Решить функциональное уравнение онлайн | Решатели
Это не тривиальная задача и обычным студентам скорее всего наш калькулятор не пригодится. Решают функциональные уравнения или студенты-математики или те, кто занимается наукой. Но мы не могли пройти мимо возможности облегчить жизнь и тем и другим. Обычно и те и другие уже хорошо знают что такое функциональное уравнение, но на всякий случай ликбез:Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а некоторые данные функции от них.А теперь по сути. Самый простой способ решить функциональное уравнение с помощью нашего калькулятора — ввести в строку решателя это уравнения.2 for f(x) А еще можно получить частное решение функционального уравнения. Для этого следует указать начальное условие (значение неизвестной функции в конкретной точке). Следует просто дописать через запятую это условие. Пример ниже:
f(x)-1/2f(x/2)=x, f(1)=2Но и это еще не все. С помощью калькулятора можно, например, решать и более интересные задачи (математики поймут, а остальным и не надо) — можно проверить какие функции обладают свойством: $$f(x+y)=f(x)+f(y)$$ Чтобы найти такие функции, достаточно ввести функциональное соотношение в калькулятор:
f(x+y)=f(x)+f(y)
Диофантовы уравнения с двумя переменными
Следующий калькулятор решает линейные диофантовы уравнения с 2-мя переменными.
Для начала, давайте же вспомним Диофантовы уравнение. И так, данное уравнение имеет следующий вид ( с двумя переменными):
где a, b, c — целые числа, которые заданы.
x и y — целые числа, которые неизвестны.
Кто хочет почитать о диофантовых уравнених по-больше, то вы можете сделать это на данной страничке:
The field is not filled.
‘%1’ is not a valid e-mail address.
Please fill in this field.
The field must contain at least% 1 characters.
The value must not be longer than% 1 characters.
Field value does not coincide with the field ‘%1’
An invalid character. Valid characters:’%1′.
Expected number.
It is expected a positive number.
Expected integer.
It is expected a positive integer.
The value should be in the range of [%1 .. %2]
The ‘% 1’ is already present in the set of valid characters.
The field must be less than 1%.
The first character must be a letter of the Latin alphabet.
Su
Mo
Tu
We
Th
Fr
Sa
January
February
March
April
May
June
July
August
September
October
November
December
century
B.C.
%1 century
An error occurred while importing data on line% 1. Value: ‘%2’. Error: %3
Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).
%3.%2.%1%4
%3.%2.%1%4 %6:%7
s.sh.
u.sh.
v.d.
z.d.
yes
no
Wrong file format. Only the following formats: %1
Please leave your phone number and / or email.
Решить квадратное уравнение онлайн
Предлагаем вам удобный бесплатный онлайн калькулятор для решения квадратных уравнений. Вы сможете быстро получить решение квадратного уравнения онлайн и разобраться, как они решаются, на понятных примерах.Чтобы произвести решение квадратного уравнения онлайн, вначале приведите уравнение к общему виду:
ax2 + bx + c = 0
Заполните соответственно поля формы:
Как решить квадратное уравнение
Как решить квадратное уравнение: | Виды корней: |
1. Привести квадратное уравнение к общему виду: Общий вид Аx2+Bx+C=0 Пример : 3х — 2х2+1=-1 Приводим к -2х2+3х+2=0 2. Находим дискриминант D. 3. Находим корни уравнения. | 1. Действительные корни. Причем. x1 не равно x2 Ситуация возникает, когда D>0 и A не равно 0. 2. Действительные корни совпадают. x1 равно x2 3. Два комплексных корня. x1=d+ei, x2=d-ei, где i=-(1)1/2 4. Уравнение имеет одно решение. 5. Уравнение имеет бесчисленное множество решений. 6. Уравнение решений не имеет. |
Для закрепления алгоритма, вот еще несколько показательных примеров решений квадратных уравнений.
Пример 1. Решение обычного квадратного уравнения с разными действительными корнями.
x2 + 3x -10 = 0
В этом уравнении
А=1, B = 3, С=-10
D=B2-4*A*C = 9-4*1*(-10) = 9+40 = 49
квадратный корень будем обозначать, как число1/2!
x1=(-В+D1/2)/2А = (-3+7)/2 = 2
x2=(-В-D1/2)/2А = (-3-7)/2 = -5
Для проверки подставим:
(x-2)*(x+5) = x2 -2x +5x – 10 = x2 + 3x -10
Пример 2. Решение квадратного уравнения с совпадением действительных корней.
х2 – 8x + 16 = 0
А=1, B = -8, С=16
D = k2 – AC = 16 – 16 = 0
X = -k/A = 4
Подставим
(x-4)*(x-4) = (x-4)2 = X2 – 8x + 16
Пример 3. Решение квадратного уравнения с комплексными корнями.
13х2 – 4x + 1 = 0
А=1, B = -4, С=9
D = b2 – 4AC = 16 – 4*13*1 = 16 — 52 = -36
Дискриминант отрицательный – корни комплексные.
x1=(-В+D1/2)/2А = (4+6i)/(2*13) = 2/13+3i/13
x2=(-В-D1/2)/2А = (4-6i)/(2*13) = 2/13-3i/13
, где I – это квадратный корень из -1
Вот собственно все возможные случаи решения квадратных уравнений.
Надеемся, что наш онлайн калькулятор окажется весьма полезным для вас.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Калькулятор решения дробных уравнений. Решение простых линейных уравнений
Приложение
Решение любого типа уравнений онлайн на сайт для закрепления изученного материала студентами и школьниками.. Решение уравнений онлайн. Уравнения онлайн. Различают алгебраические, параметрические, трансцендентные, функциональные, дифференциальные и другие виды уравнений.. Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней. Решение уравнений онлайн.. Уравнения онлайн. Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.). Решение уравнений онлайн.. Уравнения онлайн. Вы сможете решить уравнение онлайн моментально и с высокой точностью результата. Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными». Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Про корни говорят, что они удовлетворяют данному уравнению. Решить уравнение онлайн означает найти множество всех его решений (корней) или доказать, что корней нет. Решение уравнений онлайн.. Уравнения онлайн. Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней. Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому. Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения. Решение уравнений онлайн.. Уравнения онлайн. Сайт позволит решить уравнение онлайн. К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение, квадратное уравнение, кубическое уравнение и уравнение четвёртой степени. Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней. Уравнения, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны. В общем случае, когда аналитического решения найти не удаётся, применяют численные методы. Численные методы не дают точного решения, а только позволяют сузить интервал, в котором лежит корень, до определённого заранее заданного значения. Решение уравнений онлайн.. Уравнения онлайн.. Вместо уравнения онлайн мы представим, как то же самое выражение образует линейную зависимость и не только по прямой касательной, но и в самой точке перегиба графика. Этот метод незаменим во все времена изучения предмета. Часто бывает, что решение уравнений приближается к итоговому значению посредством бесконечных чисел и записи векторов. Проверить начальные данные необходимо и в этом суть задания. Иначе локальное условие преобразуется в формулу. Инверсия по прямой от заданной функции, которую вычислит калькулятор уравнений без особой задержки в исполнении, взаимозачету послужит привилегия пространства. Речь пойдет о студентах успеваемости в научной среде. Впрочем, как и все вышесказанное, нам поможет в процессе нахождения и когда вы решите уравнение полностью, то полученный ответ сохраните на концах отрезка прямой. Линии в пространстве пересекаются в точке и эта точка называется пересекаемой линиями. Обозначен интервал на прямой как задано ранее. Высший пост на изучение математики будет опубликован. Назначить значению аргумента от параметрически заданной поверхности и решить уравнение онлайн сможет обозначить принципы продуктивного обращения к функции. Лента Мебиуса, или как её называет бесконечностью, выглядит в форме восьмерки. Это односторонняя поверхность, а не двухсторонняя. По принципу общеизвестному всем мы объективно примем линейные уравнения за базовое обозначение как есть и в области исследования. Лишь два значения последовательно заданных аргументов способны выявить направление вектора. Предположить, что иное решение уравнений онлайн гораздо более, чем просто его решение, обозначает получение на выходе полноценного варианта инварианта. Без комплексного подхода студентам сложно обучиться данному материалу. По-прежнему для каждого особого случая наш удобный и умный калькулятор уравнений онлайн поможет всем в непростую минуту, ведь достаточно лишь указать вводные параметры и система сама рассчитает ответ. Перед тем, как начать вводить данные, нам понадобится инструмент ввода, что можно сделать без особых затруднений. Номер каждой ответной оценки будет квадратное уравнение приводить к нашим выводам, но этого сделать не так просто, потому что легко доказать обратное. Теория, в силу своих особенностей, не подкреплена практическими знаниями. Увидеть калькулятор дробей на стадии опубликования ответа, задача в математике не из легких, поскольку альтернатива записи числа на множестве способствует увеличению роста функции. Впрочем, не сказать про обучение студентов было бы некорректным, поэтому выскажем каждый столько, сколько этого необходимо сделать. Раньше найденное кубическое уравнение по праву будет принадлежать области определения, и содержать в себе пространство числовых значений, а также символьных переменных. Выучив или зазубрив теорему, наши студенты проявят себя только с лучшей стороны, и мы за них будем рады. В отличие от множества пересечений полей, наши уравнения онлайн описываются плоскостью движения по перемножению двух и трех числовых объединенных линий. Множество в математике определяется не однозначно. Лучшее, по мнению студентов, решение — это доведенная до конца запись выражения. Как было сказано научным языком, не входит абстракция символьных выражений в положение вещей, но решение уравнений дает однозначный результат во всех известных случаях. Продолжительность занятия преподавателя складывается из потребностей в этом предложении. Анализ показал как необходимость всех вычислительных приемов во многих сферах, и абсолютно ясно, что калькулятор уравнений незаменимый инструментарий в одаренных руках студента. Лояльный подход к изучению математики обуславливает важность взглядов разных направленностей. Хотите обозначить одну из ключевых теорем и решите уравнение так, в зависимости от ответа которого будет стоять дальнейшая потребность в его применении. Аналитика в данной области набирает все мощный оборот. Начнем с начала и выведем формулу. Пробив уровень возрастания функции, линия по касательной в точке перегиба обязательно приведет к тому, что решить уравнение онлайн будет одним из главных аспектов в построении того самого графика от аргумента функции. Любительский подход имеет право быть применен, если данное условие не противоречит выводам студентов. На задний план выводится именно та подзадача, которая ставит анализ математических условий как линейные уравнения в существующей области определения объекта. Взаимозачет по направлению ортогональности взаимоуменьшает преимущество одинокого абсолютного значения. По модулю решение уравнений онлайн дает столько же решений, если раскрыть скобки сначала со знаком плюс, а затем со знаком минус. В таком случае решений найдется в два раза больше, и результат будет точнее. Стабильный и правильный калькулятор уравнений онлайн есть успех в достижении намеченной цели в поставленной преподавателем задаче. Нужный метод выбрать представляется возможным благодаря существенным отличиям взглядов великих ученых. Полученное квадратное уравнение описывает кривую линий так называемую параболу, а знак определит ее выпуклость в квадратной системе координат. Из уравнения получим и дискриминант, и сами корни по теореме Виета. Представить выражение в виде правильной или неправильной дроби и применить калькулятор дробей необходимо на первом этапе. В зависимости от этого будет складываться план дальнейших наших вычислений. Математика при теоретическом подходе пригодится на каждом этапе. Результат обязательно представим как кубическое уравнение, потому что его корни скроем именно в этом выражении, для того, чтобы упростить задачу учащемуся в ВУЗе. Любые методы хороши, если они пригодны к поверхностному анализу. Лишние арифметические действия не приведут к погрешности вычислений. С заданной точностью определит ответ. Используя решение уравнений, скажем прямо — найти независимую переменную от заданной функции не так-то просто, особенно в период изучения параллельных линий на бесконечности. В виду исключения необходимость очень очевидна. Разность полярностей однозначна. Из опыта преподавания в институтах наш преподаватель вынес главный урок, на котором были изучены уравнения онлайн в полном математическом смысле. Здесь речь шла о высших усилиях и особых навыках применения теории. В пользу наших выводов не стоит глядеть сквозь призму. До позднего времени считалось, что замкнутое множество стремительно возрастает по области как есть и решение уравнений просто необходимо исследовать. На первом этапе мы не рассмотрели все возможные варианты, но такой подход обоснован как никогда. Лишние действия со скобками оправдывают некоторые продвижения по осям ординат и абсцисс, чего нельзя не заметить невооруженным глазом. В смысле обширного пропорционального возрастания функции есть точка перегиба. В лишний раз докажем как необходимое условие будет применяться на всем промежутке убывания той или иной нисходящей позиции вектора. В условиях замкнутого пространства мы выберем переменную из начального блока нашего скрипта. За отсутствие главного момента силы отвечает система, построенная как базис по трем векторам. Однако калькулятор уравнений вывел, и помогло в нахождении всех членов построенного уравнения, как над поверхностью, так и вдоль параллельных линий. Вокруг начальной точки опишем некую окружность. Таким образом, мы начнем продвигаться вверх по линиям сечений, и касательная опишет окружность по всей ее длине, в результате получим кривую, которая называется эвольвентой. Кстати расскажем об этой кривой немного истории. Дело в том, что исторически в математике не было понятия самой математики в чистом понимании как сегодня. Раньше все ученые занимались одним общим делом, то есть наукой. Позже через несколько столетий, когда научный мир наполнился колоссальным объемом информации, человечество все-таки выделило множество дисциплин. Они до сих пор остались неизменными. И все же каждый год ученые всего мира пытаются доказать, что наука безгранична, и вы не решите уравнение, если не будете обладать знаниями в области естественных наук. Окончательно поставить точку не может быть возможным. Об этом размышлять также бессмысленно, как согревать воздух на улице. Найдем интервал, на котором аргумент при положительном своем значении определит модуль значения в резко возрастающем направлении. Реакция поможет отыскать как минимум три решения, но необходимо будет проверить их. Начнем с того, что нам понадобиться решить уравнение онлайн с помощью уникального сервиса нашего сайта. Введем обе части заданного уравнения, нажмем на кнопу «РЕШИТЬ» и получим в течение всего нескольких секунд точный ответ. В особых случаях возьмем книгу по математике и перепроверим наш ответ, а именно посмотрим только ответ и станет все ясно. Вылетит одинаковый проект по искусственному избыточному параллелепипеду. Есть параллелограмм со своими параллельными сторонами, и он объясняет множество принципов и подходов к изучению пространственного отношения восходящего процесса накопления полого пространства в формулах натурального вида. Неоднозначные линейные уравнения показывают зависимость искомой переменной с нашим общим на данный момент времени решением и надо как-то вывести и привести неправильную дробь к нетривиальному случаю. На прямой отметим десять точек и проведем через каждую точку кривую в заданном направлении, и выпуклостью вверх. Без особых трудностей наш калькулятор уравнений представит в таком виде выражение, что его проверка на валидность правил будет очевидна даже в начале записи. Система особых представлений устойчивости для математиков на первом месте, если иного не предусмотрено формулой. На это мы ответим подробным представление доклада на тему изоморфного состояния пластичной системы тел и решение уравнений онлайн опишет движение каждой материальной точки в этой системе. На уровне углубленного исследования понадобится подробно выяснить вопрос об инверсиях как минимум нижнего слоя пространства. По возрастанию на участке разрыва функции мы применим общий метод великолепного исследователя, кстати, нашего земляка, и расскажем ниже о поведении плоскости. В силу сильных характеристик аналитически заданной функции, мы используем только калькулятор уравнений онлайн по назначению в выведенных пределах полномочий. Рассуждая далее, остановим свой обзор на однородности самого уравнения, то есть правая его часть приравнена к нулю. Лишний раз удостоверимся в правильности принятого нами решения по математике. Во избежание получения тривиального решения, внесем некоторые корректировки в начальные условия по задаче на условную устойчивость системы. Составим квадратное уравнение, для которого выпишем по известной всем формуле две записи и найдем отрицательные корни. Если один корень на пять единиц превосходит второй и третий корни, то внесением правок в главный аргумент мы тем самым искажаем начальные условия подзадачи. По своей сути нечто необычное в математике можно всегда описать с точностью до сотых значений положительного числа. В несколько раз калькулятор дробей превосходит свои аналоги на подобных ресурсах в самый лучший момент нагрузки сервера. По поверхности растущего по оси ординат вектора скорости начертим семь линий, изогнутых в противоположные друг другу направления. Соизмеримость назначенного аргумента функции опережает показания счетчика восстановительного баланса. В математике этот феномен представим через кубическое уравнение с мнимыми коэффициентами, а также в биполярном прогрессе убывания линий. Критические точки перепада температуры во много своем значении и продвижении описывают процесс разложения сложной дробной функции на множители. Если вам скажут решите уравнение, не спешите это делать сию минуту, однозначно сначала оцените весь план действий, а уже потом принимайте правильный подход. Польза будет непременно. Легкость в работе очевидна, и в математике то же самое. Решить уравнение онлайн. Все уравнения онлайн представляют собой определенного вида запись из чисел или параметров и переменной, которую нужно определить. Вычислить эту самую переменную, то есть найти конкретные значения или интервалы множества значений, при которых будет выполняться тождество. Напрямую зависят условия начальные и конечные. В общее решение уравнений как правило входят некоторые переменные и константы, задавая которые, мы получим целые семейства решений для данной постановки задачи. В целом это оправдывает вкладываемые усилия по направлению возрастания функциональности пространственного куба со стороной равной 100 сантиметрам. Применить теорему или лемму можно на любом этапе построения ответа. Сайт постепенно выдает калькулятор уравнений при необходимости на любом интервале суммирования произведений показать наименьшее значение. В половине случаев такой шар как полый, не в большей степени отвечает