Калькулятор периметра – ,

Периметра прямоугольника, онлайн калькулятор

Наш онлайн калькулятор вычисляет периметр прямоугольника через длины двух его смежных сторон, a и b. Для того чтобы найти периметр прямоугольника введите длины его сторон и нажмите кнопку «Вычислить», калькулятор покажет пошаговое решение и ответ!

Введите данные для вычисления периметра  

Формула :

Решили сегодня: раз, всего раз
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Периметра квадрата, онлайн калькулятор

Наш онлайн калькулятор позволяет вычислить периметр квадрата двумя способами: через длину его стороны или через длину диагонали. Для того чтобы найти периметр квадрата — выберите подходящий способ, введите длину стороны или диагонали и нажмите кнопку «Вычислить», калькулятор покажет ответ и подробное решение!

Введите данные для расчета периметра  

Выберите способ расчета периметра:

через сторону квадрата через диагональ квадрата

Формула через сторону:

a =

Решили сегодня: раз, всего раз
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Периметра ромба, онлайн калькулятор

Наш онлайн калькулятор позволяет вычислить периметр ромба через длины его сторон. Периметр равен сумме длин сторон, а так все стороны ромба равны, то он просто равен длине его стороны умноженной на четыре. Для того чтобы найти периметр ромба введите длину стороны и нажмите кнопку «Вычислить», калькулятор выдаст ответ и подробное решение!

Введите данные для расчета периметра  

Формула :

Решили сегодня: раз, всего раз
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

онлайн калькулятор, формулы, примеры решений

Пятиугольник — это многоугольник с пятью углами. Если углы и стороны такого многоугольника равны, то он считается правильным и называется пентагон. Это оригинальная фигура, которую большинство людей встречает только в учебнике по геометрии.

Геометрия пятиугольника

Пятиугольник — геометрическая фигура, ограниченная пятью отрезками. Произвольный пятиугольник может иметь разные стороны, разные углы и строиться с самопересечениями, однако такая форма многоугольника крайне редко встречается в реальности. Самой распространенной формой пятиугольника считается пентагон — выпуклый многоугольник с равными сторонами и углами. Геометрическая фигура считается выпуклой, если все точки фигуры лежат с одной стороны от любой прямой, проведенной через две соседние вершины.

В отличие от треугольника, изучение которого не прерывалось на протяжении веков, все тайны пятиугольника были открыты еще в Древней Греции. В третьем веке до нашей эры Евклид описал метод построения пентагона с помощью линейки и циркуля. Пифагор изучал диагонали пентагона, которые образуют отдельную фигуру — пентаграмму, идеальную по мнению античного ученого, так как отношение сторон пентаграммы и пентагона демонстрирует золотое сечение.

Пятиугольник в реальности

В человеческой повседневности пятиугольник встречается редко, так как пентагоном невозможно замостить плоскость без пробелов, а пентагональные призмы неудобно хранить. Форма пентагона используется обычно в архитектуре, и наиболее известным объектом, имеющим форму правильного пятиугольника, является здание министерства обороны США.

Додекаэдр ­– трехмерное воплощение пятиугольника, является правильным многогранником, каждая сторона которого — пентагон. В древности были распространены римские додекаэдры — бронзовые объекты, составленные из 12 пятиугольников, однако истинное назначение предметов до сих пор не выяснено. Сегодня наиболее очевидным реальным додекаэдром является игральная кость, которая выступает в качестве генератора случайных чисел для настольных ролевых игр.

В природе форма пятиугольника не встречается, однако некоторые организмы, например иглокожие, обладают пентасимметрией. Кроме того, в природе не существует кристаллов, грани которых были бы пятиугольными.

Периметр пентагона

Периметр любой геометрической фигуры — это сумма длин всех сторон. Пентагон имеет пять равных сторон, поэтому его периметр находится по простой формуле:

P = 5 a,

где a – длина одной стороны.

Сторона пятиугольника и радиусы вписанной r и описанной R окружностей приблизительно соотносятся как:

  • a = 1,1756 R
  • a = 1,4131 r

Таким образом, алгоритм нашего калькулятора позволяет рассчитать периметр пентагона, зная только один из трех параметров на выбор:

  • сторона;
  • радиус описанной окружности;
  • радиус вписанной окружности.

Рассмотрим пару примеров на определение периметра правильного пятиугольника.

Примеры из жизни

Пентагон

Пентагон — всемирно известное здание, в котором располагается штаб министерства обороны США. Объект получил название благодаря своей форме, так как здание геометрически является правильным пятиугольником. Давайте посчитаем периметр Пентагона. Согласно данным из Википедии, каждая сторона здания равна 281,05 м. Зная сторону, мы можем легко вычислить периметр штаба:

P = 1 405,25

Таким образом, суммарная длина сторон Пентагона составляет практически полтора километра.

Школьная задача

Допустим, вам нужно определить периметр правильного пятиугольника, зная, что радиус описанной вокруг него окружности равен 5 см. Вы можете последовательно использовать приведенные выше соотношения для вычисления стороны пентагона, а затем и его периметра. Давайте сэкономим время и просто введем значение в форму калькулятора «Радиус описанной окружности R».

P = 29,38

Помимо периметра, калькулятор определил значения стороны пентагона, а также радиус вписанной в него окружности.

Заключение

Правильный пятиугольник — достаточно редкая в человеческой повседневности и природе фигура. Впрочем, вычисление параметров пентагона может понадобиться вам при решении школьных задач или рабочих вопросов. Используйте для этих целей наш онлайн-калькулятор, который определяет периметр пятиугольника, зная только один параметр фигуры.

bbf.ru

Матпрофи двойной интеграл – ?

Двойной интеграл, формулы и примеры

Определение двойного интеграла

Пусть в замкнутой области , принадлежащей плоскости , задана непрерывная функция . Разобьем эту область на элементарных областей , площади которых будем обозначать как , а наибольшее расстояние между точками соответствующей области – через (рис. 1).

В каждой элементарной области выберем произвольную точку . Значение функции в этой точке умножим на площадь соответствующей элементарной области и все такие произведения просуммируем:

   

Полученная сумма называется интегральной суммой функции в области .

Найдем предел указанной интегральной суммы при таким образом, чтобы . Если такой предел существует и не зависит ни от способа разбиения области на элементарные области, ни от способа выбора в них точек , то он называется двойным интегралом от функции по области и обозначается . Итак, двойной интеграл определяется равенством

   

Область называется областью интегрирования, и – переменные интегрирования, функция – подынтегральной функцией, которая является интегрируемой в области ; – элементом площади.

Свойства двойного интеграла

1. Константу можно выносить за знак двойного интеграла:

   

где

2. Двойной интеграл суммы/разности двух функций равен сумме/разности интегралов от каждой из них:

   

3. Если область интегрирования можно разбить на две области и , например, как это показано на рисунке 2, то

   

4. Если в области интегрирования функция , то и двойной интеграл .

5. Если функции и в области удовлетворяют неравенству , то справедливо и неравенство

   

6. , где – это площадь области .

7. Если функция непрерывна в замкнутой области , площадь которой равна , то

   

где и – наименьшее и наибольшее значения подынтегральной функции в области соответственно.

8. Если функция непрерывна в замкнутой области , площадь которой равна , то в этой области существует такая точка , что имеет место равенство:

   

Величина называется средним значением функции в област .

Пусть область интегрирования – это прямоугольник со сторонами, параллельными координатным осям и которые определяются уравнениями , ; , (рис. 3). В этом случае двойной интеграл вычисляется по одной из формул:

   

или

   

Интегралы, стоящие в правых частях этих формул, называются повторными или двукратными. В первой формуле интеграл называется внутренним. Он вычисляется в предположении, что переменная сохраняет на отрезке интегрирования постоянное фиксированное значение (то есть является константой). При таком предположении подынтегральная функция – функция одной переменной . В результате вычисления этого интеграла получаем функцию переменной .

После того, как эта функция определена, нужно выполнить внешнее интегрирование – проинтегрировать полученную функцию по переменной . В результате второго интегрирования получаем уже число.

Примеры решения задач

ru.solverbook.com

Как вычислить двойной интеграл

Как вычислить двойной интеграл? Примеры решений

Прозвучал удар гонга, который открывает второй раунд в бою с двойными интегралами. Если вы недавно надели перчатки или вообще боксируете с грушей, то, пожалуйста, начните с первого раунда Двойные интегралы для чайников. Настоятельно рекомендую разобраться со всеми примерами вводного урока без халтуры, это очень важно. К тому же, добрый дядя Саша нарисовал много картинок, которые можно распечатать и наклеить у себя в туалете. Помните, что Коперник свои блестящие открытия в астрономии делал именно там.

Однако задорное получилось вступление…. Задумался вот… почему? Да потому что мне хорошо. А отчего хорошо, поясню в конце статьи.

Вспоминаем общую запись двойного интеграла:

В первой статье Двойные интегралы для чайников я очень подробно рассмотрел понятие двойного интеграла, алгоритм его решения, важнейшие задачи на обход области интегрирования. Также были прорешаны простейшие двойные интегралы в примерах на нахождение площади плоской фигуры.

Снова посмотрим на общую запись двойного интеграла и заметим, что в нём притаилась функция двух переменных . А когда речь заходит о функции двух переменных, то это часто попахивает сероводородом частными производными второго порядка. Поэтому для освоения примеров вам необходимо уметь более или менее уверенно их находить.

В большинстве практических задач требуется формально вычислить двойной интеграл, но, помимо этого, он обладает отличным геометрическим смыслом – с помощью двойного интеграла помимо площади можно вычислить еще и объём. Геометрический смысл двойного интеграла поясню ниже на конкретных примерах.

Начинаем набивать наш двойной интеграл  разнообразной начинкой:

Пример 1

Вычислить двойной интеграл ,  Изменить порядок интегрирования и вычислить двойной интеграл вторым способом.

Решение: Изобразим область интегрирования  на чертеже:

Напоминаю, что выполнение чертежа – необходимый начальный этап решения. Чертёж крайне важно выполнить правильно и точно, поскольку ошибка в графике незамедлительно запорет всё задание.

Выберем следующий порядок обхода:

Вопросы порядка обхода области интегрирования, я комментировать практически не буду, пожалуйста, смотрите статью Двойные интегралы для чайников.

Таким образом:

Обратите внимание на следующее действие: в данном случае можно вынести «икс» из внутреннего интеграла во внешний интеграл. Почему? Во внутреннем интеграле  интегрирование проводится по «игрек», следовательно, «икс» считается константой. А любую константу можно вынести за знак интеграла, что благополучно и сделано.

С интегралами настоятельно рекомендую разбираться по пунктам:

1) Используя формулу Ньютона-Лейбница, найдём внутренний интеграл:

Вместо «игрека» подставляем функции!

2) Результат, полученный в первом пункте, подставим во внешний интеграл , при этом ни в коем случае не забываем про «икс», который там уже находится:

Готово.

Замечательно, если у вас под рукой есть микрокалькулятор, на котором можно считать обыкновенные дроби, он значительно ускорит заключительные вычисления. В последующих примерах я не буду подробно расписывать приведение дробей к общему знаменателю, а просто запишу ответ.

Выполняем вторую часть задания: изменим порядок обхода области и вычислим двойной интеграл вторым способом.

Перейдём к обратным функциям:

Для наглядности еще раз приведу чертёж, он будет точно таким же, но с другими обозначениями графиков:

Второй способ обхода области:

Таким образом:

Вот здесь уже «икс» является «родным» для внутреннего интеграла, поэтому его нельзя вынести во внешний интеграл.

1) Используя формулу Ньютона-Лейбница, вычислим внутренний интеграл:

Вместо «икса» подставляются функции! Всегда проявляйте повышенное внимание при подстановке пределов интегрирования.

2) Результат, полученный в первом пункте, подставим во внешний интеграл и проведём окончательные вычисления:

Результаты совпали, значит, задание выполнено верно.

Если есть время, постарайтесь всегда проводить проверку, даже если этого не требуется в условии: вычислили интеграл одним способом – затем изменили порядок обхода области и вычислили вторым способом.

Ответ: 

Пример 2

Вычислить двойной интеграл ,  Выполнить проверку: изменить порядок интегрирования и вычислить двойной интеграл вторым способом.

Это пример для самостоятельного решения. Обратите внимание, что в двойном интеграле изначально присутствует константа. А константу можно вынести за знак двойного интеграла, в данном случае: В ходе решения вынесение константы целесообразно проводить в момент перехода к повторным интегралам.

Как видите, свойство линейности справедливо не только для «обычных», но и для кратных интегралов. Интеграл от интеграла недалеко падает.

Самое главное потом при вычислениях вынесенную константу не потерять. А забывают о ней часто.

Примерный образец чистового оформления примера в конце урока.

Двойной интеграл как объем тела

Рассмотрим основной геометрический смысл двойного интеграла . Предполагаем, что функция  существует в каждой точке  плоской области .

Геометрически функция двух переменных  задаёт некоторую поверхность в трехмерном пространстве. Для определенности считаем, что , то есть поверхность располагается над плоскостью .

Тогда двойной интеграл численно равен объёму цилиндрического бруса :

Что такое цилиндрический брус, думаю, всем понятно из чертежа. Плоская фигура  (заштрихована на чертеже) полностью лежит в плоскости  и брус ограничен областью  снизу. Сверху брус как раз ограничен поверхностью , которая представляет собой такую шапку. Образно говоря, плоская область  по своей границе перпендикулярными лучами вырезает из поверхности  эту шапочку.

Дополнительно поясню геометрический смысл на Примере 1. В нём мы рассматривали двойной интеграл , причём область интегрирования имела следующий вид:

Подынтегральная функция  задаёт плоскость в пространстве. Из начала координат перпендикулярно экрану монитора мысленно проведите на себя стрелку оси . В данном примере плоскость  располагается в пространстве над областью , поэтому объем тела получился положительным: . Возможно, не всем до конца понятно, о каком объеме идёт речь: из границы области  направьте на себя лучи. Эти лучи вырежут кусочек из плоскости , которая лежит над областью .

Двойной интеграл может быть и отрицательным, в таких случаях график функции  полностью (или бОльшей частью) лежит под областью . Это тоже объем тела, только со знаком минус, поскольку поверхность полностью (или бОльшей частью) лежит подкоординатной плоскостью .

Прошу прощения, пока не подыскал программы для построения трехмерных чертежей, которая бы меня устраивала, пришлось объяснять на пальцах.

Однако на практике почти всегда встречаются задачи на формальное вычисление двойных интегралов, поэтому мы продолжим совершенствовать технику вычислений:

Пример 3

Вычислить двойной интеграл , 

Решение: Изобразим область интегрирования на чертеже:

После того, как корректно выполнен чертеж и правильно найдена область интегрирования, самое время разобраться с порядком обхода.

Согласно первому способу обхода, область придется разделить на две части, при этом необходимо будет вычислить следующие интегралы:

Энтузиазма, прямо скажем, мало. Проанализируем, а не проще ли использовать второй способ обхода области? Перейдем к обратным функциям, переход здесь элементарен:

Порядок обхода области:

Таким образом:

Ну вот, совсем другое дело. И снова заметьте, что во внутреннем интеграле интегрирование осуществляется по «икс», поэтому константу  можно сразу вынести во внешний интеграл

1) Найдём внутренний интеграл:

Всё-таки подстановка пределов интегрирования, порой, выглядит своеобразно. Сначалавместо «икса» мы подставили верхний предел интегрирования , затем вместо «икса» подставили нижний предел интегрирования . Будьте внимательны при подстановках!

2) Результат предыдущего пункта подставим во внешний интеграл, при этом не забываем про , который там уже находится:

 

Ответ: 

Для тренировки можете попробовать вычислить двойной интеграл менее рациональным способом: . Результаты должны совпасть.

Пример 4

Вычислить двойной интеграл , 

Это пример для самостоятельного решения. Постройте область  и проанализируйте, какой способ обхода области выгоднее использовать. Полное решение и ответ в конце урока.

Усложняем задачу, теперь подынтегральная функция будет представлять собой сумму. Рассмотрим еще два примера, где я остановлюсь на приёме вычисления интеграла, который типичен и эффективен для кратных интегралов:

Пример 5

Вычислить двойной интеграл , 

Решение: Сначала рассмотрим то, чего делать не нужно – в данном случае не следует использовать свойства линейности кратного интеграла и представлять его в виде: Почему? Вычислений заметно прибавится!

Решение, как обычно, начинаем с построения области интегрирования:

Область  незамысловата, даже штриховать не буду. В данном примере, как легко заметить, не имеет особого значения порядок интегрирования, поэтому выберем первый, более привычный вариант обхода области:

Таким образом:

Здесь, в отличие от двух предыдущих примеров, из внутреннего интеграла ничего вынести нельзя, поскольку начинкой является сумма.

С повторными интегралами опять разбираемся по отдельности. Да, кстати, кто хочет посмотреть, как решать повторные интегралы одной строкой, пожалуйста, зайдите на страницу Готовые решения по высшей математике и закачайте архив с примерами решений кратных интегралов.

1) Сначала берём внутренний интеграл:

Хотелось бы остановиться на нескольких существенных моментах. Во-первых, о частном интегрировании. О нём я уже подробно рассказывал в статье Дифференциальные уравнения в полных дифференциалах. Вкратце повторюсь:

Если интегрирование проводится по «игрек», то переменная «икс» считается константой. И наоборот.

Тем не менее, вот нашли вы первообразную  и возникли сомнения, а правильно ли она найдена? Всегда можно выполнить проверку, в данном случае следует найти частную производную по «игрек»: Получена исходная подынтегральная функция, значит, всё в порядке.

Момент второй, подстановка пределов интегрирования. По стандартной формуле Ньютона-Лейбница сначала вместо «игреков» мы подставили , а затем – нижний предел интегрирования (нули). После подстановки должны остаться только «иксы».

И, наконец, может показаться странным результат:  Ведь можно раскрыть скобки и привести подобные слагаемые! В данном случае это сделать несложно, и чайникам, вероятно, лучше так и поступить. Но если будет не вторая, а 3-я или 4-ая степень? На самом деле линейную функцию в степени выгоднее проинтегрировать, не раскрывая скобок! Данный прием я уже применял и подробно комментировал во втором параграфе урока Как вычислить объем тела вращения?  Ещё раз посмотрим, как он работает:

2) Берём оставшийся внешний интеграл:

При нахождении интеграла  использован метод подведения функции под знак дифференциала. Где-нибудь возникли сомнения в правильности интегрирования? Возьмите производную по «икс» и выполните проверку!

Ответ: 

Пример 6

Вычислить двойной интеграл , 

Это пример для самостоятельного решения. В образце решения, как и в разобранном примере, использован первый способ обхода области.

На практике немало примеров, где трудно (а то и невозможно) обойтись без микрокалькулятора-«дробовика». Рассмотрим практический пример на данную тему:

Пример 7

Вычислить двойной интеграл по области 

Задача будет решена двумя способами, так как готовое решение у меня уже есть =) А если серьезно, второй способ будет нужен для дополнительных важных комментариев.

Решение: Изобразим область интегрирования на чертеже:

Область интегрирования тут простая, и основной гемор ожидается как раз в вычислениях.

Выберем следующий порядок  обхода области: Таким образом:

1) 

Начинающим чайникам всегда рекомендую выполнять проверку, особенно в подобных примерах: возьмите частную производную по «игрек» от первообразной  и получите подынтегральную функцию .

Будьте предельно внимательны в подстановке пределов интегрирования: сначала вместо«игреков» подставляем , затем – ноль. В оформлении вполне допустимо записать один, а не несколько нолей, как это сделано в данном примере. После подстановки должны остаться только «иксы».

2) Второй шаг прост:

Перейдём к обратной функции  и изменим порядок обхода области:

Таким образом:

1) Вычислим внутренний интеграл:

Когда мы интегрируем по «икс», то переменная «игрек» считается константой. Не лишней будет и промежуточная проверка, возьмём частную производную по «икс» от  найденной первообразной: Получена подынтегральная функция, что и хотелось увидеть.

Подстановка пределов интегрирования здесь сложнее: сначала вместо «иксов» подставляем 1, затем вместо «иксов» подставляем . После подстановки должны остаться только «игреки».

Степени рекомендую оставить в виде , а не преобразовывать их в корни – будет удобнее интегрировать на втором шаге:

2)

Результаты совпали, как оно и должно быть.

Легко заметить, что первый способ решения был заметно проще.  Всегда перед решением анализируйте – какой путь легче и короче.

Дроби в рассмотренном примере еще худо-бедно можно привести к общему знаменателю вручную. Но не удивляйтесь, если на практике получится ответ вроде , по крайне мере, в своей коллекции я нашел немало диких примеров, где без микрокалькулятора-«дробовика» фактически не обойтись.

Ответ: 

Ответ получился отрицательным. Геометрически это обозначает, что график подынтегральной функции   (поверхность в пространстве) полностью или бОльшей частью (не проверял) располагается ниже области интегрирования  под плоскостью .

Пример 8

Вычислить двойной интеграл по области 

Это пример для самостоятельного решения. Ответ будет целым – чтобы от своего хорошего настроения не запугать вас окончательно  =). Похожие двойные интегралы встречаются в известном задачнике Кузнецова, и по этой причине пример тоже уместен. Полное решение и ответ в конце урока.

Студенты-заочники почти всегда сталкиваются с двойными интегралами наподобие тех, которые уже рассмотрены, но никто не застрахован от творческих примеров, где в подынтегральной функции есть какие-нибудь синусы, косинусы, экспоненты и т.п.

Рассмотрим заключительные примеры на данную тему:

Пример 9

Вычислить двойной интеграл по области 

Решение: В ходе выполнения чертежа может возникнуть трудность с построением прямой , которая параллельна оси . Ничего сложного: если , то  – примерно на этом уровне и следует провести прямую.

Выполним чертёж:

После выполнения чертежа нужно выяснить, какой порядок обхода области выгоднее применить.

Рассмотрим первый способ обхода: Тогда: 

Очевидно, что первый способ является крайне неудачным, поскольку внутренний интеграл  придётся дважды брать по частям.

Но есть еще и второй способ обхода области: Следовательно: 

Выглядит гораздо привлекательнее, начинаем вычисления:

1) По формуле Ньютона-Лейбница разберемся с внутренним интегралом:

Когда мы интегрируем по «икс», то переменная «игрек» считается константой. Если возникают трудности с интегрированием, можно прибегнуть даже к такому способу: временно замените «игрек» конкретным числом, например, «пятёркой»:  . Теперь замените «пятёрку» обратно – «игреком»: 

И, конечно же, лучше сделать проверку, продифференцировав первообразную по «икс»:

Далее при подстановке пределов интегрирования сначала вместо «икса» подставляем , затем – ноль. После подстановки должны остаться только «игреки».

2) Полученный результат  перемещаем во внешний интеграл, не забывая, что там уже есть  и константа 4:

Второй интеграл взят методом подведения функции под знак дифференциала.

Ответ: 

Таким образом, выбор порядка обхода иногда зависит не только от самой области интегрирования, но и от подынтегральной функции.

Пример 10

Вычислить двойной интеграл по области 

Это пример для самостоятельного решения.

Хочется привести ещё примеры, но в первом раунде я обещал не маньячить, поэтому скрепя сердце, заканчиваю статью. Множество других примеров на вычисление двойных интегралов можно найти в соответствующем архиве на странице Готовые решения по высшей математике. Если тема проработана качественно, то рискну предположить, что многие читатели самостоятельно смогут разобраться и в тройных интегралах – принципы решения очень похожи!

Раскрою секрет хорошего настроения – в аккурат перед вторым раундом на ринг вышла симпатичная девушка с табличкой  222. С вашего позволения, заключительное мудрое пожелание:

Хорошо должно быть каждый день!

Решения и ответы:

studfiles.net

Вычисление двойного интеграла. Двукратный интеграл / Двойной интеграл / