числа, которые можно представить в виде дроби \(\frac{m}{n}\), где m – целое число, а n – натуральное число.

Другими словами, можно сказать:

Рациональные числа – это все натуральные числа, целые числа, обыкновенные дроби, бесконечные периодические дроби и конечные десятичные дроби.

Разберем каждый пункт подробно.

  1. Любое натуральное число можно представить в виде дроби, например, число 5=\(\frac{5}{1}\).
  2. Любое целое число можно представить в виде дроби, например, числа 4, 0 и -2. Получаем 4=\(\frac{4}{1}\), 0=\(\frac{0}{1}\) и -2=\(\frac{-2}{1}\).
  3. Обыкновенные дроби уже записаны в рациональном виде, например, \(\frac{6}{11}\) и \(\frac{9}{2}\).
  4. Бесконечные периодические дроби, например, 0,8(3)=\(\frac{5}{6}\).
  5. Конечные десятичные дроби, например, 0,5=\(\frac{5}{10}=\frac{1}{2}\).

Множество рациональных чисел.

Вспомним, что множество натуральны чисел обозначается латинской буквой N.
Множество целых чисел обозначается латинской буквой Z.
А множество рациональных чисел обозначается латинской буквой Q.

Во множество рациональных чисел входит множество целых и натуральных чисел в этом и заключается смысл рациональных чисел.

На рисунке можно показать множество рациональных чисел.

Но не все числа являются рациональными. Бывают еще множества различных чисел, которые в дальнейшем вы будите изучать.
Бесконечные непрериодические дроби не принадлежат множеству рациональных чисел.
Например, число е, \(\sqrt{3}\) или число \(\pi\)  (читается число пи) не являются рациональными числами.

Вопросы по теме «Рациональные числа»:
Какое выражение является рациональным числом из чисел \(\sqrt{5}, -0.(3), 15, \frac{34}{1569}, \sqrt{6}\) ?
Ответ:
Корень из 5 это выражение нельзя представить в виде конечно дроби или бесконечной периодической дроби, поэтому это число не рациональное.
Бесконечная десятичная периодическая дробь -0,(3)=\(-\frac{3}{10}\) можно представить в виде дроби, поэтому это рациональное число.
Число 15 можно представить в виде дроби \(\frac{15}{1}\), поэтому это рациональное число.
Дробь \(\frac{34}{1569}\) это рациональное число.
Корень из 6 это выражение нельзя представить в виде конечно дроби или бесконечной периодической дроби, поэтому это число не рациональное.

Записать число 1 в виде рационального числа?
Ответ: чтобы записать в виде рационального число 1 нужно представить его в виде дроби 1=\(\frac{1}{1}\).

Докажите, что число \(\sqrt{0,0049}\) является рациональным?
Доказательство: \(\sqrt{0,0049}=0,07\)

Является ли простое число под корнем рациональным числом?
Ответ: нет. Например, любое простое число под корнем 2, 3, 5, 7, 11, 13, … не выносится из под корня и его нельзя представить в виде конечно дроби или бесконечной периодической дроби, поэтому не является рациональным числом.

tutomath.ru

Рациональные числа

Название рациональных числе произошло от латинского «ratio» (что в переводе значит «отношение»). Конечно же вы зададитесь вопросом: почему именно отношение? Все достаточно просто: рациональные числа с момента своего появления обозначаются, как отношение двух целых чисел, например 3 и 7 (3:7 или 3/7).

Другое название рациональных чисел – дроби. Дроби – это числа, которыми можно обозначит нецелое количество определенных предметов (например, полстакана, три четверти пятого, треть лимона и т.д.). Под дробью также понимают те рациональные числа, которые к целым отнести нельзя.

Понятное дело, что появление рациональных чисел позволило решить огромное количество прикладных задач, которые ранее решить было, к сожалению, невозможно (причем, не только из области математики, а и из области других наук).

В отличии от множества целых числе, во множестве рациональных числе всегда присутствует деление (конечно же, это не касается деления на ноль). Довольно интересным является тот факт, что исторически, проблема деления была решена намного раньше, нежели проблема вычитания. Именно поэтому множество натуральных чисел (куда входит и ноль) сначала расширили до множества неотрицательных рациональных чисел, а уж потом появилось множество отрицательных чисел. И на самом-то деле, ведь дроби действительно намного «реальнее», чем отрицательные числа? Почему же? Все очень просто, ведь дроби намного легче ощутить на реальных, жизненных примерах, чего не скажешь об отрицательных числах. Но, согласитесь, с точки зрения математики, логичнее и естественнее было бы сначала сформировать множество отрицательных чисел, так как они целые, а уж потом формировать рациональные положительные и отрицательные числа. Но, как видим, в школьной программе пользуются историческим подходом, ведь учеников сначала знакомят с дробями, а уж потом с отрицательными числами.

Правила действий с рациональными
числами (дробями)

a
b
+c
d
=ad + bc
bd
a
b
c
d
=ad — bc
bd
a
b
*c
d
=ac
bd
a
b
:c
d
=ad
bc

mateshka.ru

Свойства действий с рациональными числами. Видеоурок. Математика 6 Класс

На этом уроке мы вспомним основные свойства действий с числами. Мы не только повторим основные свойства, но и научимся применять их к рациональным числам. Все полученные знания закрепим с помощью решения примеров.

Основные свойства действий с числами:

 

 

Первые два свойства – это свойства сложения, следующие два – умножения. Пятое свойство относится к обеим операциям.

Ничего нового в этих свойствах нет. Они были справедливы и для натуральных, и для целых чисел. Они также верны для рациональных чисел и будут верны для чисел, которые мы будем изучать дальше (например, иррациональных).

Перестановочные свойства: 

От перестановки слагаемых или множителей результат не меняется.

Сочетательные свойства: , .

Сложение или умножение нескольких чисел можно делать в любом порядке.

Распределительное свойство: .

Свойство связывает обе операции – сложение и умножение. Также если его читать слева направо, то его называют правилом раскрытия скобок, а если в обратную сторону – правилом вынесения общего множителя за скобки.

Следующие два свойства описывают нейтральные элементы для сложения и умножения: прибавление нуля и умножение на единицу не меняют исходного числа.

Еще два свойства, которые описывают симметричные элементы для сложения и умножения, сумма противоположных чисел равна нулю; произведение обратных чисел равно единице.

Следующее свойство: . Если число умножить на ноль, в результате всегда будет ноль.

Последнее свойство, которое мы рассмотрим: .

Умножив число на , получаем противоположное число. У этого свойства есть особенность. Все остальные рассмотренные свойства нельзя было доказать, используя остальные. Это же свойство можно доказать, используя предыдущие.


Умножение на

Докажем, что если умножить число на , то получим противоположное число. Используем для этого распределительное свойство:

interneturok.ru

Деление рациональных чисел | Формулы с примерами

Деление рациональных чисел 6 класс

Формула, правило

Если значение a меньше 0, а значение b больше 0, то деление a на b равно делению их модулей.

Пример ( — 6 ) : ( — 2 ) = 6 : 2 = 3;

( -12 ) : ( — 4 ) = 12 : 4 = 3;

( -2,4 ) : ( — 12 ) = 4,8.


Деление чисел с разными знаками

Формула, правило

! На ноль ( 0 ) делеие запрещено.

Пример
2 : ( 5 ) = -2 : 5 = 0,4;

12 : ( -3 ) = -12 : 3 = -4;

( -2,5 ) : 0,5 = -2,5 : 0,5 = 5.

Свойства деления

Свойство, пример 1. a : 1 = a.

2 : 1 = 2;

( — 1,3 ) : 1 = -1,3;

( — 12,4 ) : 1 = -12,4.

Свойство, пример 2. a : a = 1.

10 : 10 = 1;

121 : 121 = 1;

( — 32,4 ) : ( -32,4 ) = 1.

Свойство, пример 3. a : ( -1 ) = -a.

14 : ( -1 ) = -14;

421 : ( -1 ) = -421;

432,54 : ( — 1 ) = -432, 54.

Свойство, пример 4. 0 : a = 0.

0 : 4 = 0;

0 : 12,4 = 0;

0 : 221,5 = 0.

Свойство, пример 5. a : ( b • c ) = ( a : b ) : c = ( a : c ) : b.

2 : ( 5 • 4 ) = ( 2 : 5 ) : 4 = ( 2 : 4 ) : 5 = 0,1;

5 : ( 5 • 8 ) = ( 5 : 5 ) : 8 = ( 5 : 8 ) : 5 = 0,125;

8 : ( 2 • 20 ) = ( 8 : 2 ) : 20 = ( 8 : 20 ) : 2 = 0,2.

Свойство, пример 6. a : ( b : c ) = ( a : b ) • c = ( a • c ) : b.

( -2,4 ) : ( -1,8 : ( -3)) = (( -2,4) : 1,8) • ( -3 ) = (( -2,4) • (-3)) : 1,8 = 4.

formula-xyz.ru

Действия с рациональными числами. Решение уравнений

Урок № 132

Тема: «Действия с рациональными числами. Решение уравнений»

Тип урока: обобщения и систематизации знаний

Цель урока: закрепить, обобщить умения и навыки в действиях с положительными и отрицательными числами; подготовить учащихся к контрольной работе по теме «Умножение и деление положительных и отрицательных чисел»; тренировать

Задачи урока:

Предметная: Систематизировать упрочить и углубить знания по данной теме.

Личностная: Воспитание познавательной активности, чувства ответственности, культуры общения, культуры диалога.

Метапредметная: Повышение познавательной активности учащихся в учебном процессе, логического мышления.

Планируемые результаты:

Предметные: знать, свойства действий с рациональными числами и уметь применять данные свойства,

вычислять числовое значение буквенного выражения при заданных значениях букв

Личностные: умение ясно, точно, грамотно излагать свои мысли; способность к самооценке на основе критерия успешности учебной деятельности. проявление положительного отношения к урокам математики, доброжелательного отношения к сверстникам; ориентация на понимание причин успеха в учебной деятельности;

Метапредметные:

Р – уметь определять и формулировать цель на уроке с помощью учителя;

П – уметь ориентироваться в своей системе знаний; добывать новые знания;

К – организовывают и планируют учебное сотрудничество с учителем и сверстниками.

Оборудование: мультимедийный проектор, компьютер, интерактивная доска.

Методы обучения: фронтальный опрос, практическая тренировка.

Структура урока:

Ход урока

Приветствую учащихся. Сажаю их на места.

Приветствуют учителя.

К: следовать правилам поведения

  1. Проверка Д/З

— Какие вопросы по Д/З? Разбираем, если есть вопросы.

№ 1226 (в,г), 1227 (в,г ), 1228, 1230

Спрашивают.

К: Умение слушать и вступать в диалог.

  1. Формулирование темы и цели урока

Устный счет

Отвечают на вопросы

-Формулируют, записывают в тетрадях число, кл/р, тема урока

Р: прогнозирование своей деятельности;

К: Умение слушать и вступать в диалог.

Л: Умение выделять нравственный аспект поведения

4. Воспроизведение изученного и его применение в стандартных ситуациях

1224 (2)

1219

а) -|x|, x=0

б) 2 -|x|, x=0 2-|0|=2

в) -|x-1|, x=1 -|1-1|=0

г) –(x-1)2, x=1 –(1-1)2=0

1222

1221

Один ученик у доски, а остальные в тетрадях.

Один ученик у доски, а остальные в тетрадях.

Один ученик у доски, а остальные в тетрадях

П: уметь ориентироваться в своей системе знаний

К: уметь слушать и понимать речь других, оформлять мысли в устной речи

Р: уметь проговаривать последовательность действий на уроке, высказывать свое предположение

5. Физкультминутка

А теперь, ребята, встали.

Быстро руки вверх подняли,

В стороны, вперед, назад.

Повернулись вправо, влево,

Тихо сели, вновь за дело.

Выполняют

6. Усвоение ведущих идей и основных теорий на основе широкой системы знаний.

1203

1211

а) >0

б) <0

1225

Подготовка к контрольной работе.

Один ученик у доски, а остальные в тетрадях.

Один ученик у доски, а остальные в тетрадях.

Р – формируют способность к мобилизации сил и энергии; способность к волевому усилию в преодолении препятствий.

П – произвольно и осознанно владеют общим приемом решения задач.

К – управляют своим поведением (контроль, самокоррекция, оценка своего действия)

8. Рефлексия

  1. Какое задание вам больше всего понравилось?

  2. Какое задание вызвало затруднение?

  3. С каким настроением уходим с урока?

Поднимают руки.

Р: уметь оценивать правильность выполнения действий

9. Постановка Д/З

№ 1226 (д-е), 1227 (д-е), 1229 (г-е), 1232

записывают.

infourok.ru

Как найти периметр и площадь квадрата 4 класс – Как найти площадь и периметр квадрата

Как найти периметр квадрата, если известна площадь? 4 класс. Срочно, и подробно!

4 корня площади

А мозги включить? Чему площадь равна?

Извлечь корень из площади квадрата, и умножить получившееся число на 4

Площадь раздели на 4. К тому, что получилось прибавь столько же и результат умножь на 2.

touch.otvet.mail.ru

Как найти периметр и площадь квадрата формула 4 класс

Пользователь masha201010 задал вопрос в категории Домашние задания и получил на него 3 ответа.

Площадь квадрата формула 4 класс

Периметр квадрата формула 4 класс

В разделе Домашние задания на вопрос КАК НАЙТИ ПЕРИМЕТР И ПЛОЩАДЬ КВАДРАТА СО СТОРОНОЙ 4 СМ? заданный автором Морозов Сергей лучший ответ это Ппц, пермножить, в данном случае площадь и периметр равны 16

У квадрата все стороны равны, одна равна 4 значит остальные три тоже, считай

Периметр=16см Площадь=16см!! Формула Периметра (a+b) умножить на 2 а площади S=а умножить b

Периметр и площадь. ссылка P квадрата складывается из длин четырех его сторон. Площадь S квадрата равна квадрату длины его стороны: P = 4a = 8r = 2v2·R, S = a2 = 4r2 = 2R2.

4+4+4+4= 16(см) — Периметр Квадрата 4*4=16(см) — Площадь квадрата

Как найти периметр и площадь квадрата формула 4 класс

Формулы периметра геометрических фигур.

Формула периметра треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы периметра квадрата

Периметр квадрата равен произведению длины его стороны на четыре.

Периметр квадрата равен произведению длины его диагонали на два корня из двух.

Где P — периметр квадрата,

A — длина стороны квадрата,

D — длина диагонали квадрата.

Формула периметра прямоугольника

Периметр прямоугольника ABCD равен удвоенной сумме сторон, прилежащих к одному углу.

Где P — периметр прямоугольника,

A, b — длины сторон прямоугольника.

Формула периметра параллелограмма

Периметр параллелограмма ABCD равен удвоенной сумме сторон, прилежащих к одному углу

Где P — периметр параллелограмма,

A, b — длины сторон параллелограмма.

Формула периметра ромба

Периметр ромба равен произведению длины его стороны на четыре.

Где P — периметр ромба,

A — длина стороны ромба.

Формула периметра трапеции

Периметр трапеции равен сумме длин ее сторон.

Где P — периметр трапеции,

A, b — длины основ трапеции,

C, d — длины боковых сторон трапеции.

Формулы длины окружности.

Где P — длина окружности,

R — радиус окружности,

D — диаметр окружности,

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.

Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти периметр и площадь квадрата формула 4 класс

Формулы периметра геометрических фигур.

Формула периметра треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы периметра квадрата

Периметр квадрата равен произведению длины его стороны на четыре.

Периметр квадрата равен произведению длины его диагонали на два корня из двух.

Где P — периметр квадрата,

A — длина стороны квадрата,

D — длина диагонали квадрата.

Формула периметра прямоугольника

Периметр прямоугольника ABCD равен удвоенной сумме сторон, прилежащих к одному углу.

Где P — периметр прямоугольника,

A, b — длины сторон прямоугольника.

Формула периметра параллелограмма

Периметр параллелограмма ABCD равен удвоенной сумме сторон, прилежащих к одному углу

Где P — периметр параллелограмма,

A, b — длины сторон параллелограмма.

Формула периметра ромба

Периметр ромба равен произведению длины его стороны на четыре.

Где P — периметр ромба,

A — длина стороны ромба.

Формула периметра трапеции

Периметр трапеции равен сумме длин ее сторон.

Где P — периметр трапеции,

A, b — длины основ трапеции,

C, d — длины боковых сторон трапеции.

Формулы длины окружности.

Где P — длина окружности,

R — радиус окружности,

D — диаметр окружности,

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.

Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

poiskvstavropole.ru

Как найти площадь квадрата

Для вычисления площади и периметра квадрата нужно разобраться в понятиях этих величин. Квадрат представляет собой прямоугольник только с четырьмя одинаковыми сторонам, которые имеют между собой угол в 90°. Периметр — это сумма длин всех сторон. Площадь — это произведение длины прямоугольной фигуры на ее ширину.

Площадь квадрата и как ее найти

Как было сказано выше, квадрат — это прямоугольник, имеющий 4 равные стороны, поэтому ответом на вопрос: «как найти площадь квадрата» является формула: S = a*a или S = a2, где а — сторона квадрата. Исходя из этой формулы, легко находится сторона квадрата, если известна площадь. Для этого необходимо извлечь квадрат из указанной величины.

Например, S = 121, следовательно, а = √121 = 11. Если заданное значение отсутствует в таблице квадратов, то можно воспользоваться калькулятором: S = 94, а = √94 = 9,7.

Как найти периметр квадрата

Периметр квадрата находится по легкой формуле: Р = 4а, где а — сторона квадрата.

Пример:

  • сторона квадрата = 5, следовательно, P = 4*5 = 20
  • сторона квадрата = 3, следовательно, Р = 4*3 = 12

Но существуют такие задачи, где заведомо обозначена площадь, а нужно найти периметр. При решении нужны формулы, которые представлены ранее.

Например: как найти периметр квадрата, если известна площадь, равная 144?

Шаги решения:

  1. Выясняем длину одной стороны: а = √144 = 12
  2. Находим периметр: Р = 4*12 = 48.

Нахождение периметра вписанного квадрата

Существуют еще несколько способов нахождения периметра квадрата. Рассмотрим один из них: нахождение периметра через радиус описанной окружности. Здесь появляется новый термин «вписанный квадрат» — это квадрат, чьи вершины лежат на окружности.

Алгоритм решения:

  1. Здесь важно помнить, что отрезок от центра описанной окружности до одной из вершин квадрата является радиусом, поэтому чтобы вычислить периметр фигуры, нужно найти одну из четырех сторон. Условно квадрат делится на два прямоугольных треугольника, которые имеют равные катеты а и b. Их общая гипотенуза с равна радиусу, умноженному на 2, описанной — 2r.
  2. Далее стоит обратиться к теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, т. е. a2 + b2 = c2.
  • так как на рассмотрении квадрат, формулу можно выразить таким образом: a2 + a2 = (2r)2;
  • затем следует уравнение сделать проще: 2a2 = 4(r)2;
  • делим уравнение на 2: (a2) = 2(r)2;
  • извлекаем корень: a = √(2r).

В итоге получаем последнюю формулу: а (сторона квадрата) = √(2r).

  1. Найденная сторона квадрата умножается на 4, далее применяется стандартная формула по нахождению периметра: P = 4√(2r).

Задача:

Дан квадрат, который вписан в окружность, ее радиус равен 5. Значит, диагональ квадрата равняется 10. Применяем теорему Пифагора: 2(a2) = 102, то есть 2a2 = 100. Делим полученное на два и в результате: a2 = 50. Так как это не табличное значение, используем калькулятор: а = √50 = 7,07. Умножаем на 4: Р = 4*7,07 = 28,2. Задача решена!

Рассмотрим еще один вопрос

Часто в задачах встречается другое условие: как найти площадь квадрата, если известен периметр?

Мы уже рассмотрели все необходимые формулы, поэтому для решения задач подобного типа, необходимо умело их применять и связывать между собой. Перейдем сразу к наглядному примеру: Площадь квадрата равна 25 см2, найдите его периметр.

Шаги решения:

  1. Находим сторону квадрата: а = √25 = 5.
  1. Находим сам периметр: Р = 4*а = 4*5 = 20.

Подводя итог, важно напомнить, что такие легкие формулы применимы не только в учебной деятельности, но и повседневной жизни. Периметр и площадь фигуры дети учатся находить еще в начальной школе. В средних классах появляется новый предмет — геометрия, где теорема Пифагора находится в самом начале изучения. Эти азы математики проверяются и по окончанию школы ОГЭ и ЕГЭ, поэтому важно знать эти формулы и правильно их применять.

Похожие статьи

kak-za4em.ru

Задачи на нахождение площади. Математика 4 класс.



Задача 1

Длина прямоугольника 8 дм, ширина 7 дм. Найди его площадь?

    Решение:
  • 1) 8 ∙ 7 = 56
  • Ответ: Площадь прямоугольника 56 м².

Задача 2

Площадь витрины квадратной формы 64м². Узнай ее периметр.

    Решение:
  • 1) 1) 64 : 8 = 8 (сторна витрины)
  • 2) 2) 8 ∙ 4 = 32 (периметр витрины)
  • Ответ: 32 м.

Задача 3

Длина прямоугольника 9 дм, ширина 7 см. Найдите его площадь.

    Решение:
  • 1) 1) 90 ∙ 7 = 630
  • Ответ: 630 см².

Задача 4

Два прямоугольных участка имеют одинаковую площадь. Длина первого — 48 м, а ширина 30 м. Чему равна длина второго участка, если его ширина на 6 м больше ширины первого участка?

    Решение:
  • 1) 48 ∙ 30 = 1440 (площадь первого участка)
  • 2) 30 + 6 = 36 (ширина второго участка)
  • 3) 1440 : 36 = 40
  • Ответ: длина второго участка 40 м.


Задача 5

Один прямоугольный участок имеет длину 36 м, а ширину 20 м. Найдите ширину другого участка с такой же площадью, если его длина на 6 м меньше длины первого участка.

    Решение:
  • 1) 36 ∙ 20 = 720 (площадь первого участка)
  • 2) 36 – 6 = 30 (длина другого участка)
  • 3) 720 : 30 = 24
  • Ответ: ширина другого участка 24 м.

Задача 6

У какой фигуры площадь больше и на сколько: у квадрата со стороной 4 см или у прямоугольника со сторонами 2 см и 6 см?

    Решение:
  • 1) 4 ∙ 4 = 16 (площадь квадрата)
  • 2) 2 ∙ 6 = 12 (площадь прямоугольника)
  • 3) 16 — 12 = 4
  • Ответ: площадь квадратата больше на 4 см.

Задача 7

Длина стороны квадрата 6 см. Узнайте площадь и периметр квадрата.

    Решение:
  • 1) 6 ∙ 6 = 36
  • 2) 6 ∙ 4 = 24
  • Ответ: площадь квадрата 36 см², периметр квадрата 24 см.

Задача 8

У прямоугольника длина 7 см, ширина 5 см. Узнайте площадь и периметр прямоугольника.

    Решение:
  • 1) 7 ∙ 5 = 35
  • 2) 7 ∙ 2 = 14
  • 3) 5 ∙ 2 = 10
  • 4) 10 + 14 = 24
  • Ответ: площадь прямоугольника 35 м², периметр прямоугольника 24 см.


Задача 9

Сторона клумбы квадратной формы 8 м. 7/16 всей площади клумбы засажено ромашками, а остальная площадь – незабудками. На какой площади клумбы посажены незабудки?

    Решение:
  • 1) 8 ∙ 8 = 64 (площадь клумбы)
  • 2) 64 : 16 = 4(1/16 клумбы)
  • 3) 4 ∙ 7 = 28 (плошадь клумбы засаженая ромашками)
  • 4) 64 – 28 = 36
  • Ответ: незабудками засажено 36 м².

Задача 10

Длина прямоугольника 6 см. Чему равна его площадь, если периметр составляет 18 см?

    Решение:
  • 1) 6 ∙ 2 = 12
  • 2) 18 – 12 = 6
  • 3) 6 : 2 = 3 (ширина прямоугольника)
  • 4) 3 ∙ 6 = 18
  • Ответ: площадь прямоугольника 18 м².

Задача 11

Площадь прямоугольного стола 4800 кв см. Его ширина 60 см. Чему равен его периметр?

    Решение:
  • 1) 4800 : 60 = 80 (длина стола)
  • 2) 60 ∙ 2 = 120 см
  • 3) 80 ∙ 2 = 160 см
  • 4) 120 + 160 = 280 см
  • Ответ: периметр стола 280 см.

Задача 12

Периметр прямоугольника 40 см. Одна сторона 5 см. Чему равна его площадь?

    Решение:
  • 1) 5 ∙ 2 = 10
  • 2) 40 – 10 = 30
  • 3) 30 : 2 = 15 (другая сторона прямоугольника)
  • 4) 5 ∙ 15 = 75
  • Ответ: площадь прямоугольника 75 см².

Задача 13

Площадь квадрата 49 кВ дм. Узнайте его периметр.

    Решение:
  • 1) 49 : 7 = 7 (сторона квадрата)
  • 2) 7 ∙ 4 = 28 (периметр квадрата)
  • Ответ: периметр квадрата равен 28 дм.

Задача 14

Ширина окна прямоугольной формы 4 дм, а длина в 2 раза больше. Вычислите площадь окна.

    Решение:
  • 1) 4 ∙ 2 = 8 (длина окна)
  • 2) 4 ∙ 8 = 32
  • Ответ: площадь окна равна 32 м².

Задача 15

Длина участка земли 54 м. ширина — 48 м. 5/9 площади засажено картофелем. Остальная часть участка – капустой. Какая площадь засажена капустой?

    Решение:
  • 1) 54 ∙ 48 = 2592 (площадь участка земли)
  • 2) 2592 : 9 = 288 (1/9 площади)
  • 3) 288 ∙ 5 = 1440 (5/9 площади)
  • 4) 2592 – 1440 = 1152
  • Ответ: капустой засадили 1152 м².


mat-zadachi.ru

Тест по математике (4 класс) на тему: Проверочная работа по математике для 4 класса по теме «Площадь и периметр прямоугольника, квадрата»

Проверочная работа по математике

по теме «Площадь и периметр прямоугольника, квадрата»

4 ___класс                                 I – в.                                           Ф.И.__________________________

 

  1. Найди периметр прямоугольника со сторонами 4 см 5мм и 2 см.
  1. 22 см;          2) 9 см;          3) 2 см 5 мм;          4) 13 см
  1. Найди длины сторон прямоугольника, если его площадь 10 см²?
  1. 7 см и 3 см;          2) 2 см и 5 см;          3) 2 см и 3 см
  1. Найди длину стороны квадрата, периметр которого равен 64 см.
  1. 8 см;          2) 16 см;          3) 32 см.
  1. Длина участка земли прямоугольной формы 80 м, а ширина – 40 м. Найди площадь участка.
  1. 240 м²;          2) 3200 м²;          3) 320 м²;          4) 120 м
  1. Площадь прямоугольника 24 см². Длина одной стороны – 6 см. Чему равна длина второй стороны прямоугольника?

1) 12 см;          2) 3 см;          3) 8 см;          4) 4 см.

  1. Периметр квадрата 24 см. Найди его площадь.
  1. 36 см²;          2) 16 см²;          3) 24 см²
  1. Площадь крышки журнального столика прямоугольной формы 63 дм². Длина одной её стороны 9 дм. Найди периметр этого столика.
  1. 36 дм;          2) 32 дм;         3) 126 дм;          4) 7 дм  

Проверочная работа по математике

по теме «Площадь и периметр прямоугольника, квадрата»

  1. ___класс                                      II – в.                                 Ф.И.__________________________

 

  1. Найди периметр квадрата со сторонами 3 см 5мм.
  1. 9 см 5 мм;          2) 14 см;          3) 7 см
  1. Найди длины сторон прямоугольника, если его площадь 12 см²?

1) 7 см и 5 см;          2) 3 см и 2 см;          3) 4 см и 3 см

  1. Найди длину одной из сторон прямоугольника, если его площадь 18 см², а длина другой стороны 6 см.
  1. 3 см;          2) 12 см;          3) 24 см.
  1. Длина участка земли прямоугольной формы 120 м, а ширина – 30 м. Найди площадь участка земли.
  1. 150 м;          2) 360 м²;          3) 3600 м²;          4) 300 м²
  1. Найди длину одной из сторон  прямоугольника, если его периметр 22 см, а длина другой стороны 5 см.

1) 11 см;          2) 10 см;          3) 6 см;          

  1. Периметр квадрата равен 20 см. Найди его площадь.
  1. 16 см²;          2) 25 см²;          3) 100 см²
  1. Площадь меховой шкурки прямоугольной формы 54 дм². Длина одной её стороны 6 дм. Найди периметр меховой шкурки.
  1. 9 дм;          2) 48 дм;         3) 30 дм

Оценивание:

№ задания

1

2

3

4

5

6

7

Кол-во баллов

3

3

2

2

3

3

3

 

Максимальное количество баллов – 19.

Отметки:       «5» — 18 – 19 баллов;

                «4» — 15 – 17 баллов        ;

                «3» — 14 – 12 баллов

                «2» —  

nsportal.ru

«Площадь и периметр прямоугольника». 4-й класс

1. Организационный момент – Ребята, наш урок мы сегодня начнем с пословицы. Перед вами представлены формулы, среди них выберите те, которые указывают на нахождение периметра прямоугольника (Презентация, слайд 2)
Р = (а + b)2
Р = а * 2 + b* 2
Р = а * 4
S – a * b
S = a + b
S = a * 2  + b
Умение
найдет

применение

– Какой формулой мы воспользуемся для нахождения площади?
– Какими буквами мы обозначим периметр? (Р)
– Какими буквами мы обозначим площадь? (S)

2. Самоопределение к деятельности

Актуализация знаний

– Ребята, вы выбрали верные формулы для нахождения периметра и площади. Появляются напротив каждой формулы слова.
«Уменье –… найдет применение»
– Вы заметили, что в пословице не хватает еще одного слова. Подумайте, за какой же формулой скрывается недостающее слово. Узнав его, мы сможем сказать девиз нашего урока. (Слайд 2)
– Эти формулы будут нам сегодня помогать решать задачи на нахождение периметра и площади прямоугольника.
На слайде представлены геометрические фигуры. (Слайд 3) Назовите номера фигур, которые являются прямоугольниками. Д: фигуры под номерами 1, 2, 3.
Лишние фигуры исчезают по щелчку.
– Ребята, среди высказываний, выберите истинные высказывания о прямоугольнике (Слайд 4)
Д: Высказывания под номерами 1, 4 являются ложными, а высказывания под номерами 2, 3, 5 – истинными.
самостоятельно. (Слайд 5)
– Молодцы, ребята. Следующее задание решить задачу. Найдите площадь прямоугольника со сторонами 8см и 5см
Устные упражнения 8 * 5 + 2 * 5 = 50 (см2)
8 * 5 = 40 (см2)
8 * 5 + 2 * 5 = 50 (см)
8 * 5 = 40 (см)
8 * 2 + 5 = 21 (см)
(8 + 5) * 2 = 26 см

– Найдите правильно записанное решение задачи и запишите ответ в тетрадь. Проверка решения.
Д: 8 * 5 = 40 (см2)
– Как вы думаете, какое из решений подходит для нахождения периметра? Д: (8+5)*2=26(см)
– В чем отличие единиц измерения площади и периметра?
Д: Площадь измеряется квадратной меркой.

Ученики записывают величины в нужном порядке у себя в рабочих тетрадях – Ребята, расположите величины в порядке убывания . При верном составлении у вас должно поучится слово. (Слайд 6)
7 дм2 15 см2 80 дм2 70 см2 15 м2 10 см2 50 м2
Д А А Р В Т К
3. Постановка учебной задачи Самопроверка записи – на слайде (клик мышкой)

Дети: 50м2, 15м2, 80 дм2, 7дм2, 70см2, 15см2, 10см2

– Какое слово у вас получилось? (Квадрат)

Исследование общих признаков геометрических фигур – Определите содержание двух понятий прямоугольника и квадрата:
Прямоугольник

1. Геометрическая фигура
2. Противоположные стороны равны
3. Прямые углы

Квадрат

1. Геометрическая фигура
2. Все стороны равны
3. Прямые углы
4. Противоположные стороны равны

Вывод: Чем больше содержание понятия, тем меньше его объем.

Работа над построением графической модели – Сравните объемы понятий «прямоугольник» и «квадрат» (Слайд 7)
Д: Объем понятия прямоугольник шире, чем объем понятия квадрат
– Употребляя слова «все», «некоторый», «каждый», «ни один», установите отношения между понятиями квадрат и прямоугольник (Слайд 8)
Д: Некоторые прямоугольники являются квадратами. Каждый квадрат является прямоугольником.
– Как изобразить отношения между понятиями прямоугольник и квадрат? (Слайд 9)
Д: С помощью кругов Эйлера-Венна.
Физпауза Раз – согнуться, разогнуться,
Два – нагнуться, потянуться,
Три – в ладоши три хлопка,
Головою три кивка,
На четыре руки шире.
Пять, шесть – тихо сесть.
Использование проблемной ситуации. Своими вопросами учитель подводит учащихся к новым знаниям. Можно ли вычислить периметр и площадь квадрата, используя формулы? (Слайд 10)
Р = (а + b)2
Р = а * 2 + b* 2
Р = а * 4
S — a * b
S = a + b
S = a * 2  + b
Умение
найдет
везде
применение

Появляется формула: S = а * а.

– Что это за формула?
Д: Формула для нахождения площади квадрата.
– Давайте все вместе прочитаем девиз нашего урока (Слайд 10)

4. Закрепление (фронтальная работа) – Сейчас, используя, формулы мы с вами будем решать задачи. Учебник с.173 №590.
– Прочитайте условие задачи.
Длина школьного бассейна в 3раза больше его ширины. Чему равен P бассейна, если его ширина равна 9м.
– О какой фигуре идет речь в задаче? (Прямоугольник)
– Что известно в задаче? (Ширина прямоугольника, известно что длина в 3 раза больше его ширины).
– Что мы можем узнать, используя эти данные? (Можем найти длину)
– Как мы узнаем длину?
а = 9 * 3 = 27 м
– Можем ли мы зная длину и ширину прямоугольника, найти Р? (Можем, используя формулу Р = (а + в)* 2
Р б.= (9 + 27) * 2 = 72 м
Вывод: Где в жизни можно применить полученные умения и навыки при решении задач на нахождение периметра и площади?
Д: В строительстве, на дачном участке, в ремонтных работах.
Групповая работа
(задания предложенные учащимся, имеют компетентностно-ориентированное содержание)

Создание ситуации успеха.

У группы ориентир на мыслительную деятельность « Мы группа, значит мы способны действовать.

В ходе рассуждений при решении технического задания, предоставляется свобода для самовыражения.

Класс делится на группы (бригады) по 4 человека. Каждой бригаде предлагается выполнить техническое задание. (Слайд 11)
Каждый участник представляет отдельный этап работы. Роли в группе показаны на магнитной доске:
– организатор
– спикер
– секрет
– контролер
Группа, которая безошибочно справится с работой, выигрывает право принять участие в проведении ремонтных работ на территории школы во время осенних каникул. Лучшая бригада награждается путевкой в зимний пришкольный лагерь. (Слайд 12)
Использование метода моделирования. Наиболее удобные способы записи.

Ребята при выполнении работы используют материальную и математическую модели

1 задание. На пришкольном участке необходимо установить бордюр вокруг 2-х детских площадок. Сколько потребуется материала, если длина 1 бордюра 1 м?

Д: Мы воспользовались формулой для нахождения периметра?
– Как рационально вычислить значение периметра?
Д: (62 + 38) * 2 = 200 м

75 * 2 + 29 * 2 = 150 + 58 = 208 м

2 задание. Вычислите площади фигур, если дана мерка. (Слайд 13)
На территории школы необходимо облагородить тротуарной плиткой 2 участка. Вычислите, сколько материала уйдет на каждый участок?

Д: Мы вычислили S фигур, используя мерку величиной 10м2. Путем переложения квадрата мерки на фигуры. Мы нашли а и b. Вторую фигуру, мы превратили в прямоугольник, пререложив квадраты, для быстроты вычисления. (Слайды 14, 15)

3 задание (Слайд 16). Часть покрытия на теннисном корте испортилась. Необходимо в ходе ремонтных работ заменить покрытие и установить ограждение вокруг корта. Сколько материала потребуется?

Д: Чтобы найти площадь и периметр, надо знать его длину. От данного прямоугольника осталась часть, нам известна ширина 30 м2. Слева мы добавляем до 20 м2 Длина 80 м2 и вверху добавляем 60м2 . Используя, свойства прямоугольника, у него противоположные стороны равны.

Р = (80 + 30) * 2 = 220 м
S = 80 * 30 = 2400 м2

– Молодцы, ребята вы отлично справились с техническим заданием!

5. Домашнее задание Составить задачу по вариантам.
Составить 2 задачи на нахождение периметра и площади, используя числовые данные в пределах второго десятка.
В будущем мы все должны научиться решать задачи на нахождение периметра и площади только на 5.
6. Рефлексия – Что удалось нам сегодня открыть на уроке? Расскажите. (Решали практические задачи, учились строить модели, взаимодействовать друг с другом в группах, учились обосновывать свой выбор, сравнивать, упорядочивать информацию)

– Какое задание показалось наиболее трудным? А какое наиболее интересным.

Д: Уроки математики учат нас знаниям, навыкам, что нам может пригодиться и найти применение в нашей жизни.

– Девизом нашего урока были слова «Умение – везде найдет применение». И мы это доказали, применяя нужные формулы для решения задач. Данное умение вам пригодится при выполнении домашнего задания.
(Слайд 19) Спасибо за урок!

xn--i1abbnckbmcl9fb.xn--p1ai

Площадь квадрата — формула, пример расчета

Квадрат – это правильный четырехугольник, в котором все углы и стороны равны между собой.

Довольно часто эту фигуру рассматривают, как частный случай ромба или прямоугольника. Диагонали квадрата равны между собой и используются в формуле площади квадрата через диагональ.
Для расчета площади рассмотрим формулу площади квадрата через диагонали:

То есть площадь квадрата равна квадрату длины диагонали поделенному на два. Учитывая, что стороны фигуры равны, можно рассчитать длину диагонали из формулы площади прямоугольного треугольника или по теореме Пифагора.

Рассмотрим пример расчета площади квадрата через диагональ. Пусть дан квадрат с диагональю d = 3 см. Необходимо вычислить его площадь:

По этому примеру расчета площади квадрата через диагонали мы получили результат 4,5 .

Площадь квадрата через сторону

Найти площадь правильного четырехугольника можно и по его стороне. Формула площади квадрата очень проста:

Так как в предыдущем примере расчета площади квадрата мы рассчитали значение по диаметру, теперь попробуем найти длину стороны:
Подставим значение в выражение:
Длина стороны квадрата будет равна 2,1 cm.

Очень просто можно использовать формулу площади квадрата вписанного в окружность.

Диаметр описанной окружности будет равен диаметру квадрата. Так как квадрат считается правильным ромбом, можно использовать формулу расчета площади ромба. Она равна половине произведения его диагоналей. Диагонали квадрата равны, значит формула будет выглядеть так:
Рассмотрим пример расчета площади квадрата вписанного в окружность.

Дан квадрат, вписанный в окружность. Диагональ окружности равна d= 6 см. Найдите площадь квадрата.
Мы помним, что диагональ окружности равна диагонали квадрата. Подставляем значение в формулу расчета площади квадрата через его диагонали:

Площадь квадрата равна 18

Площадь квадрата через периметр

В некоторых задачах по условиям дается периметр квадрата и требуется расчет его площади. Формула площади квадрата через периметр выводится из значения периметра. Периметр – это сумма длин всех сторон фигуры. Т.к. в квадрате 4 равных стороны, то он будет равенОтсюда находим сторону фигуры Площадь квадрата по обычной формуле считается так: .
Рассмотрим пример расчета площади квадрата через периметр.

Дан квадрат с периметром P = 16 см. Найдите его площадь.
Находим сторону:

Теперь рассчитаем площадь:

Площадь данного квадрата равна 16 .

2mb.ru

Решение алгебраических – —

Решение алгебраических уравнений онлайн · Как пользоваться Контрольная Работа РУ

Рассмотрим несколько примеров, как решать простые и сложные алгебраические уравнения, и используя калькулятор уравнений онлайн, получить подробное решение.

Простое алгебраическое уравнение

На простом примере

2*(x — 1/2) = 3/8*(1-x/7)

— линейного алгебраического уравнения долго не будем задерживаться — вы сами можете воспользоваться формой ниже и опробовать:

 

Лучше сразу перейдём к более сложным алгебраическим уравнениям.

Сложное алгебраическое уравнение

Рассмотрим пример уравнения с полиномом 4-ой степени:

(x — 2)^4  + 3*(x — 2)^2  — 10 = 0

Для получения подробного решения вбейте данное уравнение в калькулятор:

И ниже вы увидите подробное решение:

Дано уравнение:


              4             2    
-10 + (-2 + x)  + 3*(-2 + x)  = 0

Сделаем замену

тогда ур-ние будет таким:

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
v1 = ---------
        2*a   

            ___
     -b - \/ D 
v2 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(3)^2 - 4 * (1) * (-10) = 49

Т.к. D > 0, то уравнение имеет два корня.


v1 = (-b + sqrt(D)) / (2*a)

v2 = (-b - sqrt(D)) / (2*a)

или

Получаем окончательный ответ:

Т.к.

то

тогда:


2 ___                
\/ 2              ___
----- + 2 = 2 + \/ 2 
  1                  

 2 ___                 
-\/ 2               ___
------- + 2 = 2 - \/ 2 
   1                   

2 ____                  
\/ -5                ___
------ + 2 = 2 + I*\/ 5 
  1                     

 2 ____                   
-\/ -5                 ___
-------- + 2 = 2 - I*\/ 5 
   1                      

 

Также можно решать уравнения со степенью 6 (шестой степенью) и другими степенями. Калькулятор алгебраических уравнений вам поможет в этом.

x^6  + 9*x^3  + 8 = 0

Дано уравнение:

Сделаем замену

тогда ур-ние будет таким:

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
v1 = ---------
        2*a   

            ___
     -b - \/ D 
v2 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(9)^2 - 4 * (1) * (8) = 49

Т.к. D > 0, то уравнение имеет два корня.


v1 = (-b + sqrt(D)) / (2*a)

v2 = (-b - sqrt(D)) / (2*a)

или

Получаем окончательный ответ:

Т.к.

то

тогда:


3 ____         
\/ -1    3 ____
------ = \/ -1 
  1            

3 ____           
\/ -8      3 ____
------ = 2*\/ -1 
  1              

 

Также можно решить алгебраическое уравнение третьей степени (кубическое):

2*x^3 + 4*x — 8*x  = 16

Дано уравнение:


          3      2     
-8*x + 2*x  + 4*x  = 16

преобразуем


   3           2                    
2*x  - 16 + 4*x  - 16 - 8*x + 16 = 0

или


   3      3      2      2               
2*x  - 2*2  + 4*x  - 4*2  - 8*x + 16 = 0

  / 3    3\     / 2    2\                
2*\x  - 2 / + 4*\x  - 2 / - 8*(x - 2) = 0

          / 2          2\                                    
2*(x - 2)*\x  + 2*x + 2 / + 4*(x - 2)*(x + 2) - 8*(x - 2) = 0

Вынесем общий множитель -2 + x за скобки

получим:


        /  / 2          2\                \    
(x - 2)*\2*\x  + 2*x + 2 / + 4*(x + 2) - 8/ = 0

или


         /       2      \    
(-2 + x)*\8 + 2*x  + 8*x/ = 0

тогда:

и также

получаем ур-ние

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x2 = ---------
        2*a   

            ___
     -b - \/ D 
x3 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(8)^2 - 4 * (2) * (8) = 0

Т.к. D = 0, то корень всего один.

Получаем окончательный ответ для -8*x + 2*x^3 + 4*x^2 — 16 = 0:

www.kontrolnaya-rabota.ru

Способы решения алгебраических уравнений

Разделы: Математика


Предисловие

Уравнения занимают значительное место в курсе математики средней школы. Остановимся лишь на алгебраических уравнениях, которые разобьем на три группы:

  1. полиномиальные уравнения вида Pn(x) = 0, где Pn(x) — многочлен n-й степени относительно x;
  2. дробно-рациональные уравнения, т.е. содержащие в качестве двух компонент частные двух многочленов;
  3. иррациональные уравнения.

Для ряда приемов даны небольшие теоретические обоснования. Приведено 30 приемов, иллюстрированных более чем 36 примерами. Не надо думать, что приведенный в конкретном примере прием является наиболее рациональным для решения данного примера. Просто надо принять к сведению существование такого подхода к решению уравнений.

Одни и те же подходы (применение тригонометрии, использование однородности, разложение на множители и др.) находят применение не только при решении рациональных, дробно-рациональных, иррациональных уравнений, но и при решении трансцендентных уравнений, неравенств, систем.

При написании использовалась литература:

  1. Рывкин А. А. «Справочник по математике» – М.: Высшая школа, 1987.
  2. Цыпкин А. Г. «Справочник по методам решения задач по математике» – М.: Наука, 1989.
  3. Шарыгин И. Ф. Факультативный курс по математике – М.: Просвещение, 1989.
  4. Сборник задач по математике для поступающих во ВТУЗы / Под ред. Сканави М. И. – Мн.: Вышэйшая школы, 1990.

и др.

В этих пособиях можно найти достаточное количество нужных уравнений, конечно, не пренебрегая другими источниками.

Полиномиальные уравнения

1.  Докажем теорему: Если уравнение anxn + an–1xn–1 + … + a1x + a0 = 0 (*) с целыми коэффициентами имеет рациональный корень, где p и q взаимно просты, то a0 делится на p, а an делится на q.

Доказательство: Заменим в (*) x на , получим верное числовое равенство умножим обе части равенства на qn:

anpn + an–1pn–1q + … + a1pqn–1 + a0qn = 0 (**)

anpn = – q (an–1pn–1 + … + a1pqn–2 + a0qn–1)

Правая часть делится на q, значит, и левая должна делиться на q, но т.к. p и q взаимно просты, то pn не делится на q, но тогда an должно делиться на q, иначе левая часть не будет кратна q.

Из (**) можно получить и другое равенство a0qn = – p (anpn–1 + an–1pn–2q + … + a1qn–1)

Правая часть кратна p, значит, и левая кратна p, но qn взаимно просты с p, значит a0 кратно p. Теорема доказана.

Теорема Безу. Остаток от деления многочлена P(x) = anxn + an–1xn–1 + … + a1x + a0   на двучлен (x – a) равен значению многочлена P(x) при x = a.

Доказательство: Делимое равно делителю, умноженному на частное, плюс остаток. Так как делитель — многочлен первой степени, то остаток будет многочленом, степень которого меньше степени делителя, значит, остаток – const. Частное будет многочленом степени n – 1. Тогда

P(x) = (x – a) (сn–1xn–1 + сn–2xn–2 + … + с1x + с0) + R (***)

При x = a это равенство имеет вид

P(a) = 0 ? (сn–1an–1 + сn–2an–2 + … + с1a + с0) + R,

из которого следует  P(a) = R. Теорема доказана.

Следствие: Если x = a — корень многочлена, то многочлен делится на x – a без остатка.

Доказательство: При x = a равенство (***) примет вид 0 = 0 + R, из которого следует, что R = 0. А так как остаток от деления равен нулю, то утверждение доказано.

Пример 1. Решить уравнение 30x4 + x3 – 30x2 + 3x + 4 = 0.

Составим различные несократимые дроби, числители которых — делители свободного члена, т.е. 4, а знаменатели — делители старшего коэффициента, т.е. 30.

     

     

     

     

В левом столбике в знаменателях участвуют все делители числа 30. Видно, что – 1 — корень многочлена. По следствию из теоремы Безу делим многочлен на x + 1

Для поиска корней многочлена 30x3 – 29x2 – x + 4 воспользуемся таблицей дробей. При многочлен примет вид Значит, — корень многочлена.

2.  При решении алгебраических уравнений может быть полезен метод неопределенных коэффициентов.

Пример 2. Решить уравнение x4 + 2x3 – 16x2 + 11x – 2 = 0.

Пусть многочлен представим в виде произведения

(a x2 + b x + g ) (ax2 + bx + c),

где a , b , g , a, b, c коэффициенты, которые желательно подобрать так, чтобы после раскрытия скобок и приведения подобных слагаемых получился исходный многочлен. Раскроем скобки, полагая, что a  = a = 1.

(x2 + b x + g ) (x2 + bx + c) = x4 + (b  + b)x3 + (b b + g  +c)x2 + (g b + b c)x + cg

Приравняем коэффициенты

b  + b = 2 b  = 2 – b

b b + g  +c = – 16 2bb2 + g  +c = – 16

g b + b c = 11 g b + 2c – bc = 11

cg  = – 2 cg  = – 2

Положим c = 1, g  = – 2 или c = 2, g  = – 1 (подбираем коэффициенты).

– 2bb = 9

b = – 3, тогда b  = 5.

Убедимся, что b  = 5, g  = – 2, b = – 3, c = 1. Такой набор удовлетворяет всем четырем уравнениям, поэтому можем записать

x4 + 2x3 – 16x2 + 11x – 2 = (x2 – 3x + 1) (x2 + 5x – 2)

Решив квадратные уравнения, получим корни исходного уравнения.

Ответ:

3.  Решение возвратных уравнений

Уравнения вида ax2k + bx2k–1 + cx2k–2 + … + l k–2cx2 + l k–1bx + l a = 0 (k I  N, l  I  R) называются возвратными.

После почленного деления на xk, они решаются подстановкой

Пример 3. Решить уравнение 2x4 – 3x3 – 7x2 –15x + 50 = 0.

Разделим на x2, получим

Уравнение примет вид:

           

  

Если l  = 1, то уравнение вида ax2k + bx2k–1 + cx2k–2 + dx2k–3 + … + dx3 + cx2 + bx + a = 0 называется возвратным (или симметрическим) уравнением степени 2k первого рода.

Пример 4. Решить уравнение 5x4 + 3x3 – 16x2 + 3x + 5 = 0.

Разделим почленно на x2. Имеем .

 

  

Ответ:

Если l  = – 1, то получим уравнение вида

ax2k + bx2k–1 + cx2k–2 + dx2k–3 + … + dx3 + cx2 – bx + a = 0, которое называется возвратным (или симметрическим) уравнением степени 2k второго рода. Решается подстановкой

Пример 5. Решить уравнение 8x4 – 42x3 + 29x2 + 42x + 8 = 0.

 

  

Ответ:

Возвратное уравнение нечетной степени имеет корень – 1. Это объясняется тем, что уравнение имеет четное число членов, которые при замене x на – 1 попарно уничтожаются. Поэтому в начале делят многочлен на x + 1, а частное приведет к возвратному уравнению четной степени, решение которого уже рассмотрено.

Пример 6. Решить уравнение 24x5 + 74x4 – 123x3 – 123x2 + 74x + 24 = 0.

Имеем возвратное уравнение 5-й степени. Один из его корней – 1. После деления на x + 1, получим

24x4 + 50x3 – 173x2 + 50x + 24 = 0

 

  

Ответ:

если , то

По биному Ньютона

Замечание 2. Определить по внешнему виду, что уравнение является возвратным не всегда просто, особенно, если . Поэтому в уравнении степени 2n производим почленное деление на xn и, если при этом получается сумма выражений вида , где n = 0, 1, 2 … m, то дальнейшее решение ясно.

Приложение

19.03.2007

xn--i1abbnckbmcl9fb.xn--p1ai

алгебраическое решение — это… Что такое алгебраическое решение?


  • алгебраическое расширение
  • алгебраическое свойство

Смотреть что такое «алгебраическое решение» в других словарях:

  • решение — сущ., с., употр. часто Морфология: (нет) чего? решения, чему? решению, (вижу) что? решение, чем? решением, о чём? о решении; мн. что? решения, (нет) чего? решений, чему? решениям, (вижу) что? решения, чем? решениями, о чём? о решениях 1. Решением …   Толковый словарь Дмитриева

  • АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ — уравнение вида где многочлен n й степени от одного или нескольких переменных . А. у. с одним неизвестным наз. уравнение вида: Здесь п целое неотрицательное число, наз. коэффициентами уравнения и являются данными, хназ. неизвестным и является… …   Математическая энциклопедия

  • Алгебраическое уравнение —         уравнение, получающееся при приравнивании двух алгебраических выражений (См. Алгебраическое выражение). А. у. с одним неизвестным называется дробным, если неизвестное входит в знаменатель, и иррациональным, если неизвестное входит под… …   Большая советская энциклопедия

  • Решение уравнения — Уравнение равенство вида или , где f и g функции (в общем случае векторные) одного или нескольких аргументов, а также задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут… …   Википедия

  • решение — я; ср. 1. к Решить решать (кроме 6 зн.). Участвовать в решении чьей л. судьбы. Перенести срок решения вопроса. Оригинальное инженерное р. здания. Алгебраическое р. задачи. 2. Обдуманное намерение сделать что л., заключение, вывод из чего л.… …   Энциклопедический словарь

  • решение — я; ср. 1) к решить решать Участвовать в решении чьей л. судьбы. Перенести срок решения вопроса. Оригинальное инженерное реше/ние здания. Алгебраическое реше/ние задачи. 2) Обдуманное намерение сделать что л., заключение, вывод из чего л …   Словарь многих выражений

  • Кольцо алгебраическое — Кольцо алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения: 1) множество всех целых положительных …   Большая советская энциклопедия

  • Алгебра —          Общие сведения          Алгебра один из больших разделов математики (См. Математика), принадлежащий наряду с арифметикой (См. Арифметика) и геометрией (См. Геометрия) к числу старейших ветвей этой науки. Задачи, а также методы А.,… …   Большая советская энциклопедия

  • Вертикальные углы — Две прямые пересекаются, создавая пару вертикальных углов. Одна пара состоит из углов A и B, другая  из C и D. В геометрии, два угла называются вертикальными, если они созданы пересечением двух …   Википедия

  • АЛГЕБРАИЧЕСКИЙ — АЛГЕБРАИЧЕСКИЙ, алгебраическая, алгебраическое. прил. к алгебра. Алгебраическая задача. Алгебраическое решение. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • Якоби Карл Густав Яков — (Jacobi, 1804 1851) один из знаменитых германских математиков прошлого столетия, родился в Потсдаме. Первоначальное обучение получил под руководством своего дяди по матери, затем учился в тамошней гимназии и 16 ти лет от роду поступил в… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

dic.academic.ru

Алгебраическое решение — Большая Энциклопедия Нефти и Газа, статья, страница 1

Алгебраическое решение

Cтраница 1

Алгебраические решения получаются не иначе, как через уравнения.  [1]

Алгебраические решения могут быть найдены следующим образом.  [2]

Алгебраическое решение, а также решение тепловых и материальных балансов по высоте колонны и по ее частям представляют собой наиболее общий подход к расчету процесса ректификации. Для полного решения полученных уравнений данных обычно недостаточно. Поэтому программы такого типа решаются методом проб и ошибок.  [3]

Алгебраическое решение этой системы затруднительно.  [4]

Алгебраическое решение геометрических задач заключается в следующем. По условию задачи составляются уравнения ( неравенства), связывающие известные и неизвестные элементы фигур. Затем определяются те элементы или отношения между ними, которые требуется найти.  [5]

Алгебраическое решение системы узловых и контурных уравнений магнитной цепи обычными способами невозможно, так как эта система нелинейная. Поэтому в практике применяют графические и графоаналитические методы расчета разветвленных магнитных цепей.  [6]

Вместо алгебраического решения характеристического уравнения ( 1) можно использовать графический способ, известный под названием круга Мора, позволяющий находить компоненты тензора второго ранга в пространстве двух измерений и в произвольной системе ортогональных осей координат ( напряжения или деформации в точке, моменты инерции площадей плоских фигур, кривизны нормальных сечений поверхности и пр. Круг Мора дает графическую интерпретацию линейного преобразования любой симметричной матрицы или квадратичной формы второго ранга при повороте осей и, в частности, может служить для решения векового уравнения второй степени.  [7]

Здесь приводится алгебраическое решение эпиграммы о Диофанте.  [8]

Рассмотрим примеры обобщенных алгебраических решений.  [9]

Теоремы об алгебраических решениях и соответствии особенностей сводят задачу описания динамики абелевой области к задаче решения системы уравнений на параметры абелевых областей фиксированной степени.  [10]

В этом относительно простом случае алгебраическое решение все же можно получить, но обычно при большем числе компонентов и большем числе уравнений такой метод, как правило, непригоден.  [11]

Этот ступенчатый графический прием равнозначен повторяющемуся алгебраическому решению соответствующего кинетического уравнения. Простота построения наглядно изображает картину изменения концентраций по ходу каскада.  [13]

Приведенный алгоритм, основанный на алгебраическом решении системы уравнений ( 2 — VI), обладает достаточно быстрой сходимостью. Однако он довольно громоздок и трудоемок в программировании и отладке.  [14]

К самостоятельным достижениям Леонардо Фибоначчи относится приближенное алгебраическое решение кубического уравнения.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Решения алгебраических задач — Решения алгебраических задач на ЕГЭ по математике


Решения алгебраических задач на ЕГЭ по математике
скачать (6189 kb.)

Доступные файлы (1):


содержание

1.rtf

Реклама MarketGid:
Решения алгебраических задач

Применение метода тригонометрической подстановки при решении задач

Решение уравнений

Иррациональные уравнения

Рациональные уравнения

Показательные уравнения

Решение систем

Доказательство неравенств

Задачи на нахождение наибольшего и наименьшего значений

функции

Решение задач с параметрами
Метод замены переменной при решении задач

Переход к новым обозначениям, замена неизвестных – существенный прием и метод, который применяется при решении самых различных задач как элементарной, так и высшей математики. Очень важно, чтобы этот прием и метод был прочно усвоен и освоен в школе, так как идея замены переменной является сквозной и в том или ином виде фигурирует практически во всех разделах школьной математики.

Существуют два подхода к определению метода замены переменной. Если уравнение удалось преобразовать к виду , то нужно ввести новую переменную , решить уравнение , а затем рассмотреть совокупность уравнений

где корни уравнения . Чтобы при замене не потерять корней, достаточно убедиться, что каждому значению из рассматриваемой области соответствует хотя бы одно значение , удовлетворяющее равенству .

В отличие от описанного выше метод равносильной замены требует нахождения множества значений переменной . В данном случае накладывается требование: каждому значению из рассматриваемой области соответствует ровно одно значение переменной , удовлетворяющее равенству . Такой подход ведет к сохранению области определения исходного уравнения и не требует перехода к совокупности.

Подобные замены порой существенно упрощают решение. Замена переменных и переход к новым обозначениям облегчают выкладки и делают громоздкое алгебраическое выражение компактным и обозримым. Вот почему следует приучать школьников при решении задач не торопиться начинать преобразования: пусть они сначала посмотрят, нельзя ли записать уравнение проще, введя новую переменную. При этом не стоит забывать, что, во-первых, далеко не всегда замена бывает столь уж необходима. Во-вторых, если приходится прибегать к замене неизвестной, то стоит сразу подобрать ее так, чтобы она вбирала в себя по возможности большее количество неприятных деталей, затрудняющих решение.

^


    1. Иррациональные уравнения

Иррациональные уравнения часто встречаются на вступительных экзаменах по математике, так как с их помощью легко диагностируется знание таких понятий, как равносильные преобразования, область определения и другие. Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. Эквивалентность не нарушается при возведении обеих частей в нечетную степень. В противном случае требуется проверка найденных решений или оценка знака обеих частей уравнения. Но существуют и другие приемы, которые могут оказаться более эффективными при решении иррациональных уравнений. Например, метод тригонометрической подстановки.

Пример 1. Решите уравнение

[12].

Решение с помощью тригонометрической подстановки

Так как , то . Поэтому можно положить . Уравнение примет вид

.

Положим , где , тогда

.

.

.

Ответ: .

Алгебраическое решение

.

Так как , то . Значит, , поэтому можно раскрыть модуль

.

Ответ: .

Решение уравнения алгебраическим способом требует хорошего навыка проведения тождественных преобразований и грамотного обращения с равносильными переходами. Но в общем оба приема решения равноценны.

Пример 2. Решите уравнение

[14].

^

Область определения уравнения задается неравенством , что равносильно условию , тогда . Поэтому можно положить . Уравнение примет вид

.

Так как , то . Раскроем внутренний модуль

.

Положим , тогда

.

Условию удовлетворяют два значения и .

.

.

Ответ: .

^

.

Возведем в квадрат уравнение первой системы совокупности, получим

.

Пусть , тогда . Уравнение перепишется в виде

.

Проверкой устанавливаем, что – корень, тогда делением многочлена на двучлен получаем разложение правой части уравнения на множители

.

От переменной перейдем к переменной , получим

.

Условию удовлетворяют два значения

.

Подставив эти значения в исходное уравнение, получаем, что – корень.

Решая аналогично уравнение второй системы исходной совокупности, находим, что тоже корень.

Ответ: .

Если в предыдущем примере алгебраическое решение и решение с помощью тригонометрической подстановки были равноценны, то в данном случае решение подстановкой выгоднее. При решении уравнения средствами алгебры приходится решать совокупность из двух уравнений, то есть дважды возводить в квадрат. После этого неравносильного преобразования получаются два уравнения четвертой степени с иррациональными коэффициентами, избавиться от которых помогает замена. Еще одна трудность – проверка найденных решений подстановкой в исходное уравнение.

Пример 3. Решите уравнение

[31].

^

Так как , то . Заметим, что отрицательное значение неизвестного не может быть решением задачи. Действительно, преобразуем исходное уравнение к виду

.

Множитель в скобках в левой части уравнения положительный, правая часть уравнения тоже положительная, поэтому множитель в левой части уравнения не может быть отрицательным. Вот почему , тогда , поэтому можно положить Исходное уравнение перепишется в виде

.

Так как , то и . Уравнение примет вид

.

Пусть . Перейдем от уравнения к равносильной системе

.

Числа и являются корнями квадратного уравнения

.

.

Ответ: .

Алгебраическое решение

Возведем обе части уравнения в квадрат

.

Введем замену , тогда уравнение запишется в виде

.

Второй корень является лишним, поэтому рассмотрим уравнение

.

Так как , то .

Ответ: .

В данном случае алгебраическое решение в техническом плане проще, но рассмотреть приведенное решение с помощью тригонометрической подстановки следует обязательно. Это связано, во-первых, с нестандартностью самой подстановки, которая разрушает стереотип, что применение тригонометрической подстановки возможно лишь, когда . Оказывается, если тригонометрическая подстановка тоже находит применение. Во-вторых, представляет определенную трудность решение тригонометрического уравнения , которое сводится введением замены к системе уравнений. В определенном смысле эту замену тоже можно считать нестандартной, а знакомство с ней позволяет обогатить арсенал приемов и методов решения тригонометрических уравнений.

Пример 4. Решить уравнение

[4].

Решение с помощью тригонометрической подстановки

Так как переменная может принимать любые действительные значения, положим . Тогда

,

,так как .

Исходное уравнение с учетом проведенных преобразований примет вид

.

Так как , поделим обе части уравнения на , получим

.

Пусть , тогда . Уравнение примет вид

.

.

Учитывая подстановку , получим совокупность из двух уравнений

.

Решим каждое уравнение совокупности по отдельности.

1) .

.

не может быть значением синуса, так как для любых значений аргумента.

.

Откуда

.

Так как и правая часть исходного уравнения положительна, то . Из чего следует, что .

2) .

.

Это уравнение корней не имеет, так как .

Итак, исходное уравнение имеет единственный корень

.

Ответ: .

^

Данное уравнение легко «превратить» в рациональное уравнение восьмой степени возведением обеих частей исходного уравнения в квадрат. Поиск корней получившегося рационального уравнения затруднен, и необходимо обладать высокой степенью изобретательности, чтобы справиться с задачей. Поэтому целесообразно знать иной способ решения, менее традиционный. Например, подстановку , предложенную И. Ф. Шарыгиным [57].

Положим , тогда

Преобразуем правую часть уравнения :

.

С учетом преобразований уравнение примет вид

.

Введем замену , тогда

.

Второй корень является лишним, поэтому , а .

Ответ: .

Если заранее не известна идея решения уравнения , то решать стандартно возведением обеих частей уравнения в квадрат проблематично, так как в результате получается уравнение восьмой степени , найти корни которого чрезвычайно сложно. Решение с помощью тригонометрической подстановки выглядит громоздким. Могут возникнуть трудности с поиском корней уравнения , если не заметить, что оно является возвратным. Решение указанного уравнения происходит с применением аппарата алгебры, поэтому можно сказать, что предложенное решение является комбинированным. В нем сведения из алгебры и тригонометрии работают совместно на одну цель – получить решение. Также решение указанного уравнения требует аккуратного рассмотрения двух случаев. Решение заменой технически проще и красивее, чем с помощью тригонометрической подстановки. Желательно, чтобы учащиеся знали такой способ замены и применяли его для решения задач.

Подчеркнем, что применение тригонометрической подстановки для решения задач должно быть осознанным и оправданным. Использовать подстановку целесообразно в тех случаях, когда решение другим способом сложнее или вовсе невозможно. Приведем еще один пример, который, в отличие от предыдущего, проще и быстрее решается стандартным способом.

Пример 5. Решить уравнение

[51].

^

Так как переменная может принимать любые действительные значения, можно положить . Уравнение примет вид

.

В силу того, что , можно раскрыть модуль

.

Так как , то .

Ответ: .

Алгебраическое решение

Проверкой убеждаемся, что – корень.

Ответ: .

^

Тригонометрическая подстановка применяется при решении рациональных уравнений, когда уравнение не имеет рациональных корней или найденные рациональные решения не исчерпывают всего множества решений уравнения.

При решении иррациональных уравнений возможность введения тригонометрической подстановки была видна по структуре уравнения. В нескольких следующих задачах применение метода тригонометрической подстановки не так очевидно. Вот почему прежде чем ввести подстановку, нужно доказать законность такого введения.

Пример 1. Сколько корней имеет уравнение

[37].

Решение этой задачи любым методом начинается одинаково. Докажем, что все корни данного уравнения принадлежат промежутку . Действительно, если

.

Но тогда в исходном уравнении слева стоит произведение больше восьми, а справа единица, что невозможно.

^

Положим . Тогда каждому корню исходного уравнения будет соответствовать ровно один корень , где . Наоборот, каждому корню уравнения соответствует ровно один корень исходного уравнения. Таким образом, задача может быть переформулирована так: сколько корней на промежутке имеет уравнение

.

Так как и , то можно взять . Заметим, что если — корень данного уравнения, то и тоже корень. Вот почему достаточно рассмотреть , то есть отыскать только положительные решения. С учетом выше изложенного исходное уравнение перепишется в виде

.

Так как , то можно обе части равенства умножить на , получим

.

Ответ: шесть корней.

Алгебраическое решение

Так как выражение от правой части равенства четное и и , выясним вопрос о наличии корней на промежутке . Проверкой устанавливаем, что – корень. Рассмотрим функции от правой и левой частей уравнения, то есть функции и . Так как

и функция непрерывна на числовой прямой, то найдутся такие значения и , что . Поэтому на промежутке уравнение имеет три корня, а на всей числовой прямой – шесть корней.

Ответ: 6 корней.

В данном случае можно решать любым способом, но если количество корней на небольшом промежутке достаточно велико, вычисления могут оказаться громоздкими, и сам метод неэффективным. В этом случае на помощь приходит метод тригонометрической подстановки. Надо заметить, что решить вопрос о количестве корней можно с помощью производной, но в данном случае такое решение мало эффективно, так как затруднительно найти нули производной.

Пример 2. Решить уравнение

.

Если для выше приведенных задач не удается найти нетрадиционный путь решения, то все равно остается вероятность справиться с задачей с помощью стандартных школьных рассуждений, правда, затратив при этом гораздо больше времени. Эта задача лишает такого выбора, так как ее решение другим способом не представляется возможным.

^

Поделим все члены уравнения на 2. Уравнение примет вид

.

Докажем, что все корни данного уравнения по модулю не превосходят единицы. Пусть , тогда . Получили, что при левая часть уравнения по модулю больше единицы, а правая – меньше единицы, что невозможно.

Положим . Уравнение примет вид

.

Условию удовлетворяют три значения

.

Поскольку кубическое уравнение не может иметь больше трех различных корней, то мы нашли все решения.

Ответ: .

^

Приведем пример задания, решить которое без введения тригонометрической подстановки не представляется возможным.

Пример 1. Решить уравнение .

Пусть , тогда уравнение перепишется в виде

.

Введем замену , получим

.

Это уравнение мы уже решали1. Его корни

.

Два последних значения меньше нуля, поэтому нам подходит только . Перейдем к переменной , а затем к переменной

.

Ответ: .


Скачать файл (6189 kb.)


gendocs.ru

Решение систем линейных алгебраических уравнений общего вида.

В общем случае число уравнений системы pне совпадает с числом неизвестных переменныхn:

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Далее нам потребуется понятие минора матрицы и ранга матрицы, которые даны в статье ранг матрицы: определение, методы нахождения, примеры, решения.

Теорема Кронекера – Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера – Капелли: для того, чтобы система изpуравнений сnнеизвестными (pможет быть равноn) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть,Rank(A)=Rank(T).

Рассмотрим на примере применение теоремы Кронекера – Капелли для определения совместности системы линейных уравнений.

Пример.

Выясните, имеет ли система линейных уравнений решения.

Решение.

Найдем ранг основной матрицы системы . Воспользуемся методом окаймляющих миноров. Минор второго порядкаотличен от нуля. Переберем окаймляющие его миноры третьего порядка:

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы равен трем, так как минор третьего порядкаотличен от нуля.

Таким образом, Rang(A) < Rang(T), следовательно, по теореме Кронекера – Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

Ответ:

система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера – Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А, отличный от нуля, называетсябазисным.

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы Абазисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу .

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля

Миноры базисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка pнаnравенr, то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера – Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

  1. Если число уравнений rв полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

Пример.

Решите систему линейных алгебраических уравнений .

Решение.

Ранг основной матрицы системы равен двум, так как минор второго порядкаотличен от нуля. Ранг расширенной матрицытакже равен двум, так как единственный минор третьего порядка равен нулюа рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера – Капелли можно утверждать совместность исходной системы линейных уравнений, так какRank(A)=Rank(T)=2.

В качестве базисного минора возьмем . Его образуют коэффициенты первого и второго уравнений:

Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:

Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:

Ответ:

x1 = 1, x2 = 2.

  1. Если число уравнений rв полученной СЛАУ меньше числа неизвестных переменныхn, то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

Неизвестные переменные (их rштук), оставшиеся в левых частях уравнений, называютсяосновными.

Неизвестные переменные (их n — rштук), которые оказались в правых частях, называютсясвободными.

Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом rосновных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

Разберем на примере.

Пример.

Решите систему линейных алгебраических уравнений .

Решение.

Найдем ранг основной матрицы системы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмемa1 1 = 1. Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:

Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:

Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

Для наглядности покажем элементы, образующие базисный минор:

Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:

Придадим свободным неизвестным переменным x2иx5произвольные значения, то есть, примем, где- произвольные числа. При этом СЛАУ примет вид

Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:

Следовательно, .

В ответе не забываем указать свободные неизвестные переменные.

Ответ:

, где — произвольные числа.

Подведем итог.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера – Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

К началу страницы

studfiles.net

Специальные методы решения алгебраических уравнений. Решения уравнений высших степеней

Одесское территориальное отделение

Малой академии наук Украины

Секция математики

Специальные методы решения алгебраических уравнений.

Решения уравнений высших степеней

Автор: Касьян Наталья

Ученица 10-М класса

Одесской школы №20

Руководитель:

Касьян Л. Ю.

Научный руководитель

Одесса 2003

Содержание:

1.Определение алгебраического уравнения.

2.История развития науки о решении алгебраических уравнений.

3.Специальные методы решения алгебраических уравнений.

4.Вывод.

5.Список литературы.

Известный немецкий математик Курант писал: «На протяжении двух с лишним тысячелетий обладание некоторыми, не слишком поверхностными, знаниями в области математики входило необходимой составной частью в интеллектуальный инвентарь каждого образованного человека». И среди этих знаний было умение решать уравнения.

Уравнение — аналитическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются обычно неизвестными, а значения неизвестных, при которых значения функций равны, — решениями, или корнями, уравнения. О таких значениях неизвестных говорят, что они удовлетворяют данному уравнению.

Совокупность решений данного уравнения зависит от области М значений, допускаемых для неизвестных. Уравнение может не иметь решений в М, тогда оно называется неразрешимым в области М. Если уравнение разрешимо, то оно может иметь одно или несколько, или даже бесконечное множество решений. Например, уравнение x4 – 4 = 0 неразрешимо в области рациональных чисел, но имеет два решения: x1 = , x2 = — в области действительных чисел и четыре решения: x1 = = , x2 = — , x3 = i, x4 = —i ‑ в области комплексных чисел. Уравнение sinx= = 0 имеет бесконечное множество решений: xk= k, k = 0, 1, 2, …, в области действительных чисел.

Если уравнение имеет решениями все числа области М, то оно называется тождеством в области М.

Два уравнения называются равносильными, если каждое решение одного уравнения является решением другого, и наоборот, причём оба уравнения рассматриваются в одной и той же области.

Процесс разыскания решений уравнения заключается обычно в замене уравнения равносильным. Замена уравнения равносильным основана на применении четырёх аксиом:

  1. Если равные величины увеличить на одно и тоже число, то результаты будут равны.

  2. Если из равных величин вычесть одно и тоже число, то результаты будут равны.

  3. Если равные величины умножить на одно и тоже число, то результаты будут равны.

  4. Если равные величины разделить на одно и тоже число, то результаты будут равны.

В некоторых случаях приходится заменять данное уравнение другим, для которого совокупность корней шире, чем у данного уравнения. Поэтому, если при решении уравнения делались действия, могущие привести к появлению посторонних корней, то все полученные корни преобразованного уравнения проверяют подстановкой в исходное уравнение.

Наиболее полно изучены алгебраические уравнения. Их решение было одной из важнейших задач алгебры в 16-17 вв. Уравнения вида = 0, где — многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида

= a0xiyi … vk + a1x1ym … vn + asxpyq … vr,

где x, y, …, v– переменные, а i, j, …, r– показатели степеней(целые неотрицательные числа). Многочлен от одной переменной записывается так:

= a0xn + a1xn-1 + … + an-1x + an.

Например, 3x4 – x3 + 2x2 + 4x – 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида = 0. Если a00, то n называется степенью уравнения. Например, 2x + 3 = 0 – уравнение первой степени. Уравнения второй степени называются линейными. Уравнение второй степени называются квадратными, а уравнения третьей степени – кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Решение линейного уравненияax + b = 0 записывается в виде x = — .

Решения общего квадратного уравнения ax2 + bx + c = 0 можно получить с помощью формулы

x=

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений только третьей и четвёртой степеней. Но и эти формулы сложны и далеко не всегда помогают легко найти корни. Что касается уравнений пятой степени или выше, то для них, как доказал Н. Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удаётся легко решить, факторизуя их левую часть, то есть разлагая её на множители.

Например, уравнение x3 + 1 = 0 можно записать в виде (x + 1)(x2 – x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

x + 1 = 0,

x2 – x + 1 = 0.

Таким образом, корни равны x = -1, , то есть всего три корня. Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твёрдая уверенность в том, что решение существует: алгебраическое уравнение n-й степени имеет ровно n корней.

Уже в древности люди осознали, как важно научиться решать алгебраические уравнения.

К ним сводятся очень многие и очень разнообразные вопросы практики и естествознания (конечно, здесь можно сразу предполагать, что a0 0, так как иначе степень уравнения на самом деле не n, а меньше). Многим, разумеется, приходила в голову заманчивая мысль найти для любо степени n формулы, которые выражали бы корни уравнения через его коэффициенты, то есть, решали бы уравнение в радикалах. Однако «мрачное средневековье» оказалось как нельзя более мрачным и в отношении обсуждаемой задачи – в течение целых семи столетий требуемых формул никто не нашёл! Только в 16 веке итальянским математикам удалось продвинуться дальше – найти формулы для n=3 и n=4. История их открытий и даже авторства найденных формул достаточно темны по сей день, и мы не будем здесь выяснять сложные отношения между Ферро, Кардана, Тартальей и Феррари, а изложим лучше математическую суть дела.

Рассмотрим сначала уравнение

а0x3+ a1x2+ a2x + a3 = 0.

Легко проверить, что если мы положим x = y — , где y – новое неизвестное, то дело сведется к решению уравнения

y3+ py + q = 0,

гдеp,q– новые коэффициенты. Счастливая догадка итальянцев состояла в том , чтобы искать y в виде суммы y = u + v,гдеu,vдва новых неизвестных. Для них уравнение перепишется – после небольшой перегруппировки слагаемых – так:

u3 + v3 + (3uv + p)(u + v0) + q = 0

Так как неизвестных теперь два, на них можно наложить еще какое- нибудь условие – лучше всего

3uv + q = 0,

тогда исходное уравнение примет совсем простой вид

u3 + v3 + q = 0.

Это означает, что сумма кубов u3, v3 должна равняться – q, а их произведение — . Следовательно, сами u3, v3 должны быть корнями квадратного уравнения

t2 + qt = 0,

а для него формула уже известна. В итоге получается формула

y = +

причем из девяти пар значений входящих в нее кубических радикалов надо брать только пары, дающие в произведении –p/3, как вытекает из нашего рассуждения. Исторически за этой формулой закрепилось название формулы Карнадо, хотя вопрос о ее авторстве так до конца и не выяснен.

Для n = 4 формулу открыл Феррари, она выглядит сложнее, но тоже использует только четыре арифметических действия и извлечение радикалов. Вот набросок вывода формулы Феррари. Прежде всего, подобно предыдущему, положим

x = y , тогда дело сведется к решению уравнения вида

y4 + pq2 + qy + r = 0.

Дополнив y4 до (y2 + z)2, т.е. прибавив и вычтя в левой части 2zy2 + z2, где zвспомогательное неизвестное, получим

(y2 + z)2.

Подберем теперь z так, чтобы квадратный трёхчлен в квадратных скобках оказался полным квадратом. Для этого нужно, чтобы его дискриминант равнялся нулю, т.е. чтобы было

q2 — 4(2z – p)(z2 – r) = 0.

Можем ли мы решить это уравнение относительно z? Да, можем, так как оно кубическое. Пусть z0 какой-нибудь его корень (даваемый формулой Кардано) тогда исходное уравнение перепишется в виде

y1 = , y2 = ,

y3 = y4 =

При этом знаки перед радикалами выбирают так, чтобы выполнялось равенство

В 1770-71 гг. знаменитый французкий математик Лагранж (1736-1819) публикует в Мемуарах Берлинской Академии свой мемуар «Мысли над решением алгебраических уравнений», в котором делает критический пересмотр всех решений уравнений 3-й и 4-й степеней, данных его предшественникам.

Исследования Лагранжа дали для последующих алгебраистов весьма удобный аппарат. Кроме того, они указали путь, по которому следовало искать доказательства невозможности общего решения уравнений в радикалах.

Дальнейшим этапом в выяснении проблемы решения уравнений в радикалах послужили работы Руффини (P.Ruffini, 1765-1822) и Абеля (N.-H. Abel, 1802-1829). Руффини (1799) предложил доказательство неразрешимости в радикалах уравнении 5-й степени, коэффициенты которого являются независимыми. Однако его доказательство окончилось неудачей.

Нужен был принципиально новый подход. На этот раз он не заставил себя долго ждать – уже в 1824 году молодой (и в возрасте 27 лет умерший) норвежский математик Нильс Генрик Абель, опираясь на идеи Лагранжа, связанные с перестановками корней уравнения, доказал, что требуемых формул, которые решали бы в радикалах уравнение решали бы в радикалах уравнение общего вида, при n5 действительно не существует. Теорема Абеля дала отрицательны ответ только для уравнений общего вида, т.е. с буквенными коэффициентами а0, а1, …, аn, но, разумеется, многие конкретные уравнения сколь угодно высокой степени вполне могут решаться в радикалах (пример: уравнение x90 + 5x45 + 7 = 0). Поэтому сразу же встал вопрос о полном решении задачи – нахождении критерия разрешимости уравнений в радикалах, т.е. необходимого и достаточного условия, которое по коэффициентам а0, а1, …, аn любого заданного уравнения позволяло бы судить, решается уравнение в радикалах или нет.

Вопрос о разрешимости уравнений в радикалах был окончательно разобран, во всяком случае, принципиально, в работах Галуа (EvaristeGalois, 1811-1832). За свою короткую жизнь Галуа успел создать теорию, которая до сих пор стоит в фокусе математической мысли. Рассматривая численные уравнения, он установил понятие их группы, т.е. совокупности таких подстановок между их корнями, которые не нарушают рациональных соотношений между ними. Эта группа определяет для каждого уравнения алгебраическую структуру его корней. В частности, уравнение разрешимо в радикалах тогда и только тогда, если его группа принадлежит к числу так называемых разрешимых групп. Таким образом вопрос о разрешимости каждого данного уравнения в радикалах может быть решен при помощи конечного числа действий.

Обратимся теперь к исходному объекту исследования – уравнению

а0xn + a1xn-1 + … + an = 0,

где а0, а1, …, аn – заданные числа. Еще Гаусс в конце 18 века доказал «основную теорему алгебры», гласящую, что при любых а0, а1, …, аn данное уравнение имеет в поле комплексных чисел n корней, точнее, стоящий в его левой части многочлен может быть разложен на линейные множители

= а0,

где а1 аn– некоторые комплексные числа (называемые корнями уравнения). Задача состоит в том, чтобы узнать, существуют ли формулы, выражающие корни а1, …, аnчерез коэффициенты а0, а1, …, аnc помощью четырех арифметических действий и извлечения радикалов?

Эварист Галуа доказал, что общее уравнение степени n неразрешимо в радикалах. Шестьдесят страниц, написанных накануне роковой дуэли, явились одним из истоков современной теории групп – основного и наиболее развитого раздела алгебры, изучающего в общем виде глубокую закономерность реального мира – симметрию.

Рассмотрим на примерах некоторые способы решения алгебраических уравнений степени n.

Пример 1. Решить уравнение

.

Разложим левую часть уравнения на множители

Переносим в левую часть и раскладываем полученный многочлен на множители

,

тогда

2x + 2 = 0 или –3x2 – 6x + 24 = 0. Решая эти уравнения, получаем корни

x1 = -1, x2 = -4, x3 = 2.

Разложение на множители позволило свести решение кубического уравнения к решению квадратного и линейного уравнений.

Пример 2. Решить уравнение

Разделим обе части уравнения на ( = 0 не является решением уравнения)

,

тогда

.

Пусть тогда Получим уравнение

По теореме Виета корни уравнения: Значит,

или .

Решая эти уравнения, находим корни

Введение замены позволяет понизить степень уравнения и свести его к решению квадратного уравнения.

Пример 3. Решить уравнение

Заменим это уравнение равносильным ему прибавлением и вычитанием одного и того же выражения .

,

Разложим числитель на множители

.

для любого . Сокращая дробь, получим равносильное уравнение

,

корнями которого являются

Это уравнение можно решить другим способом, выполнив деление многочлена на многочлен

Получим Таким образом, выполняя деление многочлена на многочлен можно понизить степень уравнения.

Пример 4. Решить уравнение

Разделив обе части уравнения на ( не является решением данного уравнения).

.

Полагая , получим уравнение

корнями которого являются .

Значит, или . Первое уравнение не имеет решений на множестве R, а корни второго .

Данный пример показывает, что деление обеих частей уравнения на одно и то же выражение с последующим введением замены позволяет понизить степень уравнения.

Пример 5. Решить уравнение

Областью допустимых значений данного уравнения являются все числа, удовлетворяющие условию

Тогда,

Пусть , получим уравнение

Решая данное дробно-рациональное уравнение, получим корни

Значит,

или

Решениями уравнений являются

Пример 6. Решить уравнение

ОДЗ:

Пусть , тогда Получим уравнение

Выполняя преобразования, данное уравнение приводится к виду

Корни этого уравнения следовательно,

Рассмотренные примеры показывают основные способы решения алгебраических уравнений степени n: разложение многочлена на множители, деление на одно и тоже выражение, введение новой переменной. Все указанные способы позволяют понизить степень уравнения и свести решение данного уравнения к решению квадратного или линейного уравнения.

Истоки алгебры восходят к глубокой древности. Уже около 4000 лет назад вавилонские ученые владели решением квадратного уравнения и решали системы двух уравнений, из которых одно – второй степени. С помощью таких уравнения решались разнообразные задачи землемерия, архитектуры и военного дела. Точный язык математики позволяет просто выразить факты и соотношения, которые, будучи изложенными обычным языком, могут показаться запутанными и сложными. Неизвестные величины, обозначаемые в задаче символами, например x, можно найти, сформулировав задачу на математическом языке в виде уравнений. Методы решения уравнений составляют в основном предмет того раздела математики, который называется алгеброй и теорией чисел. Универсальной формулы для нахождения корней алгебраического уравнения n – ой степени нет . В данной работе на конкретных примерах рассмотрели различные способы понижения степени уравнения .

Список использованной литературы:

1.Математическая энциклопедия , том 5 .

2.Тумаркин Л.А. “ История математики “, М., 1975.

3.Кизнер Ф.И. “Основные понятия математики”, М., 1987

4.Смонов А.Я. “Конкурсные задачи по математике”, М., 1991

Контрольная: И.С. Конев Достойное место в плеяде отличившихся земляков занимает известный полководец Великой Отечественной войны дважды Герой Советского Союза Маршал Советского Союза Иван Степанович Конев.

Реферат Программа Mathematics Едва исчезли со страниц журналов восторженные от­зывы на новую версию математического пакета Maple V 4.0 компании Maple Waterloo, как компания Wolfram Research представила не менее интересный продукт — Mathematica 3.0. Она разработана компанией Wolfram Research Inc , ос­нованной известным математиком и физиком Стефаном Вольфрамом, одним из создателей теории сложных систем.

Курсовая: Критерии устойчивости линейных систем В реальной цепи, охваченной обратной связью, всегда имеются реактивные элементы, накапливающие энергию. Даже в усилителе на резисторах имеются такие элементы в виде паразитных емкостей схемы и электронных приборов, переходные конденсаторы, индуктивности проводов и так далее.

Реферат История открытия комплексных чисел “Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно по мере того как обнаруживается польза от их употребления, они получают более и более широкое распространение” Ф. Клейн. ревнегреческие математики считали “настоящими” только натуральные числа.

Курсовая: Метод конечных разностей или метод сеток. Решение бигармонического уравнения методом Зейделя Значительнаое число задач физики и техники приводят к дифференциальным уравнениям в частных прозводных (уравнения математической физики). Установившиеся процессы различной физической природы описываются уравнениями эллиптического типа. Точные решения краевых задач для эллиптических уравнений удаётся получить лишь в частных случаях. Поэтому эти задачи решают в основном приближённо.

Курсовая: Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ.

Курсовая: Разложение рациональной дроби на простейшие. Этот вопрос уже много раз изучен и рассмотрен. Казалось бы, что может быть проще для современного математика, чем разложить рациональную дробь на простейшие, разве что элементарные алгебраические операции. Однако, применение этого метода существенно облегчает жизнь – не будь метода – некоторые задачи было бы очень проблематично решить, а некоторые вообще не решались.

Конспект: Виды квадратных уравнений и способы их решения Обобщить способы решения квадратных уравнений в ходе подготовки к контрольной работе. Активизировать повторение материала в ходе учебного процесса, развивать математические способности учащихся. Вступительное слово учителя: Ребята! Квадратное уравнение – это фундамент, на котором построено огромное здание алгебры. Квадратные уравнения применяются начиная с 8-го класса и до окончания вуза.

nreferat.ru

Преобразование doc в jpeg – Convert DOC (WORD) to JPG (Online & Free) — Convertio

Конвертация DOC в JPEG с помощью Фотоконвертера

DOC — это формат Майкрософт, используемый для создания файлов документов с помощью Microsoft Word, одного из самых популярных текстовых процессоров для пользователей ПК и Mac. DOC был основным расширением Microsoft Word до версии 2007, сейчас он все еще может быть открыт и отредактирован с помощью более поздних версий этой программы. Самыми известными преимуществами файлов DOC являются возможность проверки орфографии, наличие словарей и тезауруса для большого числа языков, а также ряд функций для обработки текста, такие как WordArt, нумерация и т.д.

В широко популярном формате JPEG применяется алгоритм сжатия данных с потерями. Механизм сжатия JPEG используют во множестве форматов файлов для хранения данных изображений. JPEG/Exif стал наиболее распространенным форматом, что приняли на вооружение цифровые камеры и другие устройства фотосъемки. Файлы этого формата наиболее распространенный способ хранения и передачи данных изображений в Интернете.

Как конвертировать DOC в JPEG?

Самый простой способ — это скачать хорошую программу конвертации, например Фотоконвертер. Он работает быстро и эффективно, позволяя конвертировать любое количество DOC файлов за раз. Вы сможете довольно быстро оценить, что Фотоконвертер способен сэкономить массу времени которое вы будете тратить при работе вручную.

Скачайте и установите Фотоконвертер

Фотоконвертер легко скачать, установить и использовать — не нужно быть специалистом в компьютерах, чтобы понять как он работает.

Установить Фотоконвертер

Добавьте DOC файлы в Фотоконвертер

Запустите Фотоконвертер и загрузите .doc файлы, которые вы хотите конвертировать в .jpeg

Вы можете выбрать DOC файлы через меню Файлы → Добавить файлы либо просто перекинуть их в окно Фотоконвертера.

Выберите место, куда сохранить полученные JPEG файлы

В секции Сохранить вы можете выбрать папку для сохранения готовых .jpeg файлов. Можно так же потратить пару дополнительных минут и добавить эффекты для применения во время конвертации, но это не обязательно.

Выберите JPEG в качестве формата для сохранения

Для выбора JPEG в качестве формата сохранения, нажмите на иконку JPEG в нижней части экрана, либо кнопку + чтобы добавить возможность записи в этот формат.

Теперь просто нажмите кнопку Старт и конвертация начнется мгновенно, а JPEG файлы сохранятся в указанное место с нужными параметрами и эффектами.

Попробуйте бесплатную демо-версию

Видео инструкция

Интерфейс командной строки

Профессиональные пользователи могут конвертировать DOC в JPEG используя командную строку в ручном или автоматическом режиме. За дополнительными консультациями по использованию cmd интерфейса обращайтесь в службу поддержки пользователей.

Скачать Фотоконвертер Про

Рассказать друзьям

www.photoconverter.ru

Как конвертировать doc (docx) в jpg

Доброго времени суток, сегодня я поделюсь способом, как можно документ формата doc или docx конвертировать в формат jpg с помощью одного онлайн сервиса. Где можно это применить каждый определит сам

Итак, у нас есть документ в формате doc или docx, который нам нужно конвертировать в формат jpg. Идем по этой ссылке, попадаем на страницу онлайн конвертера. (Вообще, этим конвертером можно переделывать разные форматы, но сегодня я расскажу именно как документ формата doc или docx конвертировать в формат jpg.)

На странице онлайн конвертера нам нужно выставить параметры конвертации, посмотрим скриншот

Output format — это выходной формат получаемой картинки. Оставляем jpg.

Resolution — разрешение получаемой картинки.

Quality — качество получаемой картинки.

Select the file — выберете файл для конвертации. Жмём кнопку Обзор и выбираем файл doc или docx на нашем компьютере.

Delivery Method — способ получения конвертированного файла. Тут 2 варианта Wait for conversion in browser — дождаться конвертации в браузере или Email me link to the document — прислать мне на электронный адрес сылку на конвертированный документ — в этом случае нужно будет ввести адрес электронной почты, на который будет выслана ссылка на конвертированный документ. Я выбрал вариант Wait for conversion in browser. После этого жмем Upload & Convert — загрузить и конвертировать.

Пожалуйста ждёмс

И вот она ссылка на получившийся файл в формате JPG

Жмём по ссылке, получаем файл

Клик правой кнопкой — сохранить рисунок. Готово

pashich-ssd.ru

Исправление Преобразование DOC в JPEG

инструкции

To Fix (Converting DOC to JPEG) error you need to follow the steps below:

Шаг 1:

Download (Converting DOC to JPEG) Repair Tool

Шаг 2:

Нажмите «Scan» кнопка

Шаг 3:

Нажмите ‘Исправь все‘ и вы сделали!

Совместимость: Windows 10, 8.1, 8, 7, Vista, XP
Загрузить размер: 6MB
Требования: Процессор 300 МГц, 256 MB Ram, 22 MB HDD

Ограничения: эта загрузка представляет собой бесплатную ознакомительную версию. Полный ремонт, начиная с $ 19.95.

Преобразование DOC в JPEG обычно вызвано неверно настроенными системными настройками или нерегулярными записями в реестре Windows. Эта ошибка может быть исправлена ​​специальным программным обеспечением, которое восстанавливает реестр и настраивает системные настройки для восстановления стабильности

Если вы конвертируете DOC в JPEG, мы настоятельно рекомендуем вам Инструмент восстановления (Преобразование DOC в JPEG).

This article contains information that shows you how to fix Converting DOC to JPEG both (manually) and (automatically) , In addition, this article will help you troubleshoot some common error messages related to Converting DOC to JPEG that you may receive.

Примечание: Эта статья была обновлено на 2019-05-27 и ранее опубликованный под WIKI_Q210794

Значение преобразования DOC в JPEG?

Преобразование DOC в JPEG — это имя ошибки, содержащее сведения об ошибке, включая причины ее возникновения, неисправность системного компонента или приложения для возникновения этой ошибки вместе с некоторой другой информацией. Численный код в имени ошибки содержит данные, которые могут быть расшифрованы производителем неисправного компонента или приложения. Ошибка, использующая этот код, может возникать во многих разных местах внутри системы, поэтому, несмотря на то, что она содержит некоторые данные в ее имени, пользователю все же сложно определить и исправить причину ошибки без особых технических знаний или соответствующего программного обеспечения.

Причины преобразования DOC в JPEG?

Если вы получили эту ошибку на своем ПК, это означает, что произошла сбой в работе вашей системы. Общие причины включают неправильную или неудачную установку или удаление программного обеспечения, которое может привести к недействительным записям в вашем реестре Windows, последствиям атаки вирусов или вредоносных программ, неправильному отключению системы из-за сбоя питания или другого фактора, кто-то с небольшими техническими знаниями, случайно удалив необходимый системный файл или запись в реестре, а также ряд других причин. Непосредственной причиной ошибки «Преобразование DOC в JPEG» является неправильное выполнение одной из обычных операций с помощью системного или прикладного компонента.

More info on Converting DOC to JPEG


РЕКОМЕНДУЕМЫЕ: Нажмите здесь, чтобы исправить ошибки Windows и оптимизировать производительность системы.

Вы можете сделать скриншот и вставить заранее. Спасибо использовать кисть, она все искажается, я думаю, из-за файла bmp … Потому что у меня есть эта картина в слове ms, а когда я в jpeg, как я могу это сделать ???? Я хочу изменить его из doc .doc (файлы документов) в .jpeg-файлы ???

кто-нибудь знает, как преобразовать его в вашу любимую программу для редактирования фотографий. Преобразование .tif в .jpeg

Кто-нибудь знает, как мне нужно, чтобы они были сохранены как jpeg. Я просмотрел чертежи в Microsoft изображений, и если это будет трюк.

— http://www.reasoft.com/rea-tiff-convert-jpeg.shtml

Поэтому я могу загрузить их. Спасибо заранее за вашу помощь.

См. Изменение файла .tif в .jpeg?


преобразование в jpeg

Преобразование jpeg в dst

Ive везде везде, где я живу, и никто не может помочь мне попробовать получить этот jpeg, преобразованный в dst-файл, любую помощь, пожалуйста


Преобразование в jpeg. Нужна помощь Пожалуйста:

Большое спасибо.

Я никому не помогу, пожалуйста, нужно сделать это завтра, потому что это рождественский подарок.


Помогите конвертировать jpeg в DST?

Может ли кто-нибудь помочь мне преобразовать изображение в DST?


Преобразование PNG в JPEG

Могу ли я преобразовать их в
Здравствуй. Любая помощь приветствуется с уважением Карпер

Привет, JPEG с программой редактирования. с Irfanview, но я не могу справиться с этим. Я загрузил несколько изображений из веб-камеры, которая любезно предоставлена ​​Google … нажмите здесь

Я думал, что могу это сделать в формате PNG, но они не будут копироваться в Picassa.


Помощь в преобразовании jpeg в dst

Я видел через предыдущие сообщения, что вы (Noyb) были, если это выполнимо.

Я был бы очень признателен, если бы вы смогли преобразовать это для меня. У меня также есть файл a1, который он создал, чтобы помочь многим преобразовать файл jpeg в dst.


Преобразование wmv-файлов в jpeg и / или mp3

to jpeginto google
Тем не менее, этот файл с фотографией (PhotoStory3), похоже, вообще не сохраняет этот способ. Я не умею играть на ПК, но не проигрываю через свой DVD-плеер.
Я нашел хорошую программу microsoft, которая сохраняет фотографии в виде wmv-файлов, они попробуют набирать. Преобразование wmv-файлов в Rop через медиа-плеер — я не уверен, что делать дальше.


Преобразование jpeg или png в dst-файл

Благодаря!

преобразованный, может кто-то, пожалуйста, помогите мне.

Здравствуйте,
Я пытаюсь подключить логотип к логотипу. у меня есть


Решено: преобразование PDF в JPEG

Нужна помощь в преобразовании изображения из JPEG в DST HELP !!!

Пожалуйста, см. Верхнюю часть этой связи форума здесь
https://forums.techguy.org/threads/requests-for-dst-file-conversions-please-read.1116354/

расширять…

Привет, кто-нибудь, пожалуйста, помогите мне преобразовать это

Нажмите jpeg на DST, мне нужно это как можно скорее!


Преобразование фотографий из jpg в jpeg

Спасибо, парни!

Или что-то

как это.


преобразование файлов abw в jpeg

Как преобразовать abw в jpeg на мои окна xp? Является ABW форматом Abiword, если это текстовый документ! Googling быстрее, чем ждать ответа ….


преобразование jpeg в файл pes

хотел бы, чтобы какая-то помощь превратила мой файл jpeg в pes или dst-файл благодаря Брайану


Преобразование из Jpeg в текст?

Луис

Лучше всего было бы пересканировать его формат, чтобы отсканировать его. Он используется в чем угодно, кроме цифрового формата. У меня есть бумажная копия этого документа, а не как графический файл.


У меня есть яркое рекомендательное письмо. Или … вы могли бы использовать его как графический файл в теле и подключать его к приложениям приложений в режиме онлайн. Мое первое предложение — форма, которую я могу использовать в режиме онлайн? У него есть фирменный бланк и тот, который я просмотрел на своем компьютере.

Мне нужно иметь возможность отправлять по электронной почте все конверсионные программы. Тем более, если кто-то намеревается напечатать или лучше. Любой формат jpeg помощи теперь. Я бы скорректировал размер графического изображения, поэтому, если нужно, я могу его снова сканировать.

На самом деле … Я думаю, что я просто отправлю его так, чтобы он не был необычайно большим по стандартам электронной почты. У меня нет короткого документа Word … и затем отправьте его как документ Word. Как я могу получить его в приложении электронной почты, сохраняя формат графического файла. Я не знаю лучшей подписи, поэтому я не могу просто перепечатать ее.


Преобразование JPEG в DST для вышивки?

Может кто поможет?

http://sophiesew.com/SS2/index.php
http://www.sandscomputing.com/id69.html

Кто-нибудь знает, как скрывать файл от JPEG до DST? Я ищу программное обеспечение, но они находятся в шаге $ 1000, который я не собираюсь тратить.


Новая помощь, конвертирующая jpeg в dst для вышивания! Помогите!

Я провел много исследований и загрузил бесплатные пробные версии и не был в магазине, говорит, что мне нужно привести его как dst на флэш-накопитель.

У меня довольно простой образ, который я хочу надеть на шляпу, но могу понять, как преобразовать изображение из jpeg в dst. Кто-нибудь мне помогает?


конвертирование .doc страницы в .jpeg

который преобразовал весь файл как один.

У меня есть документ, как в .docx, так и в .pdf, который Windows 8.1. Я загрузил конвертер .doc в jepg 3000, это возможно? Я конвертировал отдельно, поэтому я могу распечатать его отдельно.

Но мне нужно, чтобы каждая фотография включала около двух десятков изображений — каждая на своей странице.


преобразование bitmap-jpeg


привет, с помощью ур мне удалось установить мой сканер и использовать iphoto4 для отправки фотографий, которые я просмотрел.


BSOD. При преобразовании raw, dng в jpeg

Эти драйверы являются старыми файлами из последнего bsod. Благодарю.

Привет, надеюсь, кто-то может мне помочь. Прикреплены журналы (выходят на обед.

Brb)

Это также BSOD. При попытке файлов DNG моего внука, jpeg в lightroom v3.2. Мой компьютер поддерживает BSOD, когда я пытаюсь преобразовать файлы XIVX конвертирования .avi Iv, собранные на DVD.


ru.fileerrors.com

Как перевести документ Word в формат JPEG

При использовании текстового редактора может возникнуть необходимость в преобразовании файлов Word в jpg. Часто это необходимо для публикации отдельных элементов на сайте без дальнейшего форматирования, или в случае совместного расположения текста и таблицы в одном файле. При вёрстке макетов этот функционал также востребован, поэтому важно знать, как из Ворда сделать jpg.


Лёгкое решение

В интернете представлено множество программ и онлайн-сервисов, которые обеспечивают работу с документами для перевода их в вид изображения. Большинство из них предоставляют бесплатный доступ к функциям. Для их использования достаточно загрузить документ Word. После этого указывается желаемое количество страниц для перевода. Самые популярные сервисы:

  • Convertio;
  • Wordtojpeg;
  • Zamzar и другие.

Они имеют разный функционал работы с jpeg, позволяя создать заметки, выделять особые фрагменты, а также конвертировать их в другие форматы. Среди множества методов одним из самых распространённых является снимок экрана. Для его использования не нужно устанавливать дополнительное программное обеспечение, ведь это стандартная функция операционной системы. Это существенно экономит время пользователя.

Самый простой способ

Для использования этого функционала достаточно открыть текстовый файл и расположить необходимую страницу в оптимальной видимости на экране. После этого нужно нажать клавишу PrtScr на клавиатуре. Изображение будет направлено в буфер обмена и станет доступным для дальнейших манипуляций уже в формате jpeg.

После этого нужно открыт растровый редактор Paint, который также находится среди набора стандартных программ операционной системы. В окне нового документа вставляется готовое изображение jpeg из Word. Дальше можно менять его размер в соответствии с требованиями. При сохранении файла пользователь получает картинку jpg с изображённым текстом.

Воспользуйтесь программой Paint для работы со скриншотом

Важно учитывать, что от выбранного масштаба документа Word напрямую зависит итоговое качество jpeg файла. Если на странице размещается много текста малого шрифта, изображение может получиться смазанным, или же будет непригодным для масштабирования. Также команда PrtScr захватывает весь рабочий стол, поэтому обязательная к обрезке границ.

Альтернативный вариант

Среди встроенных возможностей Windows для преобразования текста Word в jpg выделяется инструмент «Ножницы». Он позволяет делать скриншоты с непосредственным масштабированием границ. Находится инструмент в папке «Стандартные» (меню «Пуск»). Чтобы перевести документ Word в jpeg, его также нужно расположить на полную рабочую область экрана.

«Ножницы» будут обрезать непосредственно саму область текста, не захватывая соседние участки панели задач и зоны управления программой. Это положительно повлияет на качество. В дальнейших своих действиях пользователь аналогично сохраняет файл Ворда в формате jpg.

Вот таким образом можно перевести фрагмент теста Ворд в изображение jpeg. Это полезная функция, при которой пользователь получает файл, в котором при любых обстоятельствах будет фиксированная разметка. Эта возможность решает проблему размещения текста и таблиц, которые имеют различное положение в разной среде или при печати.

В процессе форматирования многостраничного документа Ворд в изображение необходимо учитывать используемый масштаб. Если текст слишком плотный, его следует разбавить абзацами, добавить сноски и списки, а также сделать большим шрифт. Это увеличит количество страниц, но поможет сохранить читаемость букв.

nastroyvse.ru

Онлайн решить показательные уравнения – Решения показательных уравнений | Онлайн калькулятор

Решение показательных уравнений онлайн с подробным решением

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Степенные или показательные уравнения называют уравнения, в которых переменные находятся в степенях, а основанием является число. Например:

\[10^2=36\]

Решение показательного уравнения сводится к 2 довольно простым действиям:

1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания неодинаковые, ищем варианты для решения данного примера.

2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Так же читайте нашу статью «Решить функцию уравнение онлайн решателем»

Допустим, дано показательное уравнение следующего вида:

\[2^{2x+4} — 10 \cdot 4^x = 2^4\]

Начинать решение данного уравнения стоит с анализа основания. Основаниея разные — 2 и 4, а для решения нам нужно, чтобы были одинаковые, поэтому преобразуем 4 по такой формуле -\[ (a^n)^m = a^{nm}:\]

\[4^x = (2^2)^x = 2^{2x}\]

Далее для преобразования используем формулу \[a^n \cdot a^m = a ^{n+m}:\]

\[2^{2x+4} = 2^{2x} \cdot 2^4\]

Прибавляем к исходному уравнению:

\[2^{2x} (2^4 — 10) = 24\]

Вынесем за скобки \[2^{2x}:\]

\[2^{2x}(2^4-10)=24\]

\[2^4 — 10 = 16 — 10 = 6\]

\[6 \cdot 2^{2x} = 24\]

\[2^{2x} = 4\]

Выразим \[4 = 2^2:\]

\[2^{2x} = 2^2\]

Поскольку степени одинаковые, отбрасываем их:

\[2x = 2\]

\[x = 1\]

Ответ: \[x = 1.\]

Где можно решить показательное уравнение онлайн решателем?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

www.pocketteacher.ru

Калькулятор онлайн — Решение показательных уравнений. Описание

Знак умножения нужно вводить только между числами, во всех остальных случаях его можно не вводить.

При решении этой задачи используется большой и дорогой модуль одного «забугорного» сервиса. Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли. Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях. Единственное неудобство — на английском языке, но это не большая цена за качество.

Если вам что-то осталось не понятно обязательно напишите об этом в Обранной связи и мы дополним эту таблицу.

Функция Описание Пример ввода Результат ввода
pi Число \(\pi\) pi $$ \pi $$
e Число \(e\) e $$ e $$
e^x Степень числа \(e\) e^(2x) $$ e^{2x} $$
exp(x) Степень числа \(e\) exp(1/3) $$ \sqrt[3]{e} $$
|x|
abs(x)
Модуль (абсолютное значение) числа \(x\) |x-1|
abs(cos(x))
\( |x-1| \)
\( |\cos(x)| \)
sin(x) Синус sin(x-1) $$ sin(x-1) $$
cos(x) Косинус 1/(cos(x))^2 $$ \frac{1}{cos^2(x)} $$
tg(x) Тангенс x*tg(x) $$ x \cdot tg(x) $$
ctg(x) Котангенс 3ctg(1/x) $$ 3 ctg \left( \frac{1}{x} \right) $$
arcsin(x) Арксинус arcsin(x) $$ arcsin(x) $$
arccos(x) Арккосинус arccos(x) $$ arccos(x) $$
arctg(x) Арктангенс arctg(x) $$ arctg(x) $$
arcctg(x) Арккотангенс arcctg(x) $$ arcctg(x) $$
sqrt(x) Квадратный корень sqrt(1/x) $$ \sqrt{\frac{1}{x}} $$
x^(1/n) Корень произвольной числовой целой степени >= 2
x^(1/2) эквивалентно sqrt(x)
(cos(x))^(1/3) $$ \sqrt[\Large 3 \normalsize]{cos(x)} $$
ln(x) Натуральный логарифм
(основание — число e)
1/ln(3-x) $$ \frac{1}{ln(3-x)} $$
log(a,x) Логарифм x по основанию a log(3,cos(x)) $$ log_3(cos(x)) $$
sh(x) Гиперболический синус sh(x-1) $$ sh(x-1) $$
ch(x) Гиперболический косинус ch(x) $$ ch(x) $$
th(x) Гиперболический тангенс th(x) $$ th(x) $$
cth(x) Гиперболический котангенс cth(x) $$ cth(x) $$
ВыводПеревод, пояснение
Solve for x over the real numbersРешить относительно х в действительных числах (бывают ещё комплексные)
Multiply both sides by …Умножаем обе части на …
Equate exponents of … on both sidesПриравниваем степени … в обоих частях (с обоих сторон)
Simplify and substitute …Упрощаем и делаем подстановку …
Bring … together using the commom denominator …Приводим … к общему знаменателю …
The left hand side factors into a product with two termsЛевая часть разбивается на множители как два многочлена
Split into two equationsРазделяем на два уравнения
Take the square root of both sidesИзвлекаем квадратный корень из обоих частей
Subtract … from both sidesВычитаем … из обеих частей уравнения
Add … to both sidesПрибавляем … к обоим частям уравнения
Multiply both sides by …Умножаем обе части уравнения на …
Divide both sides by …Делим обе части уравнения на …
Substitute back for …Обратная подстановка для …
… has no solution since for all …… не имеет решения для всех …
Simplify the expressionУпрощаем выражение
AnswerОтвет
\(log(x)\)Натуральный логарифм, основание — число e. У нас пишут \(ln(x)\)
\(arccos(x)\) или \(cos^{-1}(x)\)Арккосинус. У нас пишут \( arccos(x) \)
\(arcsin(x)\) или \(sin^{-1}(x)\)Арксинус. У нас пишут \( arcsin(x) \)
\(tan(x)\)Тангенс. У нас пишут \(tg(x) = \frac{sin(x)}{cos(x)}\)
\(arctan(x)\) или \(tan^{-1}(x)\)Арктангенс. У нас пишут \(arctg(x)\)
\(cot(x)\)Котангенс. У нас пишут \(ctg(x) = \frac{cos(x)}{sin(x)}\)
\(arccot(x)\) или \(cot^{-1}(x)\)Арккотангенс. У нас пишут \(arcctg(x)\)
\(sec(x)\)Секанс. У нас пишут также \(sec(x) = \frac{1}{cos(x)}\)
\(csc(x)\)Косеканс. У нас пишут \(cosec(x) = \frac{1}{sin(x)}\)
\(cosh(x)\)Гиперболический косинус. У нас пишут \(ch(x) = \frac{e^x+e^{-x}}{2} \)
\(sinh(x)\)Гиперболический синус. У нас пишут \(sh(x) = \frac{e^x-e^{-x}}{2} \)
\(tanh(x)\)Гиперболический тангенс. У нас пишут \(th(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} \)
\(coth(x)\)Гиперболический котангенс. У нас пишут \(cth(x) = \frac{1}{th(x)} \)

www.math-solution.ru

Решение показательных неравенств онлайн · Как пользоваться Контрольная Работа РУ

Решим показательное неравенство 5^x + (1/5)^x > 5 с помощью онлайн сервиса, который находится по ссылке

>>решение неравенств онлайн <<

Введём указанное неравенство в данный калькулятор:

Вы получите следующее подробное решение для неравенства:

Дано неравенство: $$5^{x} + \left(\frac{1}{5}\right)^{x} > 5$$ Чтобы решить это нер-во — надо сначала решить соотвествующее ур-ние: $$5^{x} + \left(\frac{1}{5}\right)^{x} = 5$$ Решаем:
Дано уравнение: $$5^{x} + \left(\frac{1}{5}\right)^{x} = 5$$ или $$5^{x} + \left(\frac{1}{5}\right)^{x} — 5 = 0$$ Сделаем замену $$v = \left(\frac{1}{5}\right)^{x}$$ получим $$v — 5 + \frac{1}{v} = 0$$ или $$v — 5 + \frac{1}{v} = 0$$ делаем обратную замену $$\left(\frac{1}{5}\right)^{x} = v$$ или $$x = — \frac{\log{\left (v \right )}}{\log{\left (5 \right )}}$$ $$x_{1} = \frac{1}{\log{\left (5 \right )}} \left(- \log{\left (2 \right )} + \log{\left (\sqrt{21} + 5 \right )}\right)$$ $$x_{2} = \frac{1}{\log{\left (5 \right )}} \left(\log{\left (- \sqrt{21} + 5 \right )} — \log{\left (2 \right )}\right)$$ $$x_{1} = \frac{1}{\log{\left (5 \right )}} \left(- \log{\left (2 \right )} + \log{\left (\sqrt{21} + 5 \right )}\right)$$ $$x_{2} = \frac{1}{\log{\left (5 \right )}} \left(\log{\left (- \sqrt{21} + 5 \right )} — \log{\left (2 \right )}\right)$$ Данные корни $$x_{2} = \frac{1}{\log{\left (5 \right )}} \left(\log{\left (- \sqrt{21} + 5 \right )} — \log{\left (2 \right )}\right)$$ $$x_{1} = \frac{1}{\log{\left (5 \right )}} \left(- \log{\left (2 \right )} + \log{\left (\sqrt{21} + 5 \right )}\right)$$ являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки: $$x_{0} < x_{2}$$ Возьмём например точку $$x_{0} = x_{2} — 1$$ =


             /      ____\    
-log(2) + log\5 - \/ 21 /    
------------------------- - 1
            1                
         log (5)             

= $$-1 + \frac{1}{\log{\left (5 \right )}} \left(\log{\left (- \sqrt{21} + 5 \right )} — \log{\left (2 \right )}\right)$$ подставляем в выражение $$5^{x} + \left(\frac{1}{5}\right)^{x} > 5$$


              /      ____\                       /      ____\        
 -log(2) + log\5 - \/ 21 /          -log(2) + log\5 - \/ 21 /        
 ------------------------- - 1    - ------------------------- + 1    
             1                                  1                    
          log (5)                            log (5)                 
5                              + 5                                > 5


                   /      ____\                     /      ____\    
      -log(2) + log\5 - \/ 21 /        -log(2) + log\5 - \/ 21 /    
 -1 + -------------------------    1 - ------------------------- > 5
                log(5)                           log(5)             
5                               + 5                                 

значит одно из решений нашего неравенства будет при:
$$x < \frac{1}{\log{\left (5 \right )}} \left(\log{\left (- \sqrt{21} + 5 \right )} — \log{\left (2 \right )}\right)$$


 _____           _____          
      \         /
-------ο-------ο-------
       x2      x1

Другие решения неравенства будем получать переходом на следующий полюс
и т.д.
Ответ: $$x < \frac{1}{\log{\left (5 \right )}} \left(\log{\left (- \sqrt{21} + 5 \right )} — \log{\left (2 \right )}\right)$$ $$x > \frac{1}{\log{\left (5 \right )}} \left(- \log{\left (2 \right )} + \log{\left (\sqrt{21} + 5 \right )}\right)$$

Также вы будете иметь графическое решение показательного неравенства:

www.kontrolnaya-rabota.ru

Решение уравнений онлайн

Различают алгебраические, параметрические, трансцендентные, функциональные, дифференциальные и другие виды уравнений. Решение уравнений онлайн. Пошаговое решение уравнений онлайн на сайте Math34.biz. Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней. Math34.biz поможет решить любое уравнение онлайн. Решение уравнений онлайн. Пошаговое решение уравнений онлайн на сайте Math34.biz. Уравнения онлайн. Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.). Решение уравнений онлайн. Пошаговое решение уравнений онлайн на сайте Math34.biz. Уравнения онлайн. Вы сможете решить уравнение онлайн моментально и с высокой точностью результата. Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными». Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Про корни говорят, что они удовлетворяют данному уравнению. Решить уравнение онлайн означает найти множество всех его решений (корней) или доказать, что корней нет. Решение уравнений онлайн. Пошаговое решение уравнений онлайн на сайте Math34.biz. Уравнения онлайн. Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней. Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому. Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения. Решение уравнений онлайн. Пошаговое решение уравнений онлайн на сайте Math34.biz. Уравнения онлайн. Сайт позволит решить уравнение онлайн. К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение, квадратное уравнение, кубическое уравнение и уравнение четвёртой степени. Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней. Уравнения, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны. В общем случае, когда аналитического решения найти не удаётся, применяют численные методы. Численные методы не дают точного решения, а только позволяют сузить интервал, в котором лежит корень, до определённого заранее заданного значения. Решение уравнений онлайн. Пошаговое решение уравнений онлайн на сайте Math34.biz. Уравнения онлайн. Решить уравнение онлайн на сайте Math34.biz

math24.biz

Показательные уравнения, формулы и примеры

Простейшие показательные уравнения

   

В зависимости от знака такое уравнение имеет различное количество корней:

  1. если , то уравнение (1) решений не имеет, то есть

       

  2. если , то

       

Уравнения вида
  1. Если .
  2. Если .
Уравнения вида

   

Уравнения такого типа равносильны уравнению

   

Уравнения вида
  1. Если , то обе части такого уравнения равны для любых .
  2. Если , то уравнение эквивалентно уравнению .
  3. В случае, если , то уравнение эквивалентно системе

Решение показательных уравнений сведением к общему основанию

Если левая и правая части заданного показательного уравнения содержат только произведения, частные, корни или степени, то рациональнее при помощи основных формул для степеней привести обе части равенства к одному основанию, то есть к уравнению вида (2).

Решение показательных уравнений вынесением общего множителя

Если показательное уравнение содержит выражение вида , причем показатели степени отличаются только свободным коэффициентом, то для решения необходимо вынести за скобки наименьшую степень .

Приведение показательных уравнений к квадратным

К показательным уравнениям, которые можно привести к квадратным, относятся следующие уравнения.

   

где — некоторые числа, .

В этом случае выполняется замена

   

   

где — некоторые ненулевые числа, причем , — произвольное действительное число. Для сведения к квадратному обе части уравнения необходимо умножить на :

   

Далее заменой получаем квадратное уравнение

   

Однородные показательные уравнения

Делением обеих его частей на (или ), сводим уравнение к показательному вида :

   

Схема решения таких уравнений следующая:

1) Делим обе части уравнения или на , или на , в результате получаем:

   

или

;

2) заменой последнее уравнение сводится к квадратному:

   

ru.solverbook.com

Методы решения показательных уравнений

Разделы: Математика


Методы решения показательных уравнений

1. Простейшие показательные уравнения

Примеры.

Пример 1. Решите уравнение: 34x-5 = 3x+4 .

Решение.

34x-5 = 3x+4 <=> 4x 5 = x+4 <=> 3x=9<=> x = 3 .

Ответ:3

Пример 2. Решите уравнение: 2x-4 = 3 .

Решение.

2x-4 = 3 <=> x- 4 = x = + 4 <=> x = + <=> x = .

Ответ:.

Пример 3. Решите уравнение:-3x = -7 .

Решение.

-3x = -7 , решений нет, так как -3x > 0 для x R .

Ответ: .

2. Методы преобразования показательных уравнений к простейшим.

A. Метод уравнивания оснований.

Примеры.

Пример 1. Решите уравнение: 27- = 0 .

Решение.

27- = 0 <=> 3334x-9— (32)x+1 = 0 <=> 33+ (4x-9)— 32(x+1) = 0<=> 34x-6-32x+2 = 0 <=> 34x-6 = 32x+2<=> 4x-6=2x+2 <=> 2x = 8 <=> x=4.

Ответ: 4.

Пример 2. Решите уравнение: .

Решение.

0 <=> (22)x3x5x = 604x-15 <=> 4x3x5x = 604x-15 <=> (4x = 604x-15 <=> 60x=604x-15 <=> <=>x=4x-15 <=> 3x=15 <=> x=5.

Ответ: 5.

В. Уравнения, решаемые разложением на множители.

Примеры.

Пример 1. Решите уравнение: x2x = 22x + 8x-16.

Решение.

x2x = 22x + 8x-16 <=> x2x — 22x = 8x-2) <=> 2x(x-2) — 8<=> (x-2) x — 8) = 0 <=> <=> <=> <=> .

Ответ:

Пример 2 . Решите уравнение:

Решение.

52x — 7x — 52x35 +7x = 0 <=> (52x — 7x)((

Ответ: 0.

С. Уравнения, которые с помощью подстановки f(x) = t, t>0 преобразуются к квадратным уравнениям (или к уравнениям более высоких степеней).

Пусть , где А, В, С — некоторые числа. Сделаем замену: >0, тогда A2 + B + C = 0

Решаем полученное уравнение, находим значения t, учитываем условие t >0 , возвращаемся к простейшему показательному уравнению f(x) = t, решаем его и записываем ответ.

Примеры.

Пример 1 . Решите уравнение: 22+x — 22-x = 5.

Решение.

22+x — 22-x = 5 <=> 222x — = 15 <=> 4(2x)2 — 4 = 15x

Делаем замену t = 2x, t > 0. Получаем уравнение 42 — 4 = 15t <=> 4t2 — 15t — 4=0

<=> , t = не удовлетворяет условию t > 0.

Вернемся к переменной х:

2х = 4<=> 2x = 22 <=> x=2.

Ответ: 2

Пример 2. Решите уравнение:

Решение.

5

Делаем замену: , тогда Получаем уравнение:

5 , t = не удовлетворяет условию t

Вернемся к переменной Х:

Ответ: 2.

D. Уравнения, левая часть которых имеет вид A nx + B kx bmx + С bnx, где k, m N, k + m = n

Для решения уравнения такого типа необходимо обе части уравнения разделить либо на nx, либо на nx и получится уравнение типа С).

Примеры.

Пример 1. Решите уравнение: 222x — 5x + 332x = 0.

Решение.

222x — 5x + 332x = 0 <=> 22x — 5x3x + 332x = 0 <=> 2 — + 3 = 0 <=>

<=> 22x — 5x + 3 = 0

Пусть t = x, t>0 , тогда 2t- 5t + 3 = 0 <=> , оба значения t удовлетворяют условию t Вернемся к переменной х:

<=> <=> .

Ответ:

Пример 2. Решите уравнение: 8x + 18x — 227x = 0 .

Решение.

8x + 18x — 227x = 0 <=> + — 2 = 0 <=> 23x + 2x 32x — 233x = 0<=>

<=> + — 2 = 0 <=> + — 2 = 0.

Пусть = t, t>0 , тогда t3 + t — 2 = 0<=> (t3 — 1) + (t -1 )= 0 <=> (t-1) (t2 +t +1) + (t — 1) <=> (t — 1) (t2 + t +2) = 0 <=> <=> t - 1= 0 <=> t=1. (t>0)

Вернемся к переменной х: = 1 <=> = x = 0 .

Ответ: 0.

К данному типу уравнений относятся уравнения , левая часть которых имеет вид , где А, В, С -некоторые числа, причем .

Уравнения такого типа решаются с помощью подстановки :

= t , тогда = .

Пример 3. Решите уравнение:

Решение.

Заметим, что произведение оснований степени равно единице:

(. Поэтому можно ввести новую переменную: , причем . Получим уравнение:

t ,оба корня удовлетворяют условию :.

Вернемся к переменной х:

.

Ответ: .

Е. Уравнения, имеющие вид Aam = Bbm.

Для решения необходимо обе части уравнения разделить либо на am, либо на bm. В результате получается простейшее уравнение.

Примеры.

Пример 1. Решите уравнение: 7х = 5х.

Решение.

7х = 5х <=> = 1 <=> = <=> x = 0.

Ответ: 0.

Пример 2. Решите уравнение: .

Решение.

.

Ответ: 2.

F. Метод, основанный на использовании свойства монотонности показательной функции .

Примеры.

Пример 1. Решите уравнение: .

Решение.

Заметим, что при х=1 уравнение обращается в тождество. Следовательно, х=1 — корень уравнения. Перепишем уравнение в виде

(*)

Так как при основании, меньшем единицы, показательная функция убывает на R, то при хлевая часть уравнения (*) больше единицы, то есть

Если то левая часть уравнения меньше единицы, то есть

Поэтому, других корней, кроме х=1, уравнение не имеет.

Ответ: 1.

Пример 2. Решите уравнение: .

Решение.

Это уравнение также обращается в тождество при х=1.

Перепишем уравнение в виде:

.

При основании, меньшем единицы, показательная функция убывает на R.

Поэтому при ха при х: . Таким образом, других корней, кроме х=1 , уравнение не имеет.

Ответ: 1.

G. Графический способ решения уравнений вида f(x).

Чтобы графически решить уравнение такого вида, необходимо построить графики функций y=f(x) в одной системе координат и найти (точно или приближенно) абсциссы точек (если они есть) пересечения этих графиков. Абсциссы этих точек — корни данного уравнения (точность результатов определяем только после подстановки в уравнение ).

Примеры.

Пример 1. Решите уравнение: .

Решение.

1.Рассмотрим две функции: f(x) = и g(x) = x+1.

2.Графиком функции f(x) = является кривая, расположенная в верхней полуплоскости, графиком функции g(x) = x+1 является прямая.

3. Зададим таблицы значений этих функций:

х -1 0 1 2 3
f(x) = 1 2 4
х 0 3
g(x)= x+1 1 4

4. Из рисунка видно, что прямая и кривая пересекаются в двух точках- в точке А и в точке В. По графику определяем абсциссы этих точек: . Значит, уравнение имеет два корня: х=3 и х= . Число х=3 — точный корень заданного уравнения, так как при подстановке в это уравнение получается верное числовое равенство:

Ответ: 3; .

Пример 2. Решите уравнение: .

Решение.

1. Рассмотрим две функции f(x) = и g(x) = .Используем свойства степени и преобразуем выражение :

= , тогда вторую формулу можно переписать в виде: f(x) = .

2. Функция f(x) = — показательная по основанию и ее графиком является кривая, расположенная в верхней полуплоскости.

Функция g(x) =- прямая пропорциональность и ее график - прямая, проходящая через точку .

3. Зададим таблицы значений этих функций и затем построим их графики в одной системе координат.

4. Графики пересекаются в одной точке — в точке А, ее абсцисса равна единице.Значит, х=1 — корень заданного уравнения.

Примечание:

Если одна часть уравнения содержит убывающую функцию f(x) , а другая часть -возрастающую функцию g(x), и уравнение имеет корень х=, то он -единственный.

В примере 2. : f(x) = убывающая на R функция, а g(x = - возрастающая на R функция, х=1- корень уравнения и он единственный.

Ответ: 1.

Приложени

xn--i1abbnckbmcl9fb.xn--p1ai

Решение показательных уравнений

Показательные уравнения – это уравнения вида

где

x -неизвестный показатель степени,

a и b– некоторые числа.

Примеры показательного уравнения:

А уравнения:

уже не будут являться показательными.

 

Рассмотрим примеры решения показательных уравнений:

Пример 1.
Найдите корень уравнения:


Приведем степени к одинаковому основанию, чтобы воспользоваться свойством степени с действительным показателем

 

Тогда можно будет убрать основание степени и перейти к равенству показателей.

Преобразуем левую часть уравнения:


Далее используем свойство степени 



Преобразуем правую часть уравнения:

Используем свойство степени 





Ответ: 4,5.

Пример 2.
Решите неравенство:


Разделим обе части уравнения на 


Замена:




Обратная замена:


Число обращается в 1, если его показатель равен 0

Ответ: x=0.

 

Пример 3.

Решите уравнение и найдите корни на заданном промежутке:


Приводим все слагаемые к одинаковому основанию:


Замена:



Ищем корни уравнения, путём подбора кратных свободному члену:

 – подходит, т.к. равенство выполняется.
 – подходит, т.к. равенство выполняется.
– подходит, т.к. равенство выполняется.
– не подходит, т.к. равенство не выполняется.

Обратная замена:

1) 

Число обращается в 1, если его показатель равен 0


2)

Не подходит, т.к. 

3)

Логарифмируем обе части по основанию 2:


Правая часть равна 1, т.к.


Показатель степени встаёт перед выражение, т.к. 


Отсюда:



 

Пример 4.

Решите уравнение:




Замена: , тогда






Обратная замена:

1 уравнение:


если основания чисел равны, то их показатели будут равны, то


2 уравнение:


Логарифмируем обе части по основанию 2:


Показатель степени встаёт перед выражение, т.к. 


Левая часть равна 2x, т.к. 


Отсюда:


 

Пример 5.

Решите уравнение:

Преобразуем левую часть:


Перемножаем степени по формуле: 


Упростим:  по формуле: 


Представим  в виде :


Замена:


Переведём дробь в неправильную:


Вычисляем корень из дискриминанта:

a-не подходит, т.к. а не принимает отрицательные значения

Обратная замена:

Приводим к общему основанию:


Если 

Ответ: x=20.

Пример 6.

Решите уравнение:


О.Д.З.


Преобразуем левую часть по формуле: 


Замена:


Вычисляем корень из дискриминанта:



a2-не подходит, т.к. а не принимает отрицательные значения


Приводим к общему основанию:


Если 


Возводим в квадрат обе части:


Ответ: x=9.

Автор статьи: Дьяков Александр Дмитриевич

Редакторы статьи: Гаврилина Анна Викторовна, Агеева Любовь Александровна

www.teslalab.ru

Найти объем фигуры ограниченной линиями онлайн – Объем тела вращения | Онлайн калькулятор

∫∫∫ Тройной интеграл — Калькулятор Он-лайн

Введите подинтегральную функцию, для которой необходимо вычислить тройной интеграл

Найдём решение тройного интеграла от функции f(x, y, z)

Введите вверхние и нижние пределы для области интегрирования и подинтегральную функцию для тройного интеграла.
Если подинтегральной функции нету, то укажите 1

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция — арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция — арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
e
e число, которое примерно равно 2.7
exp(x)
Функция — экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число — «Пи», которое примерно равно 3.14
sin(x)
Функция — Синус от x
cos(x)
Функция — Косинус от x
sinh(x)
Функция — Синус гиперболический от x
cosh(x)
Функция — Косинус гиперболический от x
sqrt(x)
Функция — квадратный корень из x
sqr(x) или x^2
Функция — Квадрат x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7.5, не 7,5
2*x
— умножение
3/x
— деление
x^3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание

www.kontrolnaya-rabota.ru

Объем тела вращения — 9 Октября 2015 — Примеры решений задач

Вычисление объема тела вращения вокруг оси Ох

Пусть график функции y = f(x) вращается вокруг оси Ox, образуя так называемую поверхность вращения. Определим объем тела, ограниченного этой поверхностью и плоскостями x = a, x = b.

Объем тела вращения, образованного вращением графика y=f(x) вокруг оси Ox, может быть вычислен по формуле

Пример 1. Вычислить объем тела, образованного вращением дуги кривой y=x2, x∈[1,3] вокруг оси Оx.

Решение. Данные a=1, b=3,  f(x)=x2, подставляем в формулу, получаем

С помощью калькулятора проверяем правильность вычисления объема , а также получаем рисунок тела вращения.

 

Вычисление объема тела вращения вокруг оси Оy

Пусть график функции x=φ(y) вращается вокруг оси Oy, образуя так называемую поверхность вращения. Определим объем тела, ограниченного этой поверхностью и плоскостями y = c, y = d.

Объем тела вращения, образованного вращением графика x=φ(y) вокруг оси Oy, может быть вычислен по формуле

Пример 2. Вычислить объем тела, образованного вращением дуги кривой x=3y-y2, x[1,2] вокруг оси Оx.

Решение. Данные c=1, d=2,  φ(y)=3y-y2, подставляем в формулу, получаем

В калькулятор вставляем функцию x=3y-y2,  x меняем на y, границы  от 1 до 2, проверяем правильность вычисления объема , а также получаем рисунок тела вращения.

Следующая тема: Вычислить длину кривой

 

www.reshim.su

вычислить объем тела вращения онлайн калькулятор


Расчет площади и объема геометрических фигур

Цилиндр представляет собой простое геометрическое тело, получаемое при вращении прямоугольника вокруг одной из его сторон. Другое определение: цилиндр — это геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые ее пересекают.

объем цилиндра формула

Если вы хотите знать, как вычислить объем цилиндра,то все, что вам нужно сделать — найти высоту (h) и радиус (r) и и подставить их в формулу:

Если внимательно посмотреть на эту формулу, то можно заметить, что {\pi r^2} — это формула площади круга, а в нашем случае — площадь основания.

Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Произвести расчет объема цилиндра вам поможет наш калькулятор онлайн. Просто введите указанные параметры цилиндра и получите его объем.

Ваша оценка

[Оценок: 168 Средняя: 3.4]

Объем цилиндра Автор mnogof средний рейтинг 3.4/5 — 168 рейтинги пользователей

Просмотров страницы: 45 055

Объем цилиндра формула (через радиус основания и высоту)

{V=\pi r^2 h}, где

r — радиус основания цилиндра,

h — высота цилиндра

Объем цилиндра формула (через площадь основания и высоту)

{V=S h}, где

S — площадь основания цилиндра,

h — высота цилиндра

Объем цилиндра калькулятор онлайн

Как найти объём тела вращения с помощью интеграла

С помощью определённого интеграла можно вычислять не только площади плоских фигур, но и объёмы тел, образованных вращением этих фигур вокруг осей координат.

Тело, которое образуется вращением вокруг оси Ox криволинейной трапеции, ограниченной сверху графиком функции y= f(x), имеет объём

.

(1)

Аналогично объём v тела, полученного вращением вокруг оси ординат (Oy) криволинейной трапеции выражается формулой

. (2)

При вычислении площади плоской фигуры мы узнали, что площади некоторых фигур могут быть найдены как разность двух интегралов, в которых подынтегральные функции — те функции, которые ограничивают фигуру сверху и снизу. Похоже обстоит дело и с некоторыми телами вращения, объёмы которых вычисляются как разность объёмов двух тел, такие случаи разобраны в примерах 3, 4 и 5.

Пример 1.

Найти объём тела, образованного вращением вокруг оси абсцисс (Ox) фигуры, ограниченной гиперболой , осью абсцисс и прямыми , .

Решение. Объём тела вращения найдём по формуле (1), в которой , а пределы интегрирования a = 1, b = 4:

Пример 2.

Найти объём шара радиуса R.

Решение. Рассмотрим шар как тело, получащееся при вращении вокруг оси абсцисс полукруга радиуса R с центром в начале координат. Тогда в формуле (1) подынтегральная функция запишется в виде , а пределами интегрирования служат -R и R. Следовательно,

Нет времени вникать в решение?

Можно заказать работу!

Пример 3. Найти объём тела, образованного вращением вокруг оси абсцисс (Ox) фигуры, заключённой между параболами и .

Решение.

Представим искомый объём как разность объёмов тел, полученных вращением вокруг оси абсцисс криволинейных трапеций ABCDE и ABFDE. Объёмы этих тел найдём по формуле (1), в которой пределы интегрирования равны и — абсциссам точек B и D пересечения парабол. Теперь можем найти объём тела:

Пример 4.

Вычислить объём тора (тором называется тело, получающееся при вращении круга радиуса a вокруг оси, лежащей в его плоскости на расстоянии b от центра круга ().

Форму тора имеет, например, баранка).

Решение. Пусть круг вращается вокруг оси Ox (рис.

Формулы площадей и объёмов геометрических фигур

20). Объём тора можно представить как разности объёмов тел, полученных от вращения криволинейных трапеций ABCDE и ABLDE вокруг оси Ox.

Уравнение окружности LBCD имеет вид

причём уравнение кривой BCD

а уравнение кривой BLD

Используя разность объёмов тел, получаем для объёма тора v выражение



Пример 5.

Найти объём тела, образованного вращением вокруг оси ординат (Oy) фигуры, ограниченной линиями и .

Решение.

Представим искомый объём как разность объёмов тел, полученных вращением вокруг оси ординат треугольника OBA и криволинейной трапеции OnBA.

Объёмы этих тел найдём по формуле (2). Пределами интегрирования служат и — ординаты точек O и B пересечения параболы и прямой.

Таким образом, получаем объём тела:

К началу страницы

Пройти тест по теме Интеграл

Начало темы «Интеграл»

Неопределённый интеграл: основные понятия, свойства, таблица неопределённых интегралов

Найти неопределённый интеграл: начала начал, примеры решений

Метод замены переменной в неопределённом интеграле

Интегрирование подведением под знак дифференциала

Метод интегрирования по частям

Интегрирование дробей

Интегрирование рациональных функций и метод неопределённых коэффициентов

Интегрирование некоторых иррациональных функций

Интегрирование тригонометрических функций

Определённый интеграл

Площадь плоской фигуры с помощью интеграла

Несобственные интегралы

Вычисление двойных интегралов

Длина дуги кривой с помощью интеграла

Площадь поверхности вращения с помощью интеграла

Определение работы силы с помощью интеграла

Лучшая кроватка в математике. Качественный. Ничего лишнего.

Объем геометрической фигуры — количественная характеристика пространства, занимаемого телом или веществом. Объем тела или емкости судна определяется его формой и линейными размерами.

Объем куба

Объем куба равна кубу длины ее лица.

Формула Куб

где — объем куба,
— длина куба.

Область призмы

Область призмы равна произведению поверхности дна призмы на высоту.

Формула объема призмы

где — степень призмы,

так

— основание призмы,

час

— высота призмы.

Объем паралелепипедов

Объем паралелепипедов равна произведению поверхности основания относительно высоты.

Объем формулы паралелепипеда

где — объем паралелепипедов,

так

— базовая площадь,

час

— высота высота.

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда это то же самое, что и произведение его длины, ширины и высоты.

Формула для объема прямоугольного параллелепипеда

где — объем прямоугольного параллелепипеда,
— длина,

б

— ширина

час

— высота.

Объем пирамиды

Объем пирамиды составляет одну треть продукта в базовой области по высоте.

Формула объема пирамиды

где — объем пирамиды,

так

— основание основания пирамиды,

час

— длина пирамиды.

Объем правильного тетраэдра

Формула для объема правильного тетраэдра

vipstylelife.ru

Как вычислить объем тела вращения?

Объем тела вращения можно вычислить по формуле:

В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболысверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – подынтегральная функция в формуле возводится в квадрат:, таким образоминтеграл всегда неотрицателен, что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубическиеединицы? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями,,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями ,,и

Решение: Изобразим на чертеже плоскую фигуру, ограниченную линиями ,,,, не забывая при этом, что уравнениезадает ось:

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел.

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через.

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через.

И, очевидно, разность объемов – в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения: 

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения: 

Ответ

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (другой) в книге Занимательная геометрия. Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

Вообще, система образования в СССР действительно была самой лучшей. Та же книга Перельмана, изданная ещё в 1950 году, очень хорошо развивает, как сказал юморист, соображаловку и учит искать оригинальные нестандартные решения проблем. Недавно с большим интересом перечитал некоторые главы, рекомендую, доступно даже для гуманитариев. Нет, не нужно улыбаться, что я предложил беспонтовое времяпровождение, эрудиция и широкий кругозор в общении – отличная штука.

После лирического отступления как раз уместно решить творческое задание:

Пример 4

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями,, где.

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, фактически даны готовые пределы интегрирования.  Правильно начертите графики тригонометрических функций, напомню материал урока огеометрических преобразованиях графиков: если аргумент делится на два: , то графики растягиваются по осив два раза. Желательно найти хотя бы 3-4 точкипо тригонометрическим таблицам, чтобы точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

studfiles.net

Как найти объём тела вращения с помощью интеграла

С помощью определённого интеграла можно вычислять не только площади плоских фигур, но и объёмы тел, образованных вращением этих фигур вокруг осей координат.

Тело, которое образуется вращением вокруг оси Ox криволинейной трапеции, ограниченной сверху графиком функции y = f(x), имеет объём

. (1)

Примеры таких тел — на рисунке ниже.

Аналогично объём v тела, полученного вращением вокруг оси ординат (Oy) криволинейной трапеции выражается формулой

. (2)

При вычислении площади плоской фигуры мы узнали, что площади некоторых фигур могут быть найдены как разность двух интегралов, в которых подынтегральные функции — те функции, которые ограничивают фигуру сверху и снизу. Похоже обстоит дело и с некоторыми телами вращения, объёмы которых вычисляются как разность объёмов двух тел, такие случаи разобраны в примерах 3, 4 и 5.

Пример 2. Найти объём шара радиуса R.

Решение. Рассмотрим шар как тело, получащееся при вращении вокруг оси абсцисс полукруга радиуса R с центром в начале координат. Тогда в формуле (1) подынтегральная функция запишется в виде , а пределами интегрирования служат —R и R. Следовательно,

Пример 4. Вычислить объём тора (тором называется тело, получающееся при вращении круга радиуса a вокруг оси, лежащей в его плоскости на расстоянии b от центра круга (). Форму тора имеет, например, баранка).

Решение. Пусть круг вращается вокруг оси Ox (рис. 20). Объём тора можно представить как разности объёмов тел, полученных от вращения криволинейных трапеций ABCDE и ABLDE вокруг оси Ox.

Уравнение окружности LBCD имеет вид

причём уравнение кривой BCD

а уравнение кривой BLD

 

Используя разность объёмов тел, получаем для объёма тора v выражение



Начало темы «Интеграл»

function-x.ru

Вычислить площадь фигуры ПРИМЕРЫ

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Находим точки пересечения заданных линий. Для этого решаем систему уравнений:

Для нахождения абсцисс точек пересечения заданных линий решаем уравнение:

    или    .

Находим: x1 = -2, x2 = 4.

Итак, данные линии, представляющие собой параболу и прямую, пересекаются в точках A(-2; 0), B(4; 6).

Эти линии образуют замкнутую фигуру, площадь которой вычисляем по указанной выше формуле:

По формуле Ньютона-Лейбница находим:

Найти площадь области, ограниченной эллипсом .

Решение.

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin tdx = a cos t dt. Новые пределы интегрирования t = α и t = β определяются из уравнений 0 = a sin ta = a sin t. Можно положить α = 0 и β = π/2.

Находим одну четвертую искомой площади

Отсюда S = πab.

Найти площадь фигуры, ограниченной линиями y = —x2 + x + 4 и y = —x + 1.

Решение.

Найдем точки пересечения линий y = —x2 + x + 4, y = —x + 1, приравнивая ординаты линий: —x2 + x + 4 = —x + 1 или x2 — 2x — 3 = 0. Находим корни x1 = -1, x2 = 3 и соответствующие им ординаты y1 = 2, y2 = -2.

По формуле площади фигуры получаем

Определить площадь, ограниченную параболой y = x2 + 1 и прямой x + y = 3.

Решение.

Решая систему уравнений

находим абсциссы точек пересечения x1 = -2 и x2 = 1.

Полагая y2 = 3 — x и y1 = x2 + 1, на основании формулы получаем

Вычислить площадь, заключенную внутри лемнискаты Бернулли r2 = a2cos 2φ.

Решение.

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f(φ) и двумя полярными радиусами φ1 = ʅ и φ2 = ʆ, выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a2.

Вычислить длину дуги астроиды x2/3 + y2/3 = a2/3.

Решение.

Запишем уравнение астроиды в виде

(x1/3)2 + (y1/3)2 = (a1/3)2.

Положим x1/3 = a1/3cos ty1/3 = a1/3sin t.

Отсюда получаем параметрические уравнения астроиды

x = a cos3t,     y = a sin3t,     (*)

где 0 ≤ t ≤ 2π.

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L, соответствующую изменению параметра t от 0 до π/2.

Получаем

dx = -3a cos2t sin t dt,     dy = 3a sin2t cos t dt.

Отсюда находим

Интегрируя полученное выражение в пределах от 0 до π/2, получаем

Отсюда L = 6a.

Найти площадь, ограниченную спиралью Архимеда r =  и двумя радиусами-векторами, которые соответствуют полярным углам φ1и φ2 (φ1 < φ2).

Решение.

Площадь, ограниченная кривой r = f(φ) вычисляется по формуле , где α и β — пределы изменения полярного угла.

Таким образом, получаем

     (*)

Из (*) следует, что площадь, ограниченная полярной осью и первым витком спирали Архимеда (φ1 = 0; φ2 = 2π):

Аналогичным образом находим площадь, ограниченную полярной осью и вторым витком спирали Архимеда (φ1 = 2πφ2 = 4π):

Искомая площадь равна разности этих площадей

Вычислить объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной параболами y = x2 и x = y2.

Решение.

Решим систему уравнений

и получим x1 = 0, x2 = 1, y1 = 0, y2 = 1, откуда точки пересечения кривых O(0; 0), B(1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA:

Вычислить площадь, ограниченную осью Ox и синусоидой y = sin x на отрезках: а) [0, π]; б) [0, 2π].

Решение.

а) На отрезке [0, π] функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x, находим

б) На отрезке [0, 2π], функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок [0, 2π] разделить на два [0, π] и [π, 2π], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [π, 2π] площадь берется со знаком минус.

В итоге, искомая площадь равна

Определить объем тела, ограниченного поверхностью, полученной от вращения эллипса вокруг большой оси a.

Решение.

Учитывая, что эллипс симметричен относительно осей координат, то достаточно найти объем, образованный вращением вокруг оси Oxплощади OAB, равной одной четверти площади эллипса, и полученный результат удвоить.

Обозначим объем тела вращения через Vx; тогда на основании формулы имеем , где 0 и a — абсциссы точек B и A. Из уравнения эллипса находим . Отсюда

Таким образом, искомый объем равен . (При вращении эллипса вокруг малой оси b, объем тела равен )

Найти площадь, ограниченную параболами y2 = 2px и x2 = 2py.

Решение.

Сначала найдем координаты точек пересечения парабол, чтобы определить отрезок интегрирования. Преобразуя исходные уравнения, получаем и . Приравнивая эти значения, получим или x4 — 8p3x = 0.

Отсюда

x4 — 8p3x = x(x3 — 8p3) = x(x — 2p)(x2 + 2px + 4p2) = 0.

Находим корни уравнений:

Учитывая то факт, что точка A пересечения парабол находится в первой четверти, то пределы интегрирования x = 0 и x = 2p.

Искомую площадь находим по формуле

studfiles.net

Найти площадь фигуры ограниченной кривыми онлайн

Как найти площадь фигуры ограниченной линиями онлайн

Предлагаем Вашему вниманию онлайн калькулятор для нахождения площади фигуры ограниченной кривыми линиями. Калькулятор в автоматическом режиме составляет интеграл, находит границы интегрирования, а также рисует саму фигуру на координатной плоскости. Как частный случай, калькулятор находит площадь криволинейной трапеции.

1). Как найти площадь криволинейной трапеции онлайн.

Площадь криволинейной трапеции, ограниченной кривой y=f(x) [f(x)≥0], прямыми x=a, x=b и отрезком [a,b] оси Ox находим по формуле

Пример. Найти площадь криволинейной трапеции ограниченной кривой y=2x^2+1 и прямыми x=1,x=2.

Решение. Вставляем в калькулятор функции в виде y=2x^2+1,x=1,x=2, нажимаем «Ok», получаем ответ.

2). Как найти площадь фигуры ограниченной линиями онлайн
Площадь фигуры, ограниченной кривыми y=f1(x) и y=f2(x)  [f1(x) ≤  f2(x)] и прямыми x=a, x=b вычисляется по формуле  y=f1(x) и y=f2(x)  [f1(x) ≤  f2(x)] и прямыми x=a, x=b вычисляется по формуле

 

 

Пример. Найти площадь фигуры ограниченной линиями y=4x-x^2, y=4-x

Решение. Вставляем функции y=4x-x^2, y=4-x в калькулятор, нажимаем «Ok», получаем ответ.

 Как правильно написать века римскими цифрами, периода с 1 по 21 век ?

Век (арабскими цифрами)

Век (римскими цифрами)

21 век

XXI

20 …

XX

19

XIX

18

XVIII

17

XVII

16

XVI

15

XV

14

XIV

13

XIII

12

XII

11

XI

10

X

9

IX

8

VIII

7

VII

6

VI

5

V

4

IV

3

III

2 …

II

1 век

I




 Как правильно записать год рождения римскими цифрами?
Год (Арабскими цифрами)Год (Римскими цифрами)
2030MMXXX
2029MMXXIX
2028MMXXVIII
2027MMXXVII
2026MMXXVI
2025MMXXV
2024MMXXIV
2023MMXXIII
2022MMXXII
2021MMXXI
2020MMXX
2019MMXIX
2018MMXVIII
2017MMXVII
2016MMXVI
2015MMXV
2014MMXIV
2013MMXIII
2012MMXII
2011MMXI
2010MMX
2009MMIX
2008MMVIII
2007MMVII
2006MMVI
2005MMV
2004MMIV
2003MMIII
2002MMII
2001MMI
2000MM
1999MCMXCIX
1998MCMXCVIII
1997MCMXCVII
1996MCMXCVI
1995MCMXCV
1994MCMXCIV
1993MCMXCIII
1992MCMXCII
1991MCMXCI
1990MCMXC
1989MCMLXXXIX
1988MCMLXXXVIII
1987MCMLXXXVII
1986MCMLXXXVI
1985MCMLXXXV
1984MCMLXXXIV
1983MCMLXXXIII
1982MCMLXXXII
1981MCMLXXXI
1980MCMLXXX
1979MCMLXXIX
1978MCMLXXVIII
1977MCMLXXVII
1976MCMLXXVI
1975MCMLXXV
1974MCMLXXIV
1973MCMLXXIII
1972MCMLXXII
1971MCMLXXI
1970MCMLXX
1969MCMLXIX
1968MCMLXVIII
1967MCMLXVII
1966MCMLXVI
1965MCMLXV
1964MCMLXIV
1963MCMLXIII
1962MCMLXII
1961MCMLXI
1960MCMLX
1959MCMLIX
1958MCMLVIII
1957MCMLVII
1956MCMLVI
1955MCMLV
1954MCMLIV
1953MCMLIII
1952MCMLII
1951MCMLI
1950MCML
1949MCMXLIX
1948MCMXLVIII
1947MCMXLVII
1946MCMXLVI
1945MCMXLV
1944MCMXLIV
1943MCMXLIII
1942MCMXLII
1941MCMXLI
1940MCMXL
1939MCMXXXIX
1938MCMXXXVIII
1937MCMXXXVII
1936MCMXXXVI
1935MCMXXXV
1934MCMXXXIV
1933MCMXXXIII
1932MCMXXXII
1931MCMXXXI
1930MCMXXX
1929MCMXXIX
1928MCMXXVIII
1927MCMXXVII
1926MCMXXVI
1925MCMXXV
1924MCMXXIV
1923MCMXXIII
1922MCMXXII
1921MCMXXI
1920MCMXX
1919MCMXIX
1918MCMXVIII
1917MCMXVII
1916MCMXVI
1915MCMXV
1914MCMXIV
1913MCMXIII
1912MCMXII
1911MCMXI
1910MCMX
1909MCMIX
1908MCMVIII
1907MCMVII
1906MCMVI
1905MCMV
1904MCMIV
1903MCMIII
1902MCMII
1901MCMI
1900MCM
1899MDCCCXCIX
1898MDCCCXCVIII
1897MDCCCXCVII
1896MDCCCXCVI
1895MDCCCXCV
1894MDCCCXCIV
1893MDCCCXCIII
1892MDCCCXCII
1891MDCCCXCI
1890MDCCCXC





 
Порядковый номер месяца (Арабскими цифрами)Номер месяца (Римскими цифрами)
1 (Январь)I
2  (Февраль)II
3 (Март)III
4  (Апрель)IV
5 (Май)V
6 (Июнь)VI
7 (Июль)VII
8 (Август)VIII
9  (Сентябрь)IX
10 (Октябрь)X
11 (Ноябрь)XI
12 (Декабрь)XII





День месяца (Арабскими цифрами)День месяца (Римскими цифрами)
1I
2II
3III
4IV
5V
6VI
7VII
8VIII
9IX
10X
11XI
12XII
13XIII
14XIV
15XV
16XVI
17XVII
18XVIII
19XIX
20XX
21XXI
22XXII
23XXIII
24XXIV
25XXV
26XXVI
27XXVII
28XXVIII
29XXIX
30XXX
31XXXI