требованиям постановки промежуточного ответа. По крайней мере на оси ординат в направлении убывания векторного представления эта пропорция несомненно будет являться оптимальнее предыдущего выражения. В час, когда по линейным функциям будет проведен полный точечный анализ, мы, по сути, соберем воедино все наши комплексные числа и биполярные пространства плоскостной. Подставив в полученное выражение переменную, вы решите уравнение поэтапно и с высокой точностью дадите максимально развернутый ответ. Лишний раз проверить свои действия в математике будет хорошим тоном со стороны учащегося студента. Пропорция в соотношении дробей зафиксировала целостность результата по всем важным направлениям деятельности нулевого вектора. Тривиальность подтверждается в конце выполненных действий. С простой поставленной задачей у студентов не может возникнуть сложностей, если решить уравнение онлайн в самые кратчайшие периоды времени, но не забываем о всевозможных правилах. Множество подмножеств пересекается в области сходящихся обозначений. В разных случаях произведение не ошибочно распадается на множители. Решить уравнение онлайн вам помогут в нашем первом разделе, посвященном основам математических приемов для значимых разделов для учащихся в ВУЗах и техникумах студентов. Ответные примеры нас не заставят ожидать несколько дней, так как процесс наилучшего взаимодействия векторного анализа с последовательным нахождением решений был запатентован в начале прошлого века. Выходит так, что усилия по взаимосвязям с окружающим коллективом были не напрасными, другое очевидно назрело в первую очередь. Спустя несколько поколений, ученые всего мира заставили поверить в то, что математика это царица наук. Будь-то левый ответ или правый, все равно исчерпывающие слагаемые необходимо записать в три ряда, поскольку в нашем случае речь пойдет однозначно только про векторный анализ свойств матрицы. Нелинейные и линейные уравнения, наряду с биквадратными уравнениями, заняли особый пост в нашей книге про наилучшие методы расчета траектории движения в пространстве всех материальных точек замкнутой системы. Воплотить идею в жизнь нам поможет линейный анализ скалярного произведения трех последовательных векторов. В конце каждой постановки, задача облегчается благодаря внедрениям оптимизированных числовых исключений в разрез выполняемых наложений числовых пространств. Иное суждение не противопоставит найденный ответ в произвольной форме треугольника в окружности. Угол между двумя векторами заключает в себе необходимый процент запаса и решение уравнений онлайн зачастую выявляет некий общий корень уравнения в противовес начальным условиям. Исключение выполняет роль катализатора во всем неизбежном процессе нахождения положительного решения в области определения функции. Если не сказано, что нельзя пользоваться компьютером, то калькулятор уравнений онлайн в самый раз подойдет для ваших трудных задач. Достаточно лишь вписать в правильном формате свои условные данные и наш сервер выдаст в самые кратчайшие сроки полноценный результирующий ответ. Показательная функция возрастает гораздо быстрее, чем линейная. Об этом свидетельствую талмуды умной библиотечной литературы. Произведет вычисление в общем смысле как это бы сделало данное квадратное уравнение с тремя комплексными коэффициентами. Парабола в верхней части полуплоскости характеризует прямолинейное параллельное движение вдоль осей точки. Здесь стоит упомянуть о разности потенциалов в рабочем пространстве тела. Взамен неоптимальному результату, наш калькулятор дробей по праву занимает первую позицию в математическом рейтинге обзора функциональных программ на серверной части. Легкость использования данного сервиса оценят миллионы пользователей сети интернет. Если не знаете, как им воспользоваться, то мы с радостью вам поможем. Еще хотим особо отметить и выделить кубическое уравнение из целого ряда первостепенных школьнических задач, когда необходимо быстро найти его корни и построить график функции на плоскости. Высшие степени воспроизведения — это одна из сложных математических задач в институте и на ее изучение выделяется достаточное количество часов. Как и все линейные уравнения, наши не исключение по многих объективным правилам, взгляните под разными точками зрений, и окажется просто и достаточно выставить начальные условия. Промежуток возрастания совпадает с интервалом выпуклости функции. Решение уравнений онлайн. В основе изучения теории состоят уравнения онлайн из многочисленных разделов по изучению основной дисциплины. По случаю такого подхода в неопределенных задачах, очень просто представить решение уравнений в заданном заранее виде и не только сделать выводы, но и предсказать исход такого положительного решения. Выучить предметную область поможет нам сервис в самых лучших традициях математики, именно так как это принято на Востоке. В лучшие моменты временного интервала похожие задачи множились на общий множитель в десять раз. Изобилием умножений кратных переменных в калькулятор уравнений завелось приумножать качеством, а не количественными переменными таких значений как масса или вес тела. Во избежание случаев дисбаланса материальной системы, нам вполне очевиден вывод трехмерного преобразователя на тривиальном схождении невырожденных математических матриц. Выполните задание и решите уравнение в заданных координатах, поскольку вывод заранее неизвестен, как и неизвестны все переменные, входящие в пост пространственное время. На короткий срок выдвинете общий множитель за рамки круглых скобок и поделите на наибольший общий делитель обе части заранее. Из-под получившегося накрытого подмножества чисел извлечь подробным способом подряд тридцать три точки за короткий период. Постольку поскольку в наилучшем виде решить уравнение онлайн возможно каждому студенту, забегая вперед, скажем одну важную, но ключевую вещь, без которой в дальнейшем будем непросто жить. В прошлом веке великий ученый подметил ряд закономерностей в теории математики. На практике получилось не совсем ожидаемое впечатление от событий. Однако в принципе дел это самое решение уравнений онлайн способствует улучшению понимания и восприятия целостного подхода к изучению и практическому закреплению пройдённого теоретического материала у студентов. На много проще это сделать в свое учебное время.
=Как решать уравнения?
В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение — это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.
Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.
4. Все остальные.)
Всех остальных, разумеется, больше всего, да…) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.
Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.
И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные — третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.
Но для любых (повторяю — для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа — Звучит страшно, но штука очень простая. И очень (очень!) важная.
Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: «Как решать уравнения? » лежит, как раз, в этих преобразованиях. Намёк понятен?)
Тождественные преобразования уравнений.
В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.
Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.
Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.
Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.
Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.
Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:
Дело знакомое, переносим двойку вправо, и получаем:
На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:
х+2 — 2 = 3 — 2
Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….
Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа
Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.
Вот и всё.
Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)
Примеры тождественных преобразований уравнений. Основные проблемы.
Начнём с первого тождественного преобразования. Перенос влево-вправо.
Пример для младшеньких.)
Допустим, надо решить вот такое уравнение:
3-2х=5-3х
Вспоминаем заклинание: «с иксами — влево, без иксов — вправо!» Это заклинание — инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? 3х ? Ответ неверный! Справа у нас — 3х ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:
3-2х+3х=5
Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ «с никаким» не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:
-2х+3х=5-3
Остались сущие пустяки. Слева — привести подобные, справа — посчитать. Сразу получается ответ:
В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)
Пример для старшеньких.)
Если Вам нравится этот сайт…Кстати, у меня есть ещё парочка интересных сайтов для Вас.)
Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)
можно познакомиться с функциями и производными.
Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Степенные или показательные уравнения называют уравнения, в которых переменные находятся в степенях, а основанием является число. Например:
Решение показательного уравнения сводится к 2 довольно простым действиям:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания неодинаковые, ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.
Допустим, дано показательное уравнение следующего вида:
Начинать решение данного уравнения стоит с анализа основания. Основаниея разные — 2 и 4, а для решения нам нужно, чтобы были одинаковые, поэтому преобразуем 4 по такой формуле -\[ (a^n)^m = a^{nm}:\]
Прибавляем к исходному уравнению:
Вынесем за скобки \
Выразим \
Поскольку степени одинаковые, отбрасываем их:
Ответ: \
Где можно решить показательное уравнение онлайн решателем?
Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .
Дискриминант
Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D
- Если D = 0, есть ровно один корень;
- Если D > 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x 2 − 8x + 12 = 0;
- 5x 2 + 3x + 7 = 0;
- x 2 − 6x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a
= 1, b
= −8, c
= 12;
D
= (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16
Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a
= 5; b
= 3; c
= 7;
D
= 3 2 − 4 · 5 · 7 = 9 − 140 = −131.
Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a
= 1; b
= −6; c
= 9;
D
= (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.
Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Основная формула корней квадратного уравнения
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D
- x 2 − 2x − 3 = 0;
- 15 − 2x − x 2 = 0;
- x 2 + 12x + 36 = 0.
Первое уравнение:
x
2 − 2x
− 3 = 0 ⇒ a
= 1; b
= −2; c
= −3;
D
= (−2) 2 − 4 · 1 · (−3) = 16.
D > 0 ⇒ уравнение имеет два корня. Найдем их:
Второе уравнение:
15 − 2x
− x
2 = 0 ⇒ a
= −1; b
= −2; c
= 15;
D
= (−2) 2 − 4 · (−1) · 15 = 64.
D > 0 ⇒ уравнение снова имеет два корня. Найдем их
\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]
Наконец, третье уравнение:
x
2 + 12x
+ 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.
D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
- x 2 + 9x = 0;
- x 2 − 16 = 0.
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
- Если же (−c /a )
Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Вынесение общего множителя за скобкуПроизведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x 2 − 7x = 0;
- 5x 2 + 30 = 0;
- 4x 2 − 9 = 0.
x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.
5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.
Сервис для решения уравнений онлайн поможет вам решить любое уравнение. Используя наш сайт, вы получите не просто ответ уравнения, но и увидите подробное решение, то есть пошаговое отображение процесса получения результата. Наш сервис будет полезен старшеклассникам общеобразовательных школ и их родителям. Ученики смогут подготовиться к контрольным, экзаменам, проверить свои знания, а родители – проконтролировать решение математических уравнений своими детьми. Умение решать уравнения – обязательное требование к школьникам. Сервис поможет вам самообучаться и повышать уровень знаний в области математических уравнений. С его помощью вы сможете решить любое уравнение: квадратное, кубическое, иррациональное, тригонометрическое и др. Польза онлайн сервиса бесценна, ведь кроме верного ответа вы получаете подробное решение каждого уравнения. Преимущества решения уравнений онлайн. Решить любое уравнение онлайн на нашем сайте вы можете абсолютно бесплатно. Сервис полностью автоматический, вам ничего не придется устанавливать на свой компьютер, достаточно будет только ввести данные и программа выдаст решение. Любые ошибки в расчетах или опечатки исключены. С нами решить любое уравнение онлайн очень просто, поэтому обязательно используйте наш сайт для решения любых видов уравнений. Вам необходимо только ввести данные и расчет будет выполнен за считанные секунды. Программа работает самостоятельно, без человеческого участия, а вы получаете точный и подробный ответ. Решение уравнения в общем виде. В таком уравнении переменные коэффициенты и искомые корни связаны между собой.2-4ac. Если дискриминант меньше нуля, то уравнение не имеет действительных корней (корни находятся из поля комплексных чисел), если равен нулю, то у уравнения один действительный корень, и если дискриминант больше нуля, то уравнение имеет два действительных корня, которые находятся по формуле: D= -b+-sqrt/2а. Для решения квадратного уравнения онлайн вам достаточно ввести коэффициенты такого уравнения (целые числа, дроби или десятичные значения). При наличии знаков вычитания в уравнении необходимо поставить минус перед соответствующими членами уравнения. Решить квадратное уравнение онлайн можно и в зависимости от параметра, то есть переменных в коэффициентах уравнения. С этой задачей отлично справляется наш онлайн сервис по нахождению общих решений. Линейные уравнения. Для решения линейных уравнений (или системы уравнений) на практике используются четыре основных метода. Опишем каждый метод подробно. Метод подстановки. Решение уравнений методом подстановки требует выразить одну переменную через остальные. После этого выражение подставляется в другие уравнения системы. Отсюда и название метода решения, то есть вместо переменной подставляется ее выражение через остальные переменные. На практике метод требует сложных вычислений, хотя и простой в понимании, поэтому решение такого уравнения онлайн поможет сэкономить время и облегчить вычисления. Вам достаточно указать количество неизвестных в уравнении и заполнить данные от линейных уравнений, далее сервис сделает расчет. Метод Гаусса. В основе метода простейшие преобразования системы с целью прийти к равносильной системе треугольного вида. Из нее поочередно определяются неизвестные. На практике требуется решить такое уравнение онлайн с подробным описанием, благодаря чему вы хорошо усвоите метод Гаусса для решения систем линейных уравнений. Запишите в правильном формате систему линейных уравнений и учтите количество неизвестных, чтобы безошибочно выполнить решение системы. Метод Крамера. Этим методом решаются системы уравнений в случаях, когда у системы единственное решение. Главное математическое действие здесь – это вычисление матричных определителей. Решение уравнений методом Крамера проводится в режиме онлайн, результат вы получаете мгновенно с полным и подробным описанием. Достаточно лишь заполнить систему коэффициентами и выбрать количество неизвестных переменных. Матричный метод. Этот метод заключается в собрании коэффициентов при неизвестных в матрицу А, неизвестных – в столбец Х, а свободных членов в столбец В. Таким образом система линейных уравнений сводится к матричному уравнению вида АхХ=В. У этого уравнения единственное решение только если определитель матрицы А отличен от нуля, иначе у системы нет решений, либо бесконечное количество решений. Решение уравнений матричным методом заключается в нахождении обратной матрицы А.
Онлайн уравнение прямой по двум точкам с подробным решением
- Подробности
Калькулятор уравнения прямой онлайн составлет общее уравнение прямой и уравнение прямой с угловым коэффициентом k по двум точкам.
Исходные данные:
Решение:
A x + B y + C = 0 — общее уравнение прямой, где A и B одновременно не равны нулю:
составление общее уравнение прямой, где
расчет коэффициента А для общего уравнения прямой
расчет коэффициента B для общего уравнения прямой
расчет коэффициента C для общего уравнения прямой
y = k x + b — уравнение прямой с угловым коэффициентом k, равным тангенсу угла, образованного данной прямой и положительным направлением оси ОХ (ось абсцисс):
составление уравнения прямой с угловым коэффициентом, где
расчет углового коэффициента k
расчет коэффициента b
I. Порядок действий при составлении уравнения прямой, проходящей через 2 точки онлайн калькулятором:
- Для составления уравнения прямой требуется ввести значеня координат 2 точек ([X1, Y1]; [X2, Y2]).
II. Для справки:
- прямая (прямая линия)
- — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя ее точками.
- интерполяция
- — способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.
- линейная интерполяция
- — нахождение промежуточного значения функции по двум точкам (условно проведя прямую между ними).
- квадратичная интерполяция
- — нахождение промежуточного значения функции по трем точкам (интерполирующая функция многочлен второго порядка — парабола).
III. Примечание:
- Блок исходных данных выделен желтым цветом, блок промежуточных вычислений выделен голубым цветом, блок решения выделен зеленым цветом.
Решить равенство онлайн калькулятор с решением. Решение простых линейных уравнений
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .
Дискриминант
Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D
- Если D = 0, есть ровно один корень;
- Если D > 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x 2 − 8x + 12 = 0;
- 5x 2 + 3x + 7 = 0;
- x 2 − 6x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a
= 1, b
= −8, c
= 12;
D
= (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16
Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a
= 5; b
= 3; c
= 7;
D
= 3 2 − 4 · 5 · 7 = 9 − 140 = −131.
Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a
= 1; b
= −6; c
= 9;
D
= (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.
Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Основная формула корней квадратного уравнения
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D
- x 2 − 2x − 3 = 0;
- 15 − 2x − x 2 = 0;
- x 2 + 12x + 36 = 0.
Первое уравнение:
x
2 − 2x
− 3 = 0 ⇒ a
= 1; b
= −2; c
= −3;
D
= (−2) 2 − 4 · 1 · (−3) = 16.
D > 0 ⇒ уравнение имеет два корня. Найдем их:
Второе уравнение:
15 − 2x
− x
2 = 0 ⇒ a
= −1; b
= −2; c
= 15;
D
= (−2) 2 − 4 · (−1) · 15 = 64.
D > 0 ⇒ уравнение снова имеет два корня. Найдем их
\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]
Наконец, третье уравнение:
x
2 + 12x
+ 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.
D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
- x 2 + 9x = 0;
- x 2 − 16 = 0.
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
- Если же (−c /a )
Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Вынесение общего множителя за скобкуПроизведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x 2 − 7x = 0;
- 5x 2 + 30 = 0;
- 4x 2 − 9 = 0.
x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.
5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.
Сервис для решения уравнений онлайн поможет вам решить любое уравнение. Используя наш сайт, вы получите не просто ответ уравнения, но и увидите подробное решение, то есть пошаговое отображение процесса получения результата. Наш сервис будет полезен старшеклассникам общеобразовательных школ и их родителям. Ученики смогут подготовиться к контрольным, экзаменам, проверить свои знания, а родители – проконтролировать решение математических уравнений своими детьми. Умение решать уравнения – обязательное требование к школьникам. Сервис поможет вам самообучаться и повышать уровень знаний в области математических уравнений. С его помощью вы сможете решить любое уравнение: квадратное, кубическое, иррациональное, тригонометрическое и др. Польза онлайн сервиса бесценна, ведь кроме верного ответа вы получаете подробное решение каждого уравнения. Преимущества решения уравнений онлайн. Решить любое уравнение онлайн на нашем сайте вы можете абсолютно бесплатно. Сервис полностью автоматический, вам ничего не придется устанавливать на свой компьютер, достаточно будет только ввести данные и программа выдаст решение. Любые ошибки в расчетах или опечатки исключены. С нами решить любое уравнение онлайн очень просто, поэтому обязательно используйте наш сайт для решения любых видов уравнений. Вам необходимо только ввести данные и расчет будет выполнен за считанные секунды. Программа работает самостоятельно, без человеческого участия, а вы получаете точный и подробный ответ. Решение уравнения в общем виде. В таком уравнении переменные коэффициенты и искомые корни связаны между собой. Старшая степень переменной определяет порядок такого уравнения. Исходя из этого, для уравнений используют различные методы и теоремы для нахождения решений. Решение уравнений данного типа означает нахождение искомых корней в общем виде. Наш сервис позволяет решить даже самое сложное алгебраическое уравнение онлайн. Вы можете получить как общее решение уравнения, так и частное для указанных вами числовых значений коэффициентов. Для решения алгебраического уравнения на сайте достаточно корректно заполнить всего два поля: левую и правую части заданного уравнения.2-4ac. Если дискриминант меньше нуля, то уравнение не имеет действительных корней (корни находятся из поля комплексных чисел), если равен нулю, то у уравнения один действительный корень, и если дискриминант больше нуля, то уравнение имеет два действительных корня, которые находятся по формуле: D= -b+-sqrt/2а. Для решения квадратного уравнения онлайн вам достаточно ввести коэффициенты такого уравнения (целые числа, дроби или десятичные значения). При наличии знаков вычитания в уравнении необходимо поставить минус перед соответствующими членами уравнения. Решить квадратное уравнение онлайн можно и в зависимости от параметра, то есть переменных в коэффициентах уравнения. С этой задачей отлично справляется наш онлайн сервис по нахождению общих решений. Линейные уравнения. Для решения линейных уравнений (или системы уравнений) на практике используются четыре основных метода. Опишем каждый метод подробно. Метод подстановки. Решение уравнений методом подстановки требует выразить одну переменную через остальные. После этого выражение подставляется в другие уравнения системы. Отсюда и название метода решения, то есть вместо переменной подставляется ее выражение через остальные переменные. На практике метод требует сложных вычислений, хотя и простой в понимании, поэтому решение такого уравнения онлайн поможет сэкономить время и облегчить вычисления. Вам достаточно указать количество неизвестных в уравнении и заполнить данные от линейных уравнений, далее сервис сделает расчет. Метод Гаусса. В основе метода простейшие преобразования системы с целью прийти к равносильной системе треугольного вида. Из нее поочередно определяются неизвестные. На практике требуется решить такое уравнение онлайн с подробным описанием, благодаря чему вы хорошо усвоите метод Гаусса для решения систем линейных уравнений. Запишите в правильном формате систему линейных уравнений и учтите количество неизвестных, чтобы безошибочно выполнить решение системы. Метод Крамера. Этим методом решаются системы уравнений в случаях, когда у системы единственное решение. Главное математическое действие здесь – это вычисление матричных определителей. Решение уравнений методом Крамера проводится в режиме онлайн, результат вы получаете мгновенно с полным и подробным описанием. Достаточно лишь заполнить систему коэффициентами и выбрать количество неизвестных переменных. Матричный метод. Этот метод заключается в собрании коэффициентов при неизвестных в матрицу А, неизвестных – в столбец Х, а свободных членов в столбец В. Таким образом система линейных уравнений сводится к матричному уравнению вида АхХ=В. У этого уравнения единственное решение только если определитель матрицы А отличен от нуля, иначе у системы нет решений, либо бесконечное количество решений. Решение уравнений матричным методом заключается в нахождении обратной матрицы А.
Разберем два вида решения систем уравнения:
1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.
Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.
Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.
Решением системы являются точки пересечения графиков функции.
Рассмотрим подробно на примерах решение систем.
Пример №1:
Решим методом подстановки
Решение системы уравнений методом подстановки2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)
1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y
2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1
3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2
Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)
Пример №2:
Решим методом почленного сложения (вычитания).
Решение системы уравнений методом сложения3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)
1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.
3x-2y=1 |*2
6x-4y=2
2x-3y=-10 |*3
6x-9y=-30
2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2
5y=32 | :5
y=6,4
3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6
Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.
На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.
Готовьтесь к экзаменационному тестированию вместе со «Школково»!
При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.
Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.
Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.
Основные определения и формулы представлены в разделе «Теоретическая справка».
Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или . База упражнений на нашем сайте постоянно дополняется и обновляется.
Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.
Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!
Приложение
Решение любого типа уравнений онлайн на сайт для закрепления изученного материала студентами и школьниками.. Решение уравнений онлайн. Уравнения онлайн. Различают алгебраические, параметрические, трансцендентные, функциональные, дифференциальные и другие виды уравнений.. Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней. Решение уравнений онлайн.. Уравнения онлайн. Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.). Решение уравнений онлайн.. Уравнения онлайн. Вы сможете решить уравнение онлайн моментально и с высокой точностью результата. Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными». Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Про корни говорят, что они удовлетворяют данному уравнению. Решить уравнение онлайн означает найти множество всех его решений (корней) или доказать, что корней нет. Решение уравнений онлайн.. Уравнения онлайн. Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней. Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому. Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения. Решение уравнений онлайн.. Уравнения онлайн. Сайт позволит решить уравнение онлайн. К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение, квадратное уравнение, кубическое уравнение и уравнение четвёртой степени. Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней. Уравнения, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны. В общем случае, когда аналитического решения найти не удаётся, применяют численные методы. Численные методы не дают точного решения, а только позволяют сузить интервал, в котором лежит корень, до определённого заранее заданного значения. Решение уравнений онлайн.. Уравнения онлайн.. Вместо уравнения онлайн мы представим, как то же самое выражение образует линейную зависимость и не только по прямой касательной, но и в самой точке перегиба графика. Этот метод незаменим во все времена изучения предмета. Часто бывает, что решение уравнений приближается к итоговому значению посредством бесконечных чисел и записи векторов. Проверить начальные данные необходимо и в этом суть задания. Иначе локальное условие преобразуется в формулу. Инверсия по прямой от заданной функции, которую вычислит калькулятор уравнений без особой задержки в исполнении, взаимозачету послужит привилегия пространства. Речь пойдет о студентах успеваемости в научной среде. Впрочем, как и все вышесказанное, нам поможет в процессе нахождения и когда вы решите уравнение полностью, то полученный ответ сохраните на концах отрезка прямой. Линии в пространстве пересекаются в точке и эта точка называется пересекаемой линиями. Обозначен интервал на прямой как задано ранее. Высший пост на изучение математики будет опубликован. Назначить значению аргумента от параметрически заданной поверхности и решить уравнение онлайн сможет обозначить принципы продуктивного обращения к функции. Лента Мебиуса, или как её называет бесконечностью, выглядит в форме восьмерки. Это односторонняя поверхность, а не двухсторонняя. По принципу общеизвестному всем мы объективно примем линейные уравнения за базовое обозначение как есть и в области исследования. Лишь два значения последовательно заданных аргументов способны выявить направление вектора. Предположить, что иное решение уравнений онлайн гораздо более, чем просто его решение, обозначает получение на выходе полноценного варианта инварианта. Без комплексного подхода студентам сложно обучиться данному материалу. По-прежнему для каждого особого случая наш удобный и умный калькулятор уравнений онлайн поможет всем в непростую минуту, ведь достаточно лишь указать вводные параметры и система сама рассчитает ответ. Перед тем, как начать вводить данные, нам понадобится инструмент ввода, что можно сделать без особых затруднений. Номер каждой ответной оценки будет квадратное уравнение приводить к нашим выводам, но этого сделать не так просто, потому что легко доказать обратное. Теория, в силу своих особенностей, не подкреплена практическими знаниями. Увидеть калькулятор дробей на стадии опубликования ответа, задача в математике не из легких, поскольку альтернатива записи числа на множестве способствует увеличению роста функции. Впрочем, не сказать про обучение студентов было бы некорректным, поэтому выскажем каждый столько, сколько этого необходимо сделать. Раньше найденное кубическое уравнение по праву будет принадлежать области определения, и содержать в себе пространство числовых значений, а также символьных переменных. Выучив или зазубрив теорему, наши студенты проявят себя только с лучшей стороны, и мы за них будем рады. В отличие от множества пересечений полей, наши уравнения онлайн описываются плоскостью движения по перемножению двух и трех числовых объединенных линий. Множество в математике определяется не однозначно. Лучшее, по мнению студентов, решение — это доведенная до конца запись выражения. Как было сказано научным языком, не входит абстракция символьных выражений в положение вещей, но решение уравнений дает однозначный результат во всех известных случаях. Продолжительность занятия преподавателя складывается из потребностей в этом предложении. Анализ показал как необходимость всех вычислительных приемов во многих сферах, и абсолютно ясно, что калькулятор уравнений незаменимый инструментарий в одаренных руках студента. Лояльный подход к изучению математики обуславливает важность взглядов разных направленностей. Хотите обозначить одну из ключевых теорем и решите уравнение так, в зависимости от ответа которого будет стоять дальнейшая потребность в его применении. Аналитика в данной области набирает все мощный оборот. Начнем с начала и выведем формулу. Пробив уровень возрастания функции, линия по касательной в точке перегиба обязательно приведет к тому, что решить уравнение онлайн будет одним из главных аспектов в построении того самого графика от аргумента функции. Любительский подход имеет право быть применен, если данное условие не противоречит выводам студентов. На задний план выводится именно та подзадача, которая ставит анализ математических условий как линейные уравнения в существующей области определения объекта. Взаимозачет по направлению ортогональности взаимоуменьшает преимущество одинокого абсолютного значения. По модулю решение уравнений онлайн дает столько же решений, если раскрыть скобки сначала со знаком плюс, а затем со знаком минус. В таком случае решений найдется в два раза больше, и результат будет точнее. Стабильный и правильный калькулятор уравнений онлайн есть успех в достижении намеченной цели в поставленной преподавателем задаче. Нужный метод выбрать представляется возможным благодаря существенным отличиям взглядов великих ученых. Полученное квадратное уравнение описывает кривую линий так называемую параболу, а знак определит ее выпуклость в квадратной системе координат. Из уравнения получим и дискриминант, и сами корни по теореме Виета. Представить выражение в виде правильной или неправильной дроби и применить калькулятор дробей необходимо на первом этапе. В зависимости от этого будет складываться план дальнейших наших вычислений. Математика при теоретическом подходе пригодится на каждом этапе. Результат обязательно представим как кубическое уравнение, потому что его корни скроем именно в этом выражении, для того, чтобы упростить задачу учащемуся в ВУЗе. Любые методы хороши, если они пригодны к поверхностному анализу. Лишние арифметические действия не приведут к погрешности вычислений. С заданной точностью определит ответ. Используя решение уравнений, скажем прямо — найти независимую переменную от заданной функции не так-то просто, особенно в период изучения параллельных линий на бесконечности. В виду исключения необходимость очень очевидна. Разность полярностей однозначна. Из опыта преподавания в институтах наш преподаватель вынес главный урок, на котором были изучены уравнения онлайн в полном математическом смысле. Здесь речь шла о высших усилиях и особых навыках применения теории. В пользу наших выводов не стоит глядеть сквозь призму. До позднего времени считалось, что замкнутое множество стремительно возрастает по области как есть и решение уравнений просто необходимо исследовать. На первом этапе мы не рассмотрели все возможные варианты, но такой подход обоснован как никогда. Лишние действия со скобками оправдывают некоторые продвижения по осям ординат и абсцисс, чего нельзя не заметить невооруженным глазом. В смысле обширного пропорционального возрастания функции есть точка перегиба. В лишний раз докажем как необходимое условие будет применяться на всем промежутке убывания той или иной нисходящей позиции вектора. В условиях замкнутого пространства мы выберем переменную из начального блока нашего скрипта. За отсутствие главного момента силы отвечает система, построенная как базис по трем векторам. Однако калькулятор уравнений вывел, и помогло в нахождении всех членов построенного уравнения, как над поверхностью, так и вдоль параллельных линий. Вокруг начальной точки опишем некую окружность. Таким образом, мы начнем продвигаться вверх по линиям сечений, и касательная опишет окружность по всей ее длине, в результате получим кривую, которая называется эвольвентой. Кстати расскажем об этой кривой немного истории. Дело в том, что исторически в математике не было понятия самой математики в чистом понимании как сегодня. Раньше все ученые занимались одним общим делом, то есть наукой. Позже через несколько столетий, когда научный мир наполнился колоссальным объемом информации, человечество все-таки выделило множество дисциплин. Они до сих пор остались неизменными. И все же каждый год ученые всего мира пытаются доказать, что наука безгранична, и вы не решите уравнение, если не будете обладать знаниями в области естественных наук. Окончательно поставить точку не может быть возможным. Об этом размышлять также бессмысленно, как согревать воздух на улице. Найдем интервал, на котором аргумент при положительном своем значении определит модуль значения в резко возрастающем направлении. Реакция поможет отыскать как минимум три решения, но необходимо будет проверить их. Начнем с того, что нам понадобиться решить уравнение онлайн с помощью уникального сервиса нашего сайта. Введем обе части заданного уравнения, нажмем на кнопу «РЕШИТЬ» и получим в течение всего нескольких секунд точный ответ. В особых случаях возьмем книгу по математике и перепроверим наш ответ, а именно посмотрим только ответ и станет все ясно. Вылетит одинаковый проект по искусственному избыточному параллелепипеду. Есть параллелограмм со своими параллельными сторонами, и он объясняет множество принципов и подходов к изучению пространственного отношения восходящего процесса накопления полого пространства в формулах натурального вида. Неоднозначные линейные уравнения показывают зависимость искомой переменной с нашим общим на данный момент времени решением и надо как-то вывести и привести неправильную дробь к нетривиальному случаю. На прямой отметим десять точек и проведем через каждую точку кривую в заданном направлении, и выпуклостью вверх. Без особых трудностей наш калькулятор уравнений представит в таком виде выражение, что его проверка на валидность правил будет очевидна даже в начале записи. Система особых представлений устойчивости для математиков на первом месте, если иного не предусмотрено формулой. На это мы ответим подробным представление доклада на тему изоморфного состояния пластичной системы тел и решение уравнений онлайн опишет движение каждой материальной точки в этой системе. На уровне углубленного исследования понадобится подробно выяснить вопрос об инверсиях как минимум нижнего слоя пространства. По возрастанию на участке разрыва функции мы применим общий метод великолепного исследователя, кстати, нашего земляка, и расскажем ниже о поведении плоскости. В силу сильных характеристик аналитически заданной функции, мы используем только калькулятор уравнений онлайн по назначению в выведенных пределах полномочий. Рассуждая далее, остановим свой обзор на однородности самого уравнения, то есть правая его часть приравнена к нулю. Лишний раз удостоверимся в правильности принятого нами решения по математике. Во избежание получения тривиального решения, внесем некоторые корректировки в начальные условия по задаче на условную устойчивость системы. Составим квадратное уравнение, для которого выпишем по известной всем формуле две записи и найдем отрицательные корни. Если один корень на пять единиц превосходит второй и третий корни, то внесением правок в главный аргумент мы тем самым искажаем начальные условия подзадачи. По своей сути нечто необычное в математике можно всегда описать с точностью до сотых значений положительного числа. В несколько раз калькулятор дробей превосходит свои аналоги на подобных ресурсах в самый лучший момент нагрузки сервера. По поверхности растущего по оси ординат вектора скорости начертим семь линий, изогнутых в противоположные друг другу направления. Соизмеримость назначенного аргумента функции опережает показания счетчика восстановительного баланса. В математике этот феномен представим через кубическое уравнение с мнимыми коэффициентами, а также в биполярном прогрессе убывания линий. Критические точки перепада температуры во много своем значении и продвижении описывают процесс разложения сложной дробной функции на множители. Если вам скажут решите уравнение, не спешите это делать сию минуту, однозначно сначала оцените весь план действий, а уже потом принимайте правильный подход. Польза будет непременно. Легкость в работе очевидна, и в математике то же самое. Решить уравнение онлайн. Все уравнения онлайн представляют собой определенного вида запись из чисел или параметров и переменной, которую нужно определить. Вычислить эту самую переменную, то есть найти конкретные значения или интервалы множества значений, при которых будет выполняться тождество. Напрямую зависят условия начальные и конечные. В общее решение уравнений как правило входят некоторые переменные и константы, задавая которые, мы получим целые семейства решений для данной постановки задачи. В целом это оправдывает вкладываемые усилия по направлению возрастания функциональности пространственного куба со стороной равной 100 сантиметрам. Применить теорему или лемму можно на любом этапе построения ответа. Сайт постепенно выдает калькулятор уравнений при необходимости на любом интервале суммирования произведений показать наименьшее значение. В половине случаев такой шар как полый, не в большей степени отвечает требованиям постановки промежуточного ответа. По крайней мере на оси ординат в направлении убывания векторного представления эта пропорция несомненно будет являться оптимальнее предыдущего выражения. В час, когда по линейным функциям будет проведен полный точечный анализ, мы, по сути, соберем воедино все наши комплексные числа и биполярные пространства плоскостной. Подставив в полученное выражение переменную, вы решите уравнение поэтапно и с высокой точностью дадите максимально развернутый ответ. Лишний раз проверить свои действия в математике будет хорошим тоном со стороны учащегося студента. Пропорция в соотношении дробей зафиксировала целостность результата по всем важным направлениям деятельности нулевого вектора. Тривиальность подтверждается в конце выполненных действий. С простой поставленной задачей у студентов не может возникнуть сложностей, если решить уравнение онлайн в самые кратчайшие периоды времени, но не забываем о всевозможных правилах. Множество подмножеств пересекается в области сходящихся обозначений. В разных случаях произведение не ошибочно распадается на множители. Решить уравнение онлайн вам помогут в нашем первом разделе, посвященном основам математических приемов для значимых разделов для учащихся в ВУЗах и техникумах студентов. Ответные примеры нас не заставят ожидать несколько дней, так как процесс наилучшего взаимодействия векторного анализа с последовательным нахождением решений был запатентован в начале прошлого века. Выходит так, что усилия по взаимосвязям с окружающим коллективом были не напрасными, другое очевидно назрело в первую очередь. Спустя несколько поколений, ученые всего мира заставили поверить в то, что математика это царица наук. Будь-то левый ответ или правый, все равно исчерпывающие слагаемые необходимо записать в три ряда, поскольку в нашем случае речь пойдет однозначно только про векторный анализ свойств матрицы. Нелинейные и линейные уравнения, наряду с биквадратными уравнениями, заняли особый пост в нашей книге про наилучшие методы расчета траектории движения в пространстве всех материальных точек замкнутой системы. Воплотить идею в жизнь нам поможет линейный анализ скалярного произведения трех последовательных векторов. В конце каждой постановки, задача облегчается благодаря внедрениям оптимизированных числовых исключений в разрез выполняемых наложений числовых пространств. Иное суждение не противопоставит найденный ответ в произвольной форме треугольника в окружности. Угол между двумя векторами заключает в себе необходимый процент запаса и решение уравнений онлайн зачастую выявляет некий общий корень уравнения в противовес начальным условиям. Исключение выполняет роль катализатора во всем неизбежном процессе нахождения положительного решения в области определения функции. Если не сказано, что нельзя пользоваться компьютером, то калькулятор уравнений онлайн в самый раз подойдет для ваших трудных задач. Достаточно лишь вписать в правильном формате свои условные данные и наш сервер выдаст в самые кратчайшие сроки полноценный результирующий ответ. Показательная функция возрастает гораздо быстрее, чем линейная. Об этом свидетельствую талмуды умной библиотечной литературы. Произведет вычисление в общем смысле как это бы сделало данное квадратное уравнение с тремя комплексными коэффициентами. Парабола в верхней части полуплоскости характеризует прямолинейное параллельное движение вдоль осей точки. Здесь стоит упомянуть о разности потенциалов в рабочем пространстве тела. Взамен неоптимальному результату, наш калькулятор дробей по праву занимает первую позицию в математическом рейтинге обзора функциональных программ на серверной части. Легкость использования данного сервиса оценят миллионы пользователей сети интернет. Если не знаете, как им воспользоваться, то мы с радостью вам поможем. Еще хотим особо отметить и выделить кубическое уравнение из целого ряда первостепенных школьнических задач, когда необходимо быстро найти его корни и построить график функции на плоскости. Высшие степени воспроизведения — это одна из сложных математических задач в институте и на ее изучение выделяется достаточное количество часов. Как и все линейные уравнения, наши не исключение по многих объективным правилам, взгляните под разными точками зрений, и окажется просто и достаточно выставить начальные условия. Промежуток возрастания совпадает с интервалом выпуклости функции. Решение уравнений онлайн. В основе изучения теории состоят уравнения онлайн из многочисленных разделов по изучению основной дисциплины. По случаю такого подхода в неопределенных задачах, очень просто представить решение уравнений в заданном заранее виде и не только сделать выводы, но и предсказать исход такого положительного решения. Выучить предметную область поможет нам сервис в самых лучших традициях математики, именно так как это принято на Востоке. В лучшие моменты временного интервала похожие задачи множились на общий множитель в десять раз. Изобилием умножений кратных переменных в калькулятор уравнений завелось приумножать качеством, а не количественными переменными таких значений как масса или вес тела. Во избежание случаев дисбаланса материальной системы, нам вполне очевиден вывод трехмерного преобразователя на тривиальном схождении невырожденных математических матриц. Выполните задание и решите уравнение в заданных координатах, поскольку вывод заранее неизвестен, как и неизвестны все переменные, входящие в пост пространственное время. На короткий срок выдвинете общий множитель за рамки круглых скобок и поделите на наибольший общий делитель обе части заранее. Из-под получившегося накрытого подмножества чисел извлечь подробным способом подряд тридцать три точки за короткий период. Постольку поскольку в наилучшем виде решить уравнение онлайн возможно каждому студенту, забегая вперед, скажем одну важную, но ключевую вещь, без которой в дальнейшем будем непросто жить. В прошлом веке великий ученый подметил ряд закономерностей в теории математики. На практике получилось не совсем ожидаемое впечатление от событий. Однако в принципе дел это самое решение уравнений онлайн способствует улучшению понимания и восприятия целостного подхода к изучению и практическому закреплению пройдённого теоретического материала у студентов. На много проще это сделать в свое учебное время.
=Дифференциальные уравнения. Пошаговый калькулятор
Порядок производной указывается штрихами —y»’ или числом после одного штриха —y’5
Ввод распознает различные синонимы функций, как asin, arsin, arcsin
Знак умножения и скобки раставляются дополнительно — запись2sinx сходна2*sin(x)
Список математических функций и констант:
•d(x) — дифференциал
•ln(x) — натуральный логарифм
•sin(x) — синус
•cos(x) — косинус
•tg(x) — тангенс
•ctg(x) — котангенс
•arcsin(x) — арксинус
•arccos(x) — арккосинус
•arctg(x) — арктангенс
•arcctg(x) — арккотангенс
•sh(x) — гиперболический синус
•ch(x) — гиперболический косинус
•th(x) — гиперболический тангенс
•cth(x) — гиперболический котангенс
•sch(x) — гиперболический секанс
•csch(x) — гиперболический косеканс
•arsh(x) — обратный гиперболический синус
•arch(x) — обратный гиперболический косинус
•arth(x) — обратный гиперболический тангенс
•arcth(x) — обратный гиперболический котангенс
•sec(x) — секанс
•cosec(x) — косеканс
•arcsec(x) — арксеканс
•arccsc(x) — арккосеканс
•arsch(x) — обратный гиперболический секанс
•arcsch(x) — обратный гиперболический косеканс
•abs(x) — модуль
•sqrt(x) — корень
•exp(x) — экспонента в степени x
•pow(a,b) — \(a^b\)
•sqrt7(x) — \(\sqrt[7]{x}\)
•sqrt(n,x) — \(\sqrt[n]{x}\)
•log3(x) — \(\log_3\left(x\right)\)
•log(a,x) — \(\log_a\left(x\right)\)
•pi — \(\pi\)
alpha — \(\alpha\)
beta — \(\beta\)
•sigma — \(\sigma\)
gamma — \(\gamma\)
nu — \(\nu\)
•mu — \(\mu\)
phi — \(\phi\)
psi — \(\psi\)
•tau — \(\tau\)
eta — \(\eta\)
rho — \(\rho\)
•a123 — \(a_{123}\)
x_n — \(x_{n}\)
mu11 — \(\mu_{11}\)
Калькулятор уравнений— Open Omnia
(Только квадратные уравнения имеют пошаговые решения)
Введите уравнение. Используйте x в качестве переменной.
См. Примеры
ПОМОЩЬ
Используйте предоставленную клавиатуру для ввода уравнений. Используйте x в качестве переменной. Нажмите «РЕШИТЬ», чтобы решить введенное вами уравнение.
Вот несколько примеров того, что вы можете ввести.
Вот как вы используете кнопки
долларов СШАРЕШЕНИЕ | Решает введенное уравнение. | |
ПРОЗРАЧНЫЙ | Удаляет весь текст в текстовом поле. | |
DEL | Удаляет последний элемент перед курсором. | |
а-я | Показывает алфавит. | |
триг | Показывает тригонометрические функции. | |
◀ | Переместите курсор влево.{□} {□} | N-й корень. |
(□) | Скобка. | |
журнал | База 10. | |
пер. | Натуральное бревно (база д). | |
| $ □ $ | | Абсолютное значение. |
Уравнение прямой по двум точкам
Эти онлайн-калькуляторы находят уравнение прямой по двум точкам.
Первый калькулятор находит линейное уравнение в форме пересечения наклона, то есть. Он также выводит параметры наклона и пересечения и отображает линию на графике.
Второй калькулятор находит линейное уравнение в параметрической форме, то есть. Он также выводит вектор направления и отображает линию и вектор направления на графике.
Вы можете найти теорию под калькуляторами.
Уравнение наклона и пересечения линии из 2 точек
Первая точка
xyВторая точка
xyВычислить
Линейное уравнение
Наклон
Пересечение
Точность вычисления знаков после запятой: 2content_copy Ссылка сохранить Сохранить расширение Виджет
Уравнение параметрической линии из 2 точек
Первая точка
xyВторая точка
xyВычислить
Уравнение для x
Уравнение для y
Вектор направления
Вычисление после десятичной дроби 2content_copy Ссылка сохранить Сохранить расширение Виджет
Уравнение линии наклона-пересечения
Найдем угловую форму линейного уравнения по двум известным точкам и.
Нам нужно найти наклон a и точку пересечения b .
Для двух известных точек у нас есть два уравнения относительно a и b
Давайте вычтем первое из второго
И оттуда
Обратите внимание, что b может быть выражено следующим образом
Итак, если у нас есть a , легко вычислить b , просто подставив или в выражение выше.
Параметрические линейные уравнения
Выясним параметрическую форму линейного уравнения по двум известным точкам и.
Нам нужно найти компоненты вектора направления , также известного как вектор смещения .
Этот вектор количественно определяет расстояние и направление воображаемого движения по прямой от первой точки до второй точки.
Если у нас есть вектор направления от до, наши параметрические уравнения будут иметь вид
Обратите внимание, что если, то и если, то
Калькулятор квадратичных формул
Калькулятор ниже решает квадратное уравнение
ax 2 + bx + c = 0
.В алгебре квадратное уравнение — это любое полиномиальное уравнение второй степени следующего вида:
топор 2 + bx + c = 0
, где x — неизвестное значение, a называется квадратичным коэффициентом, b линейным коэффициентом и c константой. Цифры a , b и c — это коэффициенты уравнения, и они представляют известные числа. Например, a не может быть 0, иначе уравнение будет линейным, а не квадратичным.Квадратное уравнение можно решить несколькими способами, включая: факторинг, использование формулы квадратичного уравнения, завершение квадрата или построение графика. Здесь будет обсуждаться только использование квадратной формулы, а также основы завершения квадрата (поскольку вывод формулы включает завершение квадрата). Ниже представлена квадратичная формула, а также ее вывод.
Вывод квадратичной формулы
С этого момента можно завершить квадрат, используя соотношение:
x 2 + bx + c = (x — h) 2 + k
Продолжение деривации с использованием этого отношения:
Напомним, что ± существует как функция вычисления квадратного корня, что дает решения квадратного уравнения как с положительными, так и с отрицательными корнями.Значения x , найденные с помощью квадратной формулы, являются корнями квадратного уравнения, которые представляют значения x , где любая парабола пересекает ось x. Кроме того, квадратная формула также обеспечивает ось симметрии параболы. Это демонстрирует приведенный ниже график. Обратите внимание, что квадратная формула на самом деле имеет множество реальных приложений, таких как вычисление площадей, траекторий снарядов и скорости, среди прочего.
Калькулятор и решатель тригонометрических уравнений
1Решенный пример тригонометрических уравнений
$ 8 \ sin \ left (x \ right) = 2 + \ frac {4} {\ csc \ left (x \ right)}
$ 2Обратная функция синуса является косекансной: $ \ frac {1} {\ csc (x)} = \ sin (x) $
$ 8 \ sin \ left (x \ right) = 2 + 4 \ sin \ left (x \ right) $
4Разделите обе части уравнения на 4 доллара
долларов$ \ sin \ left (x \ right) = \ frac {1} {2}
$ 5Углы, при которых функция $ \ sin \ left (x \ right) $ равна $ \ frac {1} {2} $, равны
$ x = 30 ^ {\ circ} +360 ^ {\ circ} n, \: x = 150 ^ {\ circ} +360 ^ {\ circ} n $
6Углы, выраженные в радианах в том же порядке, равны
.$ x = \ frac {1} {6} \ pi + 2 \ pi n, \: x = \ frac {5} {6} \ pi + 2 \ pi n $
Окончательный ответ$ x = \ frac {1} {6} \ pi + 2 \ pi n, \: x = \ frac {5} {6} \ pi + 2 \ pi n $
Решение уравнения для X — fx-991EX — Casio Calculator Tutorials
Решение уравнений возможно с помощью решателя уравнений в fx-991ES PLUS или калькулятора fx-991EX с функцией решения сдвигом
.После ввода уравнения калькулятор использует численный метод Ньютона-Рафсона для его решения. Поскольку средство решения уравнений использует численный метод, оно работает только с уравнениями с одной переменной, но может находить несколько значений.
Например, я решу следующее уравнение относительно x :
- Введите левое выражение, используя X. X вставляется для переменной, которую вы хотите решить.
- Использование = доступно через ALPHA CALC.Это вставляет знак равенства.
- Введите правильное выражение.
- сдвиг-решение , чтобы ввести решение уравнения, нажав SHIFT CALC.
Решить для X
будет отображаться на экране. - Если возможно, введите число в качестве отправной точки. В этом калькуляторе Casio используется численный метод Ньютона-Рафсона, решающий для x . Текущее значение X отображается для справки и будет использоваться, если не указано новое значение.
- Нажмите =, чтобы решить уравнение.Калькулятор может занять несколько секунд.
Первое значение x , найденное численным методом, будет отображаться на экране и сохраняется в переменной X . Разница между левым выражением и правым выражением показана как решение L – R.
Предостережения: Как уже упоминалось, это работает только с уравнениями с одной переменной. Переменная может использоваться несколько раз, как показано в этом примере, однако вы не можете использовать две или более переменных, например x и y .Если вы хотите использовать более одной переменной, вам нужно использовать решение квадратного уравнения.
Кроме того, численный метод Ньютона-Рафсона возвращает только одно значение. Чтобы найти другое значение , измените начальную точку на шаге 4. Например, если есть два решения, одно положительное и одно отрицательное, и вы нашли положительное, введите отрицательное число для начальной точки, чтобы найти отрицательный ответ. .
Купите калькулятор Casio fx-991EX на Amazon, используя эту партнерскую ссылку для поддержки этого сайта.
Калькулятор линейных уравнений (решение для неизвестной переменной)
Введите переменные a, b и y в калькулятор ниже. Калькулятор линейного уравнения вычислит и решит отсутствующую переменную x.
Формула линейного уравнения
Линейное уравнение — это термин, используемый в математике для описания линейной линии в форме:
Где xn — переменные, также известные как неопределенные, а a и b — коэффициенты или константы. Эти константы иногда можно рассматривать как параметры уравнения.Поскольку они не меняются, наличие известных констант может дать сплошную линию при экстраполяции по всем значениям x.
Также можно представить себе линейное уравнение как линейный многочлен над полем. Решение этого полинома таково, что значение уравнения истинно или 0. Когда есть только одна переменная, это имеет место с линейным уравнением y = mx + b. Решение этого уравнения дает координатные точки на декартовой плоскости. Поскольку в уравнении есть две переменные, есть два решения, которые являются уравнениями для пересечения с осью x и y этой линии.
Определение линейного уравнения
Линейное уравнение описывает решение для любой точки на прямой. Линейное уравнение обычно используется для вычисления значения Y с учетом значения X вдоль линии.
Как найти неизвестную переменную в линейном уравнении?
Теперь мы рассмотрим пример того, как вычислить неизвестную переменную в линейном уравнении.
- Первым шагом является создание уравнения, для этого мы примем форму уравнения y = ax + b, но на самом деле уравнение может иметь бесконечное количество переменных, например y = ax + cz + b.В этом случае вам нужно будет знать две известные переменные, чтобы найти пропущенное значение, но вернемся к нашему примеру.
- Следующий шаг — найти известные значения. Если смотреть на линию в форме y = ax + b, известны как a, b, так и y. В этом примере мы скажем, что значения 1,2 и 3 соответственно.
- Затем мы должны манипулировать уравнением, чтобы иметь x на одной стороне. После некоторых манипуляций мы обнаруживаем, что x = (y-b) / x.
- Наконец, введите известные значения в уравнение, чтобы найти x.x = (3-2) / 1 = 1. Наша неизвестная переменная — 1.
- Проанализируйте результаты и примените их к дополнительным задачам.
Совершенно очевидно, что решение для неизвестной переменной в уравнении так же просто, как манипулирование уравнением так, чтобы неизвестная переменная находилась на одной стороне, а затем ввод констант.
FAQ
Что такое линейное уравнение?Линейное уравнение описывает решение для любой точки на прямой. Линейное уравнение обычно используется для вычисления значения Y с учетом значения X вдоль линии.
Баланс химического уравнения — Online Balancer
Решено
Площадь треугольника ABC равна 31, DE — средняя линия, параллельная стороне AB. 2 x))/log_31 (корень из 2 *Cosx)
Решено
Последовательность задана условиями b1=-6,bn+1=-3×1/bn.найдите b3.
Пользуйтесь нашим приложением
Balance Chemical Equation — Онлайн-балансир
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Посмотреть всех экспертов из раздела Учеба и наука | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Площадь фигуры ограниченной кривыми в прямоугольных координатах
Площадь фигуры между двумя кривыми в прямоугольных координатах определяется интегралом
от разницы кривых, где одна из них всегда принимает не меньшие значения чем другая , а также кривые непрерывны.
Пределы интегрирования — прямые x1=a, x2=b — ограничивают фигуру (a<b чаще всего это точки пересечения заданных кривых).
Данный цикл задач в первую очередь подойдет студентам мех-мата Львовского национального университета имени Ивана Франко для прохождения практикума из математического анализа.
Студенты других Вузов могут набираться практики на подобных интегралах, и изучать методику вычисления.
Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. «Практикум из математического анализа» (рядом стоит номер из сборника Б. П. Демидовича).
Пример 2.81 (2397). Найти площадь фигуры, ограниченной кривыми, заданными в прямоугольных координатах ax=y2, ay=x2,(a>0).
Вычисление: Построим графики функций, которые ограничивают искомую площадь фигуры:
На графике они будут иметь следующий вид
Площадь между кривыми и нужно найти. Как правило, Вам редко будет известно сам график, поэтому в заданиях где не заданы области на которой находить площадь в первую очередь необходимо найти точки пересечения кривых.
Найдем пределы интегрирования, то есть точки абсцисс пересечения заданных функций y1(x)=y2(x):
Как видите таким условием есть условие равенства функций.
Из последнего уравнения получим две точки x1=0, x2=a.
Дальше, когда Вы не видите графика функций необходимо установить какая из кривых принимает большие значения. Это нужно лишь для того, чтобы с первого раза получить положительное значение площади фигуры. Поскольку площадь всегда больше нуля, а интеграл может принимать произвольные значения, то без проверки следующего условия для нахождения площади интеграл нужно брать за модулем.
Выбираем произвольную точку из отрезка интегрирования [0;a] и убеждаемся в правильности неравенства , то есть проверяем которая из кривых принимает большее значения .
Как отмечалось выше, это нужно для того, чтобы после интегрирования получить положительную площадь фигуры между кривыми.
Вычисляем площадь фигуры, которая ограничена заданными кривыми интегрированиям:
Здесь мы имели достаточно простые функции, поэтому возведя их к табличным интегралам найти площадь достаточно легко. Следующие примеры будут содержать все более тяжелые функции, для интегрирования которых нужно применять знание практически всех формул интегрирования.
Следует заметить: значения площадей (во всех заданиях) измеряются в квадратных единицах (кв. од.), об этом Вы должны помнить, однако для экономии места и времени здесь будут приведены лишь значения определенных интегралов.
Пример 2.82 (2398) Вычислить площадь фигуры, ограниченной кривыми y=x2, x+y=2.
Вычисление: По методике записываем уравнение кривых, которые ограничивают площадь фигуры:
y1(x)=x2, y2(x)=2-x.
Здесь функции выразить достаточно просто.
Вычислим пределы интегрирования, приравняв между собой функции y1(x)=y2(x):
x2=2-x.
Переносим переменные по одну сторону от знака равенства и решаем квадратное уравнение
x2+x-2=0;
(x+2)(x-1)=0.
Следовательно, корни уравнения x1=-2, x2=1.
Сам график кривых и фигуры, площадь которой ищем, приведен на рисунку
Подстановкой любой точки из промежутка [-2;1], например x=0 в функции убеждаемся, что выполняется неравенство
, поэтому .
Площадь фигуры вычисляем интегрированием разницы кривых в найденных пределах:
Площадь равна S=4,5 квадратных единиц.
По физическому содержанию площадь фигуры равна разнице площадей двух криволинейных трапеций. Первая отвечает за верхний график y2(x), нижняя криволинейная трапеция за функцию, которая принимает меньшие значения y2(x). Разница заключается в том, что здесь еще нужно определять пределы интегрирования.
Пример 2.83 (2399) Найти площадь фигуры, ограниченной кривыми y=2x-x2, x+y=0.
Вычисление: Запишем уравнение кривых, которые ограничивают искомую фигуру:
y1(x)=-x, y2(x)=2x-x2.
Из условия равенства функций y1(x)=y2(x) найдем пределы интегрирования:
2x-x2=-x;
x2-3x=0;
x (x-3) =0.
Следовательно, x1=0, x2=3.
Подстановкой единицы видим, что на промежутке [0;3] исполняется неравенство
, то есть .
Находим площадь фигуры ограниченной заданными кривыми:
Под интегралом простая квадратичная функция, поэтому само интегрирование не сложно.
Следующие функции будут более сложными в плане интегрирования, однако используя табличные интегралы площадь найти удается.
Пример 2.84 (2400) Найти площадь фигуры, ограниченной кривыми y=2x, y=2, x=0.
Вычисление: Запишем подынтегральные функции:
y1(x)=2x, y2(x)=2, а также прямую x1=0 (ограничивает фигуру по оси абсцисс).
Найдем вторую границу интегрирования из условия равенства функций y1(x)=y2(x):
2x=2, 2x=21, отсюда имеем вторую точку x1=1.
На промежутке [0;1] исполняется неравенство , поэтому .
График степенной функции и прямой приведен ниже.
Площадь фигуры, которая ограничена кривыми равна интегралу:
При интегрировании получим логарифм.
На калькуляторах можете проверить, что площадь положительна.
Пример 2.85 (2401) Вычислить площадь фигуры, ограниченной кривыми y=x, y=x+sin2x, .
Вычисление: Запишем уравнение кривых, которые ограничивают площадь фигуры:
y1(x)=x, y2(x)=x+sin2x.
Дальше пределы интегрирования:
x1=0, x2=Pi (это известно нам по условию).
На промежутке справедливо неравенство
, поэтому .
Если бы существовала дополнительная точка пересечения, то площадь была бы равна сумме двух интегралов.
Площадь фигуры вычисляем интегрированием: квадрат синуса под интегралом понижаем и выражаем с помощью косинуса двойного угла, а дальше за классической формулой интегрирования
Площадь равна Pi/2, что приблизительно равно 1,5708.
Пример 2.86 (2402) Найти площадь фигуры, ограниченной кривыми
Вычисление: Переписываем функции
Найдем пределы интегрирования, то есть точки абсцисс пересечения заданных функций из условия y1(x)=y2(x):
Поскольку функция парная
то найдем половину площади и результат умножим на двойку.
Из условия находим
что пределы равны плюс, минус бесконечности.
Чтобы легко представить, что мы интегрируем наведем график подынтегральных функций
Учитывая четность функции интегрировать будем от 0 к бесконечности , а полученное значение умножим на двойку.
Получим несвойственный интеграл первого рода (детальнее о нем в части ІІІ).
Площадь фигуры вычисляем через предел интеграла:
В результате интегрирования получим арктангенс, который в предельном случае стремится к Pi/2.
Конечная формула достаточно компактна и удобна для расчетов, хотя с таким типом интегралов Вы знакомитесь впервые.
Пример 2.87 (2403) Вычислить площадь фигуры, ограниченной кривыми
Вычисление: Все Вы должны знать, что такой формулой задается уравнение эллипса.
Так как оси эллипса в канонической системе координат являются его осями симметрии, то эти оси делят эллипс на 4 равные части. Поэтому будем рассматривать часть эллипса, который находится в первом квадранте канонической (прямоугольной) системы координат.
Выражаем уравнение функции, которая ограничивает искомую площадь (четверть эллипса):
Запишем пределы интегрирования: из аналитической геометрии известно, что четверть эллипса ограничена прямыми x1=0, x2=a.
Для вычисления площади эллипса в самом интеграле необходимо выполнить замену переменных, что в свою очередь ведет к изменению пределов интегрирование. При этом придем к квадрату косинуса, который понижаем через косинус двойного угла.
В конце манипуляций приходим к табличным интегралам, которые легко интегрируем и подставляем пределы:
Получили классическую формулу площади эллипса S=Pi*a*b .
Видим, если эллипс вырождается в круг при (a=b=R), тогда формула площади круга S=Pi*R2.
Пример 2.88 (2404) Вычислить площадь фигуры, ограниченной кривыми y2=x2(a2-x2).
Вычисление: Так как все переменные в заданном уравнении входят в квадратах, то оси прямоугольной системы координат являются осями симметрии фигуры, которая ограничена этой линией, потому эти оси делят заданную фигуру на 4 равных части. Достаточно рассмотреть часть фигуры, которая заходиться в первом квадранте прямоугольной системы координат.
Построим график функции, которая ограничивает искомую площадь четвертины фигуры:
График неизвестной фигуры подобен на крылья бабочки.
При y=0 имеем два корня уравнения x1=0 и x2=a.
Площадь фигуры равна 4 умножить на интеграл с найденными пределами.
Во время интегрирования выполняем замену переменных и пределов интегрирования
Это позволяет перейти к показательной функции, которая легко интегрируется.
Всегда помните, что замена переменных под интегралом ведет к изменению пределов интегрирования.
Пример 2.89 Найти площадь фигуры, ограниченную линиями
Вычисление: Запишем графику функций, которые ограничивают искомую площадь фигуры:
Определим пределы интегрирования из условия y1(x)=y2(x):
отсюда x1=0 и x2=1.
Между функциями справедлива зависимость на [0;1], поэтому .
График функций, что анализируем следующий
Площадь фигуры через определенный интеграл равна 1/3 (сравните 2.81 при a=1) :
Пример 2.90 Вычислить площадь фигуры, ограниченной кривыми
Вычисление: Вычислим пределы интегрирования из условия равенства функций y1(x)=y2(x):
Из биквадратного уравнения получим значение точек пересечения:
x1=-1 и x2=1.
Сами же функции в прямоугольных координатах будут иметь вид
Интегрированием находим площадь фигуры (смотри рисунок и образец 2.89) :
Первый интеграл даст арктангенс, запомните хорошо эту формулу.
Пример 2.91 Вычислить площадь фигуры, ограниченной кривыми y=ex, y=e-x,x=1.
Вычисление: Из условия, которое Вы из-за повторяемости должны выучить y1(x)=y2(x) находим точки пересечения кривых:
ex=e-x,x=-x, 2x=0, следовательно, x1=0.
x2=1 (известно за условием).
График функций следующий
Экспоненту интегрировать не трудно, а площадь фигуры выражается формулой (смотри рисунок и образец 2.84) :
Пример 2.92 Найти площадь фигуры, ограниченной кривыми y=ln(x), y=ln2(x).
Вычисление: Пределы интегрирования из условия равенства функций y=ln(x), y=ln2(x) равны x1=1 и x2=e.
Интегрированием логарифмов находим площадь фигуры (смотри рисунок):
Здесь надо проинтегрировать по частям, положив ln(x) =u, (ln2(x)=u) и dx=dv. Попробуйте промежуточные действия провести самостоятельно.
Пример 2.93 Вычислить площадь фигуры, ограниченной кривыми
y=ln(x), y=ln(a), y=ln(b), x=0, где 0<a<b.
Вычисление: Построим графики функций, которые ограничивают искомую площадь фигуры:
x (y) =ey (то есть обратная функция к заданной функции y(x)=ln(x)) .
Такой прием применяют, когда пределы интегрирования параллельны оси Оx, то есть y=const.
Запишем пределы интегрирования:
y1=ln(a), y2=ln(b) (берем из начального условия).
График искомой фигуры следующий
Площадь фигуры, которая ограничена заданными кривыми:
Пример 2.94 Найти площадь фигуры, ограниченной кривыми
Вычисление: Пределы интегрирования в формуле площади находим из условия y1(x)=y2(x):
ln(x)/(4x)=x*ln(x).
Упростив на логарифм (если он больше нуля), получим
1=4x2; 4x2-1=0, x1=1/2.
Из условия на логарифм (=0) получим
ln(x) =0; x2=1.
ОДЗ: x>0.
График фигуры в прямоугольных координатах следующий
Площадь фигуры между кривыми (на [0,5;1]) находим интегрированием:
для вычисления интегралов используем метод замены переменных
Вычисление не так просты, поэтому с превращениями попробуйте разобраться самостоятельно.
Пример 2.95 Вычислить площадь фигуры, ограниченной кривыми y=arcsin(x), y=arccos(x), y=0.
Вычисление: Находим точки пересечения кривых из равенства x1(y)=x2(y):
sin(x)=cos(y), отсюда y1=0 (известно за условием) и y1=Pi/4 (образец 2.93).
На графике это выглядит следующим образом
Учитывая справедливость неравенства вычисляем площадь фигуры:
Думаю, что с такими заданиями на экзамене или модулях Вы справитесь.
Пример 2.96 Найти площадь фигуры, ограниченной кривыми y=tg(x), y=2/3*cos(x), x=0.
Вычисление: Найдем пределы интегрирования, то есть абсциссы точек пересечения заданных функций y1(x)=y2(x):
tg(x)=2/3*cos(x), отсюда
(вторая точка известна за условием).
Кривые на плоскости имеют вид
Площадь фигуры, которая ограничена заданными кривыми () равна интегралу:
Пример 2.97 (2400) Вычислить площадь фигуры, ограниченной кривыми y=|ln(x)|, y=0, x=0,1; x=10.
Вычисление: Выписываем пределы интегрирования x1=0,1; x2=10 из начального условия.
Как строить модуль от логарифма Вы, по-видимому, еще не забыли
Площадь фигуры равна сумме двух интегралов, причем первый берем со знаком минус ():
Во время интегрирования использовали интегрирование частями.
Пример 2.98 (2400) Найти площадь фигуры, ограниченной кривыми y=(x+1)2, x=sin(Pi*y), y=0 .
Вычисление: Построим график функций, которые ограничивают искомую площадь фигуры:
(здесь взяли обратную функцию к заданной y1(x)=(x+1)2), x2=sin(Pi*y).
Выпишем пределы интегрирования:
y1=0; y2=1 (известно за условием).
График функций приведен ниже
Неизвестную площадь фигуры вычисляем интегрированием ():
Пример 2.99 Вычислить площадь фигуры, ограниченной кривыми y=sin(x), y=cos(x), y=0
Вычисление: Из рисунку видно, что площадь S лучше разбить на две части: S=S1+S2.
Запишем уравнение функций, которые ограничивают искомую площадь фигуры:
Интегрируем синус и косинус функции и находим площадь.
Второй вариант заключается в интегрировании разницы обратных функций по y.
Пример 2407 Найти площадь фигуры, ограниченной кривыми (циссоида Диокла) x=2a (a>0).
Вычисление: Поскольку график функции симметричен относительно оси Ox, то будем рассматривать половину площади фигуры (над осью Ox) и результат умножим на 2.
В точке x=2a функция не определена, поэтому будем иметь интеграл второго рода (детальнее смотрите часть ІІІ), он совпадает и, следовательно, площадь будет выражена числом.
Запишем пределы интегрирования:
x1=0 (потому что ) x2=2a (за условием).
График функций следующий
Площадь фигуры, что ограниченна заданной кривой находится достаточно непростым интегрированием
Здесь пришлось трижды выполнять замену переменных, чтобы прийти к правильному ответу.
Еще раз внимательно разберите интеграл.
Пример 2408 Вычислить площадь фигуры, ограниченной кривыми (трактриса), y=0.
Вычисление: Трактриса — кривая, по которой двигается объект, когда его тянуть по горизонтальной плоскости за бечевку фиксированной длины, если направление движения тягача является ортогональным к начальному положению бечевки и скорость тягача бесконечно малая величина.
Очевидно, что (смотри рисунок).
Принимая к сведению, что положительному приросту x отвечает отрицательный прирост y, и что фигура не квадрируема (в общем понимании), допускаем
где дифференциал за x находим через производную
Площадь фигуры через определенный интеграл равна
Следующим идет материал из которого Вы научитесь находить площадь фигуры, ограниченной кривыми заданными параметрически.
Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)
В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:
S(G)=∫abf(x)dx для непрерывной и неотрицательной функции y=f(x) на отрезке [a;b],
S(G)=-∫abf(x)dx для непрерывной и неположительной функции y=f(x) на отрезке [a;b].
Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y=f(x) или x=g(y).
Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)
ТеоремаПусть функции y=f1(x) и y=f2(x) определены и непрерывны на отрезке [a;b], причем f1(x)≤f2(x) для любого значения x из [a;b]. Тогда формула для вычисления площади фигуры G, ограниченной линиями x=a, x=b, y=f1(x) и y=f2(x) будет иметь вид S(G)=∫abf2(x)-f1(x)dx.
Похожая формула будет применима для площади фигуры, ограниченной линиями y=c, y=d, x=g1(y) и x=g2(y): S(G)=∫cd(g2(y)-g1(y)dy.
ДоказательствоРазберем три случая, для которых формула будет справедлива.
В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G1 равна площади фигуры G2. Это значит, что
Поэтому, S(G)=S(G2)-S(G1)=∫abf2(x)dx-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx.
Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.
Во втором случае справедливо равенство: S(G)=S(G2)+S(G1)=∫abf2(x)dx+-∫abf1(x)dx=∫ab(f2(x)-f1(x))dx
Графическая иллюстрация будет иметь вид:
Если обе функции неположительные, получаем: S(G)=S(G2)-S(G1)=-∫abf2(x)dx—∫abf1(x)dx=∫ab(f2(x)-f1(x))dx . Графическая иллюстрация будет иметь вид:
Перейдем к рассмотрению общего случая, когда y=f1(x) и y=f2(x) пересекают ось Ox.
Точки пересечения мы обозначим как xi, i=1, 2,…, n-1. Эти точки разбивают отрезок [a; b] на n частей xi-1; xi, i=1, 2,…, n, где α=x0<x1<x2<…<xn-1<xn=b. Фигуру G можно представить объединением фигур Gi, i=1, 2,…, n. Очевидно, что на своем интервале Gi попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S(Gi)=∫xi-1xi(f2(x)-f1(x))dx, i=1, 2,. .., n
Следовательно,
S(G)=∑i=1nS(Gi)=∑i=1n∫xixif2(x)-f1(x))dx==∫x0xn(f2(x)-f(x))dx=∫abf2(x)-f1(x)dx
Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.
Проиллюстрируем на графике общий случай.
Формулу S(G)=∫abf2(x)-f1(x)dx можно считать доказанной.
А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y=f(x) и x=g(y).
Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)
Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.
Пример 1Необходимо определить площадь фигуры, которая ограничена параболой y=-x2+6x-5 и прямыми линиями y=-13x-12, x=1, x=4.
Решение
Изобразим линии на графике в декартовой системе координат.
На отрезке [1;4] график параболы y=-x2+6x-5 расположен выше прямой y=-13x-12. В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:
S(G)=∫14-x2+6x-5—13x-12dx==∫14-x2+193x-92dx=-13×3+196×2-92×14==-13·43+196·42-92·4—13·13+196·12-92·1==-643+1523-18+13-196+92=13
Ответ: S(G)=13
Рассмотрим более сложный пример.
Пример 2Необходимо вычислить площадь фигуры, которая ограничена линиями y=x+2, y=x, x=7.
Решение
В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x=7. Это требует от нас найти второй предел интегрирования самостоятельно.
Построим график и нанесем на него линии, данные в условии задачи.
Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y=x и полу параболы y=x+2. Для нахождения абсциссы используем равенства:
y=x+2ОДЗ: x≥-2×2=x+22×2-x-2=0D=(-1)2-4·1·(-2)=9×1=1+92=2∈ОДЗx2=1-92=-1∉ОДЗ
Получается, что абсциссой точки пересечения является x=2.
Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y=x+2 , y=x пересекаются в точке (2;2), поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.
На интервале [2;7] график функции y=x расположен выше графика функции y=x+2 . Применим формулу для вычисления площади:
S(G)=∫27(x-x+2)dx=x22-23·(x+2)3227==722-23·(7+2)32-222-23·2+232==492-18-2+163=596
Ответ: S(G)=596
Пример 3Необходимо вычислить площадь фигуры, которая ограничена графиками функций y=1x и y=-x2+4x-2.
Решение
Нанесем линии на график.
Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1x и -x2+4x-2. При условии, что x не равно нулю, равенство 1x=-x2+4x-2становится эквивалентным уравнению третьей степени -x3+4×2-2x-1=0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».
Корнем этого уравнения является х=1: -13+4·12-2·1-1=0.
Разделив выражение -x3+4×2-2x-1 на двучлен x-1, получаем: -x3+4×2-2x-1⇔-(x-1)(x2-3x-1)=0
Оставшиеся корни мы можем найти из уравнения x2-3x-1=0:
x2-3x-1=0D=(-3)2-4·1·(-1)=13×1=3+132≈3.3 ; x2=3-132≈-0.3
Мы нашли интервал x∈1; 3+132, на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:
S(G)=∫13+132-x2+4x-2-1xdx=-x33+2×2-2x-ln x13+132==-3+13233+2·3+1322-2·3+132-ln3+132—133+2·12-2·1-ln 1=7+133-ln3+132
Ответ: S(G)=7+133-ln3+132
Пример 4Необходимо вычислить площадь фигуры, которая ограничена кривыми y=x3, y=-log2x+1 и осью абсцисс.
Решение
Нанесем все линии на график. Мы можем получить график функции y=-log2x+1 из графика y=log2x, если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у=0.
Обозначим точки пересечения линий.
Как видно из рисунка, графики функций y=x3 и y=0 пересекаются в точке (0;0). Так получается потому, что х=0 является единственным действительным корнем уравнения x3=0.
x=2 является единственным корнем уравнения -log2x+1=0, поэтому графики функций y=-log2x+1 и y=0 пересекаются в точке (2;0).
x=1 является единственным корнем уравнения x3=-log2x+1. В связи с этим графики функций y=x3 и y=-log2x+1 пересекаются в точке (1;1). Последнее утверждение может быть неочевидным, но уравнение x3=-log2x+1 не может иметь более одного корня, так как функция y=x3 является строго возрастающей, а функция y=-log2x+1 строго убывающей.
Дальнейшее решение предполагает несколько вариантов.
Вариант №1
Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x∈0; 1, а вторая ниже красной линии на отрезке x∈1;2. Это значит, что площадь будет равна S(G)=∫01x3dx+∫12(-log2x+1)dx.
Вариант №2
Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x∈0; 2, а вторая между красной и синей линиями на отрезке x∈1; 2. Это позволяет нам найти площадь следующим образом:
S(G)=∫02x3dx-∫12×3-(-log2x+1)dx
В этом случае для нахождения площади придется использовать формулу вида S(G)=∫cd(g2(y)-g1(y))dy. Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y.
Разрешим уравнения y=x3 и -log2x+1 относительно x:
y=x3⇒x=y3y=-log2x+1⇒log2x=1-y⇒x=21-y
Получим искомую площадь:
S(G)=∫01(21-y-y3)dy=-21-yln 2-y4401==-21-1ln 2-144—21-0ln 2-044=-1ln 2-14+2ln 2=1ln 2-14
Ответ: S(G)=1ln 2-14
Пример 5Необходимо вычислить площадь фигуры, которая ограничена линиями y=x, y=23x-3, y=-12x+4.
Решение
Красной линией нанесем на график линию, заданную функцией y=x. Синим цветом нанесем линию y=-12x+4, черным цветом обозначим линию y=23x-3.
Отметим точки пересечения.
Найдем точки пересечения графиков функций y=x и y=-12x+4 :
x=-12x+4ОДЗ: x≥0x=-12x+42⇒x=14×2-4x+16⇔x2-20x+64=0D=(-20)2-4·1·64=144×1=20+1442=16; x2=20-1442=4Проверка:x1=16=4, -12×1+4=-12·16+4=-4⇒x1=16 не является решением уравненияx2=4=2, -12×2+4=-12·4+4=2⇒x2=4 является решением уравниния ⇒(4; 2) точка пересечения y=x и y=-12x+4
Найдем точку пересечения графиков функций y=x и y=23x-3:
x=23x-3ОДЗ: x≥0x=23x-32⇔x=49×2-4x+9⇔4×2-45x+81=0D=(-45)2-4·4·81=729×1=45+7298=9, x245-7298=94Проверка:x1=9=3, 23×1-3=23·9-3=3⇒x1=9 является решением уравнения ⇒(9; 3) точка пересечания y=x и y=23x-3×2=94=32, 23×1-3=23·94-3=-32⇒x2=94 не является решением уравнения
Найдем точку пересечения линий y=-12x+4 и y=23x-3:
-12x+4=23x-3⇔-3x+24=4x-18⇔7x=42⇔x=6-12·6+4=23·6-3=1⇒(6; 1) точка пересечения y=-12x+4 и y=23x-3
Дальше мы можем продолжить вычисления двумя способами.
Способ №1
Представим площадь искомой фигуры как сумму площадей отдельных фигур.
Тогда площадь фигуры равна:
S(G)=∫46x—12x+4dx+∫69x-23x-3dx==23×32+x24-4×46+23×32-x23+3×69==23·632+624-4·6-23·432+424-4·4++23·932-923+3·9-23·632-623+3·6==-253+46+-46+12=113
Способ №2
Площадь исходной фигуры можно представить как сумму двух других фигур.
Тогда решим уравнение линии относительно x, а только после этого применим формулу вычисления площади фигуры.
y=x⇒x=y2 красная линияy=23x-3⇒x=32y+92 черная линияy=-12x+4⇒x=-2y+8 синяя линия
Таким образом, площадь равна:
S(G)=∫1232y+92—2y+8dy+∫2332y+92-y2dy==∫1272y-72dy+∫2332y+92-y2dy==74y2-74y12+-y33+3y24+92y23=74·22-74·2-74·12-74·1++-333+3·324+92·3—233+3·224+92·2==74+2312=113
Как видите, значения совпадают.
Ответ: S(G)=113
Итоги
Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Автор: Ирина Мальцевская
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
вычисление площади фигуры ограниченной линиями
Вы искали вычисление площади фигуры ограниченной линиями? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное
решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и вычисление площади фигуры ограниченной линиями онлайн, не
исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению
в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение.
Например, «вычисление площади фигуры ограниченной линиями».
Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей
жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек
использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на
месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который
может решить задачи, такие, как вычисление площади фигуры ограниченной линиями,вычисление площади фигуры ограниченной линиями онлайн,вычислите площадь фигуры,вычислите площадь фигуры ограниченной,вычислите площадь фигуры ограниченной линиями,вычислите площадь фигуры ограниченной линиями y,вычислите площадь фигуры ограниченной линиями y 0 x 1 y x,вычислите площадь фигуры ограниченной линиями онлайн,вычислите площадь фигуры ограниченной линиями онлайн решение,вычислите площадь фигуры ограниченной линиями у 1 x y 2 x 2,вычислить онлайн площадь ограниченную линиями,вычислить площади фигур ограниченных линиями,вычислить площадь ограниченную линиями,вычислить площадь ограниченную линиями онлайн,вычислить площадь плоской фигуры ограниченной заданными кривыми онлайн,вычислить площадь плоской фигуры ограниченной линиями,вычислить площадь плоской фигуры ограниченной линиями онлайн с решением,вычислить площадь фигур ограниченных линиями онлайн,вычислить площадь фигуры,вычислить площадь фигуры ограниченной,вычислить площадь фигуры ограниченной графиками функций,вычислить площадь фигуры ограниченной графиками функций онлайн,вычислить площадь фигуры ограниченной графиками функций онлайн решение,вычислить площадь фигуры ограниченной линиями,вычислить площадь фигуры ограниченной линиями y,вычислить площадь фигуры ограниченной линиями y x 2 1 y x 1,вычислить площадь фигуры ограниченной линиями y x 2 y 2 x,вычислить площадь фигуры ограниченной линиями y x 2 y x,вычислить площадь фигуры ограниченной линиями онлайн,вычислить площадь фигуры ограниченной линиями онлайн калькулятор,вычислить площадь фигуры ограниченной линиями онлайн калькулятор с графиком,вычислить площадь фигуры ограниченной линиями онлайн калькулятор с решением,вычислить площадь фигуры ограниченной линиями онлайн подробное решение,вычислить площадь фигуры ограниченной линиями онлайн с решением калькулятор,вычислить площадь фигуры ограниченной линиями примеры решения,вычислить площадь фигуры ограниченной указанными линиями сделать чертеж,вычислить площадь фигуры онлайн,заштрихуй фигуры ограниченные двумя линиями,заштрихуй фигуры ограниченные линиями,как найти площадь фигуры ограниченной графиками функций,как найти площадь фигуры ограниченной линиями,калькулятор вычислить площадь фигуры ограниченной линиями онлайн с решением,калькулятор онлайн площадь фигуры,найдите площадь плоской фигуры ограниченной линиями,найдите площадь фигуры ограниченной линиями,найдите площадь фигуры ограниченной линиями y 5 x 2 y 1,найдите площадь фигуры ограниченной линиями y x 2 1 y 1 x,найдите площадь фигуры ограниченной линиями онлайн,найдите площадь фигуры ограниченной линиями онлайн калькулятор,найдите площадь фигуры ограниченной указанными линиями,найти площадь криволинейной трапеции ограниченной линиями онлайн,найти площадь криволинейной трапеции онлайн,найти площадь области ограниченной линиями онлайн,найти площадь ограниченной фигуры,найти площадь ограниченную линиями,найти площадь ограниченную линиями онлайн калькулятор,найти площадь плоской фигуры ограниченной линиями,найти площадь плоской фигуры ограниченной линиями онлайн,найти площадь фигуры,найти площадь фигуры ограниченной,найти площадь фигуры ограниченной графиками функций,найти площадь фигуры ограниченной кривыми,найти площадь фигуры ограниченной линиями,найти площадь фигуры ограниченной линиями онлайн,найти площадь фигуры ограниченной линиями онлайн калькулятор,найти площадь фигуры ограниченной линиями онлайн калькулятор подробно,найти площадь фигуры ограниченной линиями онлайн решение,найти площадь фигуры ограниченной линиями онлайн с подробным решением,найти площадь фигуры ограниченной линиями примеры решения,найти площадь фигуры ограниченной линиями с помощью определенного интеграла сделать иллюстрацию,найти площадь фигуры ограниченной указанными линиями,найти площадь фигуры онлайн,нахождение площади фигуры ограниченной линиями,нахождение площади фигуры ограниченной линиями онлайн,онлайн вычисление площади фигуры ограниченной линиями,онлайн вычислить площадь фигуры ограниченной графиками функций онлайн,онлайн калькулятор площадь фигуры ограниченной линиями,онлайн нахождение площади фигуры ограниченной линиями,онлайн площадь фигуры,площадь криволинейной трапеции онлайн,площадь ограниченная линиями,площадь плоской фигуры ограниченной линиями онлайн,площадь под графиком,площадь фигуры ограниченной графиками функций,площадь фигуры ограниченной линиями,площадь фигуры ограниченной линиями онлайн,площадь фигуры ограниченной линиями онлайн калькулятор,площадь фигуры онлайн,построить фигуру ограниченную линиями онлайн,сделайте чертеж и вычислите площадь фигуры ограниченной данными линиями,фигуры ограниченные двумя линиями,фигуры ограниченные линиями. 2+x+6 и y=0 Вычислить площадь фигуры, ограниченной линиями — Учеба и наука
Ответы
| ||||||||||||
|
|
|
Посмотреть всех экспертов из раздела Учеба и наука > Математика
Похожие вопросы |
Решено
В прямоугольном треугольнике АВС угол С равен 90 градусов, AB = 4, tg А=0. 75 . Найдите АС.
Имеется два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81%
Дано: геометрическая прогрессия (bn) задана условиями: b1=-2 , bn+1=3bn. Найдите b6. Объясните пожалуйста, как это решить?
Решено
в зоопарке живут крокодилы и страусы. В сумме у них 40 голов и 94 ноги. Сколько там крокодилов и страусов?
Решено
дана арифмитическая прогрессия (аn)в которой a9=-22,2,a23=-41,8 найдите разность прогрессии
Пользуйтесь нашим приложением
Как вычислить площадь фигуры ограниченной линиями ℹ️ примеры
Общие сведения
Вычислить площадь фигуры на плоскости считается довольно простой операцией. Для ее выполнения необходимо знать только формулу. Существенно усложняет задачу фигура, ограниченная прямыми.
Одной из них считается криволинейная трапеция. Ее площадь можно определить только при нахождении значений определенного интеграла.
Операция интегрирования считается довольно сложной, поскольку необходимо знать основные правила. Перед нахождением площади криволинейной трапеции специалисты рекомендуют внимательно изучить и освоить правила интегрирования основных функций.
Разбирается неопределенный интеграл, а затем осуществляется переход к более сложным операциям.
Информация об интегралах
С понятием интеграла связано много направлений научных отраслей. Обозначается он символом «∫». С помощью интеграла открываются большие возможности по быстрому и эффективному нахождению значений следующих величин: площади криволинейной трапеции, объема тела вращения, поверхности, пути при неравномерном движении, массы неоднородного физического тела и так далее.
Упрощенный вариант представления и определения интеграла — сумма бесконечно малых слагаемых. Интеграл бывает нескольких типов: одинарный, двойной, тройной, криволинейный и так далее. Для любого элемента он может быть двух типов:
- Неопределенный.
- Определенный.
Операция нахождения первого типа значительно проще второго. Это объясняется тем, что во втором случае следует не только найти первообразную, но и выполнить правильную подстановку значений.
Неопределенным интегралом функции вида f(х) называется такая первообразная функция F(х), производная которой равна подинтегральному выражению. Записывается это таким образом: ∫(f(x)) = F(х) + С.
Последняя величина является константой, поскольку при выполнении операции нахождения производной константа равна 0.
Для нахождения первообразной используется специальная таблица интегралов:
Рисунок 1. Таблица интегралов и их первообразные.
В таблице приведены простые функции. Для нахождения площади фигуры, которая ограничена линиями, достаточно значений первообразных на рисунке 1. Вычисление определенного интеграла заключается в получении первообразной и подстановке начального и конечного значений. Следует отметить, что константа при этом не берется. Существует способ, чтобы найти определенный интеграл. Формула Ньютона-Лейбница позволяет быстро и эффективно вычислить площадь фигуры. Для этого нужно подставить значения ее границ (a и b) в первообразные: F(x)|(a;b) = F(b) — F(a).
Криволинейные фигуры
Криволинейная фигура (трапеция) — класс плоских фигур, которые ограничены графиком неотрицательной и непрерывной функции, а также осью ОУ и прямыми (х = а, х = b). Она изображена на рисунке 2. Для нахождения ее площади следует использовать определенный интеграл.
Рисунок 2. Фигуры с криволинейными сторонами.
Интегрирование разбивает фигуру на прямоугольные части. Длина каждой из них равна ординате y = f(х) через промежутки, которые очень малы, по оси декартовой системы координат (есть еще и полярная) ОХ на отрезке [a;b]. Ширина является бесконечно малым значением. При интегрировании находятся площади прямоугольников и складываются. Для того чтобы не путаться в графиках, геометрическую фигуру следует заштриховать.
Криволинейная трапеция — геометрическая фигура с неровными сторонами, которые образовались в результате пересечения графика непрерывной функции с осями абсцисс и ординат.
Применение обыкновенных методов нахождения площади этой фигуры невозможно, поскольку она обладает одной или несколькими неровными сторонами (кривыми линиями).
Способы вычисления и рекомендации
Для расчетов площади криволинейной трапеции используется несколько методов. Их условно можно разделить на следующие: автоматизированные и ручные. Первый из них выполняется при помощи специализированного программного обеспечения (ПО). Примером является онлайн-калькулятор, который не только находит площадь заданной фигуры, но и изображает ее в декартовой системе координат.
Существует и другое ПО, которое является более «мощным». К нему можно отнести наиболее популярные среды: Maple и Matlab. Однако существует множество программ, написанных на языке программирования Python. Программы нужны также при освоении темы интегрирования. Если необходимо рассчитать множество интегралов и площадей криволинейных фигур, то без них не обойтись.
Новичку для автоматизированных вычислений рекомендуется применять различные онлайн-калькуляторы. Однако следует выделить неплохую программу, которая обладает довольно неплохими функциональными возможностями.
Она называется Integral calculator и представляет собой очень удобное приложение для Android-устройств.
Кроме того, можно скачать подобное ПО для Linux, Mac и Windows.
Программа — это калькулятор, который используется для нахождения интегралов и производных, а также его можно применять для решения уравнений интегрального и дифференциального типов. Integral calculator обладает такими функциональными возможностями:
- Вычисление производных.
- Нахождения первообразных для определенных и неопределенных интегралов.
- Решение систем уравнений.
- Выполнения операций над матрицами и определителями.
- Построение графиков заданных функций в 2D и 3D.
- Расчет точек перегиба.
- Вычисление рядов Фурье.
- Решение дифференциальных уравнений линейного типа первого и второго порядков.
Однако специалисты не рекомендуют использовать приложения такого типа, поскольку нужно уметь решать подобные задачи самостоятельно. Любые математические операции развивают мышление, а злоупотребление ПО приводит к значительной деградации. Решать какие-либо задачи рекомендуется также людям, которые не имеют отношения к математической сфере.
Основной алгоритм
При нахождении площади криволинейной трапеции рекомендуется следовать определенному алгоритму. Он поможет избежать ошибок, поскольку задача разбивается на несколько простых подзадач, решение которых довольно просто контролировать. Алгоритм имеет следующий вид:
- Нужно прочитать и понять условие задачи.
- Начертить декартовую систему координат.
- Построить график заданной функции.
- Изобразить линии, ограничивающие фигуру.
- После определения границ нужно аккуратно заштриховать фигуру.
- Вычислить неопределенный интеграл функции, которая дана в условии.
- Посчитать площадь, подставив значения ограничивающих прямых в первообразную.
- Проверить решение задачи при помощи программы.
Первый пункт — внимательное чтение условия задачи. Этап считается очень важным, поскольку формирует дальнейший алгоритм. Необходимо выписать все известные данные, а затем подумать над дальнейшим решением задачи. Следует обратить особое внимание на график функции, который при возможности нужно упростить. Далее следует выписать линии, которые будут ограничивать фигуру.
Следующий пункт считается наиболее простым, поскольку нужно начертить обыкновенную систему координат. В условии должен быть указан ее тип. Если обозначена полярная система, то следует ее начертить. Во всех остальных случаях изображается декартовая система координат.
Третий пункт алгоритма — правильное построение графика функции. В этом случае нет необходимости составлять таблицу зависимости значения функции от аргумента. График должен быть схематичным. Например, если это парабола, то нужно ее изобразить. В этом случае необходимо ознакомиться с основными базовыми функциями и их графиками.
Следующим шагом является правильное изображение прямых. Если ее уравнение имеет следующий вид «x = 5» или что-то подобное, то она будет проходить параллельно оси ОУ. Например, при y = 10 прямая проходит параллельно оси ОХ. В других случаях нужно составить таблицу зависимостей значений уравнения прямой от переменной. Следует брать всего два значения аргумента, поскольку их достаточно для проведения прямой.
После всех операций образуется фигура, которая ограничена линиями. Ее необходимо заштриховать. После этого вычисляется неопределенный интеграл заданной функции. Необходимо воспользоваться табличными значениями первообразных на рисунке 2. Однако здесь есть небольшой нюанс: константу записывать нет необходимости. Она «уничтожается» при подстановке в формулу Ньютона-Лейбница.
В полученное значение следует подставить значения границ. 2) / 2) + (-1)] = 3 — 0,75 = 2,25 (кв. ед.).
Для определения значения площади криволинейной фигуры (трапеции) необходимо использовать определенные интегралы. При решении нужно внимательно следить за знаками и первообразными из таблицы на рисунке 1.
2-1|-3|x|+3)dx$$
Правильно? Помогите пожалуйста с правильным решением.
Не знаю, как вычислить $\int|x|dx.$
исчисление интегрирование области определенных интегралов
$\endgroup$
2
$\begingroup$
Прежде чем решать задачи такого типа, вы должны тщательно нарисовать графики двух заданных кривых, а для этого вам нужно найти точки, в которых они пересекаются. Давайте сделаем это 92-2)dx$$
$\endgroup$
6
Твой ответ
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя адрес электронной почты и пароль
Опубликовать как гость
Электронная почта
Обязательно, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
6.

- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 2519
- Гилберт Странг и Эдвин «Джед» Герман
- OpenStax
Цели обучения
- Определить площадь области между двумя кривыми путем интегрирования по независимой переменной.
- Найдите площадь составной области.
- Определите площадь области между двумя кривыми путем интегрирования по зависимой переменной.
В разделе «Введение в интегрирование» мы разработали концепцию определенного интеграла для вычисления площади под кривой на заданном интервале. В этом разделе мы расширим эту идею, чтобы вычислить площадь более сложных регионов. Начнем с нахождения площади между двумя кривыми, являющимися функциями \(\displaystyle x\), начиная с простого случая, когда значение одной функции всегда больше другого. Затем рассмотрим случаи, когда графики функций пересекаются. Наконец, мы рассмотрим, как вычислить площадь между двумя кривыми, которые являются функциями \(\displaystyle y\).
Площадь области между двумя кривыми
Пусть \(\displaystyle f(x)\) и \(\displaystyle g(x)\) — непрерывные функции на интервале \(\displaystyle [a,b]\), такие что \(\displaystyle f(x)≥g(x)\) на \(\displaystyle [a,b]\). Нам нужно найти площадь между графиками функций, как показано на рисунке \(\PageIndex{1}\).
Рисунок \(\PageIndex{1}\): Площадь между графиками двух функций, \(\displaystyle f(x)\) и \(\displaystyle g(x)\), на интервале \( \displaystyle [а,б]\) 9b_a[f(x)−g(x)]dx. \nonumber \]Эти результаты резюмируются в следующей теореме.
Нахождение площади между двумя кривыми
Пусть \(\displaystyle f(x)\) и \(\displaystyle g(x)\) — непрерывные функции такие, что \(\displaystyle f(x)≥g(x) \) на интервале [\(\displaystyle a,b]\). Обозначим через R область, ограниченную сверху графиком \(\displaystyle f(x)\), снизу графиком \(\displaystyle g(x)\), а слева и справа линиями \(\ displaystyle x=a\) и \(\displaystyle x=b\) соответственно. Тогда площадь \(\textbf{R}\) равна 9b_a[f(x)−g(x)]dx. \nonumber \]
Применим эту теорему в следующем примере.
Пример \(\PageIndex{1}\): нахождение площади области между двумя кривыми I
Если \(\textbf{R}\) — это область, ограниченная сверху графиком функции \(\displaystyle f(x)=x+4\) и ниже по графику функции \(\displaystyle g(x)=3−\dfrac{x}{2}\) на интервале \(\displaystyle [1,4 ]\), найдите площадь области \(\textbf{R}\).
Раствор
92\).Упражнение \(\PageIndex{1}\)
Если \(\textbf{R}\) область, ограниченная графиками функций \(\displaystyle f(x)=\dfrac{x}{2 }+5\) и \(\displaystyle g(x)=x+\dfrac{1}{2}\) на интервале \(\displaystyle [1,5]\), найти площадь области \(\textbf {Р}\).
- Подсказка
Нарисуйте графики функций, чтобы определить, график какой функции образует верхнюю границу, а график нижней границы, затем выполните процесс, описанный в примере.
- Ответить
\(\displaystyle 12\) единиц 2
В примере \(\PageIndex{1}\) мы определили интересующий интервал как часть условия задачи. Однако довольно часто мы хотим определить интересующий нас интервал на основе того, где пересекаются графики двух функций. Это показано в следующем примере.
Пример \(\PageIndex{2}\): нахождение площади области между двумя кривыми II 92\) и ниже по графику функции \(\displaystyle g(x)=6−x\) найти площадь области \(\textbf{R}\).
Решение
Область изображена на следующем рисунке.
Рисунок \(\PageIndex{4}\): на этом графике показана область ниже графика \(\displaystyle f(x)\) и выше графика \(\displaystyle g(x).\)Сначала мы необходимо вычислить, где пересекаются графики функций. Установив \(\displaystyle f(x)=g(x),\), получим
\[ \begin{align*} \displaystyle f(x) =g(x) \\[4pt] 94\), найдите площадь области \(\textbf{R}\).
- Подсказка
Используйте процесс из примера \(\PageIndex{2}\).
- Ответить
\(\displaystyle \dfrac{3}{10}\) ед. 2
Площади составных областей
До сих пор нам требовалось \(\displaystyle f(x)≥g(x)\) на всем интересующем интервале, но что, если мы хотим посмотреть на области, ограниченные графами пересекающиеся друг с другом функции? В этом случае мы модифицируем процесс, который мы только что разработали, используя функцию абсолютного значения. 9b_a|f(x)−g(x)|dx. \nonumber \]
На практике применение этой теоремы требует, чтобы мы разбивали интервал \(\displaystyle [a,b]\) и вычисляли несколько интегралов, в зависимости от того, какое из значений функции больше на данной части интервал. Изучим этот процесс на следующем примере.
Пример \(\PageIndex{3}\): нахождение площади области, ограниченной пересекающимися функциями
Если \(\textbf{R}\) — это область между графиками функций \(\displaystyle f (x)=\sin x \) и \(\displaystyle g(x)=\cos x\) на интервале \(\displaystyle [0,π]\), найти площадь области \(\textbf{R }\).
Решение
Область изображена на следующем рисунке.
Рисунок \(\PageIndex{5}\): Область между двумя кривыми может быть разбита на две подобласти.Графики функций пересекаются в точке \(\displaystyle x=π/4\). Для \(\displaystyle x∈[0,π/4], \cos x≥\sin x,\) поэтому
\(\displaystyle |f(x)−g(x)|=|\sin x −\cos x|=\cos x−\sin x .\)
С другой стороны, для \(\displaystyle x∈[π/4,π], \sin x ≥\cos x,\), поэтому
9π_{π/4} \\[4pt] =(\sqrt{2}−1)+(1+\sqrt{2})=2\sqrt{2}. \end{align*}\]Площадь области составляет \(\displaystyle 2\sqrt{2}\) единиц 2 .
Упражнение \(\PageIndex{3}\)
Если \(\textbf{R}\) область между графиками функций \(\displaystyle f(x)=\sin x \) и \( \displaystyle g(x)=\cos x\) на интервале \(\displaystyle [π/2,2π]\), найти площадь области \(\textbf{R}\).
- Подсказка
Две кривые пересекаются в точке \(\displaystyle x=(5π)/4.
\)
- Ответить
\(\displaystyle 2+2\sqrt{2}\) единиц 2
Пример \(\PageIndex{4}\): определение площади сложной области
Рассмотрим область, изображенную на рисунке \(\PageIndex{6}\). Найдите площадь \(\textbf{R}\).
Рисунок \(\PageIndex{6}\): Для вычисления площади этой области требуются два интеграла. 92_1=\dfrac{1}{2}.\)Складывая эти области вместе, мы получаем
\(\displaystyle A=A_1+A_2=\dfrac{1}{3}+\dfrac{1}{2 }=\dfrac{5}{6}.\)
Площадь области составляет \(\displaystyle 5/6\) единиц 2 .
Упражнение \(\PageIndex{4}\)
Рассмотрим область, изображенную на следующем рисунке. Найдите площадь \(\textbf{R}\).
- Подсказка
Две кривые пересекаются в точке х=1
- Ответить
\(\displaystyle \dfrac{5}{3}\) единиц 2
Области, определенные относительно y
В примере \(\PageIndex{4}\) нам пришлось вычислить два отдельных интеграла для вычисления площади области. 2\) как функции \(\displaystyle y \).Однако, судя по графику, нас интересует положительный квадратный корень.) Точно так же правый график представлен функцией \(\displaystyle y=g(x)=2−x\), но также легко может быть представлен функцией \(\displaystyle x=u(y)=2−y\). Когда графики представлены как функции \(\displaystyle y\), мы видим, что область ограничена слева графиком одной функции и справа графиком другой функции. Следовательно, если мы интегрируем по \(\displaystyle y\), нам нужно вычислить только один интеграл. Разработаем формулу для этого типа интеграции.
Пусть \(\displaystyle u(y)\) и \(\displaystyle v(y)\) — непрерывные функции на интервале \(\displaystyle [c,d]\) такие, что \(\displaystyle u(y) )≥v(y)\) для всех \(\displaystyle y∈[c,d]\). Мы хотим найти площадь между графиками функций, как показано на рисунке \(\PageIndex{7}\).
Рисунок \(\PageIndex{7}\): Мы можем найти площадь между графиками двух функций, \(\displaystyle u(y)\) и \(\displaystyle v(y)\). На этот раз мы собираемся разбить интервал на 9d_c[u(y)−v(y)]dy. \end{align*}\]
Эти результаты резюмируются в следующей теореме.
Нахождение площади между двумя кривыми, интегрирование по оси Y
Пусть \(\displaystyle u(y)\) и \(\displaystyle v(y)\) — непрерывные функции, такие что \(\displaystyle u( y)≥v(y) \) для всех \(\displaystyle y∈[c,d]\). Пусть \(\textbf{R}\) обозначает область, ограниченную справа графиком \(\displaystyle u(y)\), слева графиком \(\displaystyle v(y)\ ), а сверху и снизу строками \(\displaystyle y=d\) и \(\displaystyle y=c\) соответственно. Тогда площадь \(\textbf{R}\) равна 9d_c[u(y)−v(y)]dy. \nonumber \]
Пример \(\PageIndex{5}\): интегрирование по y
Вернемся к примеру \(\PageIndex{4}\), только на этот раз интегрируем по \(\displaystyle y \). Пусть \(\textbf{R}\) будет регионом, изображенным на рисунке \(\PageIndex{9}\). Найдите площадь \(\textbf{R}\) путем интегрирования по \(\displaystyle y\).
Рисунок \(\PageIndex{9}\): Площадь области \(\textbf{R}\) можно вычислить с помощью одного интеграла, только если кривые рассматриваются как функции \(\displaystyle y\).
Решение
Сначала мы должны представить графики как функции \(\displaystyle y\). Как мы видели в начале этого раздела, кривая слева может быть представлена функцией \(\displaystyle x=v(y)=\sqrt{y}\), а кривая справа может быть представлена функцией функция \(\displaystyle x=u(y)=2−y\).
Теперь нам нужно определить пределы интегрирования. Область ограничена снизу осью x, поэтому нижний предел интегрирования равен \(\displaystyle y=0\). Верхний предел интегрирования определяется точкой пересечения двух графиков, которая является точкой \(\displaystyle (1,1)\), поэтому верхний предел интегрирования равен \(\displaystyle y=1\). Таким образом, мы имеем \(\displaystyle [c,d]=[0,1]\). 91_0\\[4pt] =\dfrac{5}{6}. \end{align*}\]
Площадь области составляет \(\displaystyle 5/6\) единиц 2 .
Упражнение \(\PageIndex{5}\)
Давайте вернемся к контрольной точке, связанной с примером \(\PageIndex{4}\), только на этот раз давайте проинтегрируем относительно \(\displaystyle y\). Пусть \(\textbf{R}\) будет областью, изображенной на следующем рисунке. Найдите площадь \(\textbf{R}\) путем интегрирования по \(\displaystyle y\).
- Подсказка
Повторите процесс из предыдущего примера.
- Ответить
\(\displaystyle \dfrac{5}{3}\) единиц 2
Ключевые понятия
- Определенные интегралы можно использовать не только для нахождения площади под кривой, но и для нахождения площади между двумя кривыми.
- Чтобы найти площадь между двумя кривыми, заданными функциями, проинтегрируйте разность функций.
- Если графики функций пересекаются или область является сложной, используйте абсолютное значение разности функций. В этом случае может потребоваться вычислить два или более интеграла и сложить результаты, чтобы найти площадь области.
- Иногда проще интегрировать по y, чтобы найти площадь.
Принципы одни и те же независимо от того, какая переменная используется в качестве переменной интегрирования.
Ключевые уравнения
- 9d_c[u(y)−v(y)]dy\)
- Наверх
- Была ли эта статья полезной?
- Тип изделия
- Раздел или страница
- Автор
- ОпенСтакс
- Лицензия
- CC BY-NC-SA
- Версия лицензии
- 4,0
- Программа OER или Publisher
- ОпенСтакс
- Показать страницу TOC
- нет
- Метки
- ОБЛАСТЬ МЕЖДУ ДВУМЯ КРИВЫМИ
- Площадь между двумя кривыми, интегрированная по оси x
- Площадь между двумя кривыми, интегрированная по оси Y
- Площади составных регионов
- автор @ Эдвин «Джед» Герман
- автор@Гилберт Странг
- источник@https://openstax.
org/details/books/calculus-volume-1
Эта страница под названием 6.1: Области между кривыми распространяется в соответствии с лицензией CC BY-NC-SA 4.0 и была создана, изменена и/или курирована Гилбертом Стрэнгом и Эдвином «Джедом» Херманом (OpenStax) через исходный контент, который был отредактирован. к стилю и стандартам платформы LibreTexts; подробная история редактирования доступна по запросу.
Площадь области, ограниченной кривыми
Площадь в прямоугольных координатах
Напомним, что площадь под графиком непрерывной функции f ( х ) между вертикальными линиями х = 9b {f\left( x \right)dx} = F\left( b \right) — F\left( a \right),\]
, где F ( x ) — любая производная от f ( x ).
Рисунок 1.Мы можем расширить понятие площади под кривой и рассмотреть площадь области между двумя кривыми.
Если \(f\left( x \right)\) и \(g\left( x \right)\) две непрерывные функции и \(f\left( x \right) \ge g\left( x \ справа)\) на отрезке \(\left[ {a,b} \right],\) то площадь между кривыми \(y = f\left( x \right)\) и \(y = g \left( x \right)\) в этом интервале равно 9б {\ влево [ {е \ влево ( х \ вправо) — г \ влево ( х \ вправо)} \ вправо] dx} = F \ влево ( б \ вправо) — G \ влево ( б \ вправо) — F \ влево( а \вправо) + G\влево( а \вправо),\]
где \(F\left( x \right)\) и \(G\left( x \right)\) — первообразные функций \(f\left( x \right)\) и \(g\left ( x \right),\) соответственно.
Обратите внимание, что эта площадь всегда будет неотрицательной, как \(f\left( x \right) — g\left( x \right) \ge 0\) для всех \(x \in \left[ {a,b } \справа].\)
При наличии точек пересечения следует разбить интервал на несколько подинтервалов и определить, какая кривая больше на каждом подинтервале. Затем мы можем определить площадь каждой области, интегрируя разность большей и меньшей функций. 9\prime\left( t \right),\) \(y\left( t \right)\) здесь предполагаются непрерывными на отрезке \(\left[ {a,b} \right].\) Кроме того что функция \(x\left( t \right),\) должна быть монотонной на этом интервале.
Рис. 5.Если \(x = x\left( t \right),\) \(y = y\left( t \right),\) \(0 \le t \le T\) параметрические уравнения гладкая кусочно-замкнутая кривая \(С\), проходимая против часовой стрелки и ограничивающая область слева (рис. \(5\)), то площадь области определяется следующими интегралами: 92}\) на отрезке \(\left[{1,b}\right]\) равно \(1?\)
Пример 3
Найдите координату точки \(a\), которая разбивает площадь под корневой функцией \(y = \sqrt{x}\) на отрезке \(\left[{0,4}\right]\) на равные части.
Пример 4
Область ограничена вертикальными линиями \(x = t\), \(x = t + \frac{\pi }{2}\), осью \(x-\) и кривая \(y = a + \cos x,\), где \(a \ge 1.\) Определите значение \(t\), при котором область имеет наибольшую площадь. 9{t + \frac{\pi} {2}} = a\left( {t + \frac{\pi} {2}} \right) + \sin \left( {t + \frac{\pi} }{ 2}} \right) — at — \sin t = \cancel{at} + \frac{{a\pi}}{2} + \sin \left( {t + \frac{\pi }{2}} \right) — \cancel{at} — \sin t = \frac{{a\pi}}{2} + \sin \left( {t + \frac{\pi }{2}} \right) — \ sin т.\]
Использование разности синусов тождества
\[\sin\alpha — \sin\beta = 2\cos\frac{{\alpha + \beta}}{2}\sin\frac{{\alpha — \beta}}{2},\]
получаем
\[A = \frac{{a\pi}}{2} + 2\cos \frac{{t + \frac{\pi} {2} + t}}{2}\sin \frac{{\ cancel{t} + \frac{\pi }{2} — \cancel{t}}}{2} = \frac{{a\pi}}{2} + 2\cos \left( {t + \frac {\pi} {4}} \right)\sin \frac{\pi}}{4} = \frac{{a\pi}}{2} + 2\cos \left( {t + \frac{\pi }{4}} \right) \cdot \frac{{\sqrt 2 }}{2} = \frac{{a\pi}}{2} + \sqrt 2 \cos \left( {t + \frac{ \pi }{4}} \справа). \]
Область имеет наибольшую площадь, когда \(\cos \left( {t + \frac{\pi }{4}} \right) = -1.\)
Решая это уравнение, находим
\[\cos \left( {t + \frac{\pi }{4}} \right) = — 1,\;\; \Rightarrow t + \frac{\pi }{4} = \pi + 2\pi n,\;\; \Rightarrow t = \frac{{3\pi }}{4} + 2\pi n,\,n \in \mathbb{Z}.\]
Дополнительные проблемы см. на стр. 2.
9.1 Площадь между кривыми
Мы видели, как с помощью интегрирования можно найти область между кривая и ось $x$. С очень небольшим изменением мы можем найти некоторые области между кривыми; действительно, площадь между кривой и осью $x$ может интерпретируется как площадь между кривой и второй «кривой». с уравнением $y=0$. В самых простых случаях идея довольно проста чтобы понять. 92\кр &={16\более4}-{64\более3}+28-4-({1\более4}-{8\более3}+7-2)\кр &=23-{56\over3}-{1\over4}={49\over12}.\cr }$$ $\квадрат$
Стоит рассмотреть эту проблему немного подробнее. Мы видели один из способов
посмотрите на него, рассматривая желаемую область как большую область минус маленькую
площади, что естественным образом приводит к различию между двумя
интегралы. Но поучительно рассмотреть, как мы могли бы найти
желаемая область напрямую. Мы можем аппроксимировать площадь, разделив
площадь на тонкие срезы и аппроксимируя площадь каждого среза на
прямоугольник, как показано на
цифра 92 = 1$. Обратите внимание: $t$ фиксировано,
плоскость $x$-$y$.
Пример 9.1.15 Докажите, что площадь $R$ равна $t$.
Область между двумя функциями | Superprof
В этой статье мы обсудим, как вычислить площадь между двумя функциями. Мы специально сосредоточимся на том, как вычислить площадь между кривой и прямой линией, а также площадь между двумя кривыми.
Площадь между двумя функциями
Площадь между двумя функциями равна площади функции, расположенной выше, за вычетом площади функции, расположенной ниже. Математически мы можем обозначить эту область так:
Лучшие репетиторы по математике
Поехали
Площадь между кривой и прямой
Теперь давайте разберемся, как вычислить площадь между кривой и прямой на следующих примерах
Пример 1
Найдите площадь пространства, ограниченного параболой и прямой, проходящей через точки A(−1, 0) и B(1, 4).
Решение
Шаг 1 — Найдите уравнение прямой
На этом шаге мы вычислим уравнение прямой, проходящей через две точки A и B. Для этого сначала мы должны вычислить наклон прямой, проходящей через точки A(-1, 0) и В(1, 4). Для расчета наклона мы будем использовать следующую формулу:
Подставим значения точек A и B в приведенную выше формулу:
Теперь подставим этот наклон в уравнение точки пересечения ниже:
Следовательно, уравнение прямой линии имеет вид y = 2x + 2.
Шаг 2. Нарисуйте график
На этом этапе мы нарисуем график функции и линии следующим образом:
Шаг 3. Расчет границ
Точки, в которых линия пересекает параболы, будут границами или пределами функции. Как видно из приведенного выше графика, линия пересекает параболу в точках и . Следовательно, это пределы функции.
Шаг 4. Вычисление определенного интеграла
Чтобы вычислить определенный интеграл, сначала используйте информацию из предыдущих шагов, чтобы записать функции в следующей форме:
правило суммы/разности определенных интегралов, подобное этому:
Чтобы вычислить определенный интеграл, мы сначала найдем первообразную функции. Первообразная функции равна
Теперь воспользуемся фундаментальной теоремой исчисления:
Подставим 2 и 0 в первообразную функции, например: линии y = x, при x = 0 и x = 2.
Решение
Шаг 1. Нарисуйте график
В этом примере нам уже дано уравнение линии y = x. Следовательно, нам не нужно его вычислять. Мы просто начнем с построения графика функций и .
На приведенном выше графике видно, что от x = 0 до x = 1 прямая линия находится выше параболы, а от x = 1 до x = 2 прямая линия находится ниже параболы. Следовательно, мы будем вычислять площади, используя эти пределы выше и ниже параболы отдельно.
Шаг 2. Вычисление границ
В этом примере уже заданы границы или пределы графика, которые равны 0 и 1.
Шаг 3. Вычисление определенного интеграла
Чтобы вычислить определенный интеграл, сначала используйте информацию из предыдущих шагов, чтобы записать функции в следующем виде:
Площадь, где прямая проходит над параболой:
Найдите первообразную функции . Первопроизводная функции равна
Используйте основную теорему исчисления:
Подставьте 1 и 0 в первообразную функции следующим образом:
93}{3} —
В следующем разделе мы увидим, как вычислить площадь между двумя кривыми, зная их уравнения.
Площадь между двумя кривыми
Следующие примеры помогут вам понять, как вычислить площадь между двумя кривыми.
Пример 1
Найдите площадь, ограниченную графиками функций и
Решение
Шаг 1 — Нарисуйте график
Шаг 2 — Найдите границы
Чтобы определить, где графики двух кривых пересекаются друг друга, мы приравниваем уравнения двух кривых:
или
Следовательно, границы — и 0,
Шаг 3. — Вычислить определенный интеграл
Чтобы вычислить определенный интеграл, сначала используйте информацию из предыдущих шагов, чтобы записать функции в следующем виде:
Найдите первообразную функции. Первопроизводная функции равна
. Используйте основную теорему исчисления:
. Подставив 0 в первообразную функции, получим следующее значение площади:
Пример 2
Найдите площадь между двумя кривые и.
Решение
Выполните следующие действия, чтобы рассчитать площадь.
Шаг 1. Нарисуйте график
График двух кривых приведен ниже:
Шаг 2. Найдите границы
Вычислите границы функции по уравнению:
или
Следовательно, границы функции равны 5 и 902.
Шаг 3. Вычисление определенного интеграла
Чтобы вычислить определенный интеграл, сначала используйте информацию из предыдущих шагов, чтобы записать функции в следующем виде:Найдите первообразную функции. Первопроизводная функции равна
Используйте основную теорему исчисления:
Подставьте 2 и 0 в первообразную функции:
9002 Исчисление I -0 Онлайн-заметки Пола
Главная / Исчисление I / Приложения интегралов / Площадь между кривыми
Показать мобильное уведомление Показать все примечания Скрыть все примечания
Уведомление для мобильных устройств
Похоже, вы используете устройство с «узкой» шириной экрана ( т. е. вы наверное на мобильном телефоне). Из-за характера математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в ландшафтном режиме, многие уравнения будут отображаться сбоку вашего устройства (должна быть возможность прокрутки, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.
Раздел 6-2: Площадь между кривыми
В этом разделе мы рассмотрим нахождение площади между двумя кривыми. На самом деле есть два случая, которые мы собираемся рассмотреть.
В первом случае мы хотим определить площадь между \(y = f\left( x \right)\) и \(y = g\left( x \right)\) на интервале \(\left[ {яркий]\). Мы также собираемся предположить, что \(f\left( x \right) \ge g\left( x \right)\). Взгляните на следующий эскиз, чтобы получить представление о том, на что мы изначально собираемся смотреть.
В разделе «Формулы площади и объема» главы «Дополнительно» мы вывели следующую формулу для площади в этом случае. {{\,b}}{{f\left(x\right) — g\left(x\right)\,dx}} \метка{уравнение:уравнение1}\конец{уравнение}\] 9{{\,d}}{{f\left(y\right) — g\left(y\right)\,dy}}\label{eq:eq2}\end{equation}\]
Теперь \(\eqref{eq:eq1}\) и \(\eqref{eq:eq2}\) вполне пригодные формулы, однако иногда легко забыть, что они всегда требуют, чтобы первая функция была больше из двух функций. Таким образом, вместо этих формул мы будем использовать следующие «словесные» формулы, чтобы убедиться, что мы помним, что площадь всегда представляет собой «большую» функцию минус «меньшую» функцию. 9{{\,d}}{{\left(\begin{array}{c}{\mbox{right}}\\ {\mbox{function}}\end{array} \right) — \left(\begin {массив} {c} {\ mbox {left}} \\ {\ mbox {function}} \ end {array} \ right) \, dy}}, \ hspace {0,5 дюйма} c \ le y \ le d \ метка{уравнение:уравнение4}\конец{уравнение}\]
Использование этих формул всегда заставит нас думать о том, что происходит с каждой задачей, и убедиться, что мы получили правильный порядок функций, когда переходим к использованию формулы. 2}\) и \(y = \sqrt x \).
Показать решение
Прежде всего, что мы подразумеваем под «окруженной областью». Это означает, что интересующая нас область должна иметь одну из двух кривых на каждой границе области. Итак, вот график двух функций с заштрихованной областью.
Обратите внимание, что мы не берем какую-либо часть области справа от крайней правой точки пересечения этих двух графиков. В этой области нет границы с правой стороны, поэтому эта область не является частью замкнутой области. Помните, что одна из заданных функций должна находиться на границе замкнутой области. 92}\) является верхней функцией, и они подходят для подавляющего большинства \(x\). Однако в данном случае это младшая из двух функций.
Пределы интегрирования для этого будут точками пересечения двух кривых. В этом случае довольно легко увидеть, что они пересекаются в точках \(x = 0\) и \(x = 1\), так что это пределы интегрирования.
Итак, интеграл, который нам нужно вычислить, чтобы найти площадь, равен
. 1\\ & = \frac{1}{3}\end{align*}\]
Прежде чем перейти к следующему примеру, следует отметить пару важных моментов.
Во-первых, почти во всех этих задачах требуется граф. Часто граничную область, которая дает пределы интегрирования, трудно определить без графика.
Кроме того, без графика часто бывает трудно определить, какая из функций является верхней, а какая — нижней. Это особенно верно в случаях, подобных последнему примеру, где ответ на этот вопрос на самом деле зависел от диапазона \(x\), который мы использовали.
Наконец, в отличие от площади под кривой, которую мы рассматривали в предыдущей главе, площадь между двумя кривыми всегда будет положительной. Если мы получим отрицательное число или ноль, мы можем быть уверены, что где-то допустили ошибку, и нам нужно будет вернуться и найти ее.
Также обратите внимание, что иногда вместо слова «область, заключенная в», мы будем говорить «область, ограниченная». Они означают одно и то же.
Давайте рассмотрим еще несколько примеров. 2}}}\), \(y = x + 1\), \(x = 2\) и ось \(y\).
Показать решение
В этом случае две последние части информации, \(x = 2\) и ось \(y\), говорят нам о правой и левой границах области. Также напомним, что ось \(y\) задается линией \(x = 0\). Вот график с заштрихованной областью.
Здесь, в отличие от первого примера, две кривые не пересекаются. Вместо этого мы полагаемся на две вертикальные линии, чтобы ограничить левую и правую стороны области, как мы отметили выше
92} + 10\) и \(у = 4х + 16\).Показать решение
В этом случае точки пересечения (которые нам в конечном итоге потребуются) будет нелегко определить на графике, поэтому давайте продолжим и получим их сейчас. Обратите внимание, что для большинства этих задач вы не сможете точно идентифицировать точки пересечения на графике, поэтому вам нужно уметь определять их вручную. В этом случае мы можем получить точки пересечения, приравняв два уравнения. 92} — 4x — 6 & = 0\\ 2\left( {x + 1} \right)\left( {x — 3} \right) & = 0\end{align*}\]
Получается, что две кривые пересекаются в точках \(x = — 1\) и \(x = 3\). Если они нам нужны, мы можем получить значения \(y\), соответствующие каждому из них, подставив значения обратно в любое из уравнений. Мы предоставим вам проверить, что координаты двух точек пересечения на графике равны \(\left( { — 1,12} \right)\) и \(\left( {3,28} \right )\). 92} + 10\), \(у = 4х + 16\), \(х = — 2\) и \(х = 5\).
Показать решение
Итак, функции, используемые в этой задаче, идентичны функциям из первой задачи. Разница в том, что мы расширили ограниченную область от точек пересечения. Поскольку это те же самые функции, которые мы использовали в предыдущем примере, мы не будем снова искать точки пересечения.
Вот график этого региона.
Итак, у нас есть небольшая проблема. Наша формула требует, чтобы одна функция всегда была верхней функцией, а другая функция всегда была нижней функцией, чего здесь явно нет. Однако на самом деле это не проблема, как может показаться на первый взгляд. Есть три области, в которых одна функция всегда является верхней функцией, а другая всегда нижней функцией. Итак, все, что нам нужно сделать, это найти площадь каждой из трех областей, что мы можем сделать, а затем сложить их все. 95\\ & = \frac{{14}}{3} + \frac{{64}}{3} + \frac{{64}}{3}\\ & = \frac{{142}}{3 }\конец{выравнивание*}\]
Пример 5. Определите площадь области, заключенной в \(y = \sin x\), \(y = \cos x\), \(x = \frac{\pi }{2}\), и \( у\)-ось.
Показать решение
Сначала создадим график региона.
Итак, у нас есть еще одна ситуация, когда нам нужно будет сделать два интеграла, чтобы получить площадь. Точка пересечения будет там, где 92} — 3\) и \(у = х — 1\).
Показать решение
Не позволяйте первому уравнению вас расстроить. 2} — 2y — 8\\ 0 & = \left( {y — 4} \right)\left( {y + 2} \right)\end{align*}\]
Итак, похоже, что две кривые будут пересекаться в точках \(y = — 2\) и \(y = 4\) или, если нам нужны полные координаты, они будут: \(\left( { — 1, — 2} \справа)\) и \(\слева({5,4} \справа)\).
Вот эскиз двух кривых.
Теперь у нас будут серьезные проблемы, если мы не будем осторожны. До сих пор мы использовали верхнюю функцию и нижнюю функцию. Для этого обратите внимание на то, что на самом деле есть две части области, которые будут иметь разные нижние функции. В диапазоне \(\left[ { — 3, — 1} \right]\) парабола фактически является как верхней, так и нижней функцией.
Чтобы использовать формулу, которую мы использовали до сих пор, нам нужно решить параболу для \(y\). Это дает,
\[y = \pm \sqrt {2x + 6} \]
, где «+» обозначает верхнюю часть параболы, а «-» — нижнюю часть.
Вот набросок полной области с заштрихованными областями, которые нам понадобятся, если мы собираемся использовать первую формулу.
Тогда интегралы площади будут равны 9{{\,d}}{{\left(\begin{array}{c}{\mbox{right}}\\ {\mbox{function}}\end{array} \right) — \left(\begin {массив} {c} {\ mbox {left}} \\ {\ mbox {function}} \ end {array} \ right) \, dy}}, \ hspace {0,5 дюйма} c \ le y \ le d \ ]
и в нашем случае у нас есть одна функция, которая всегда слева, а другая всегда справа. Так что в данном случае это определенно выход. Обратите внимание, что нам нужно будет переписать уравнение прямой, поскольку оно должно быть в форме \(x = f\left( y \right)\), но это достаточно легко сделать. Вот график для использования этой формулы. 94\\ & = 18\конец{выравнивание*}\]
Это то же самое, что мы получили, используя первую формулу, и это было определенно проще, чем первый метод.
Итак, в этом последнем примере мы видели случай, когда мы могли использовать любую формулу для нахождения площади. Однако второе было определенно легче.
Студенты часто приходят на занятия по математическому анализу с идеей, что единственный простой способ работать с функциями — использовать их в виде \(y = f\left( x \right)\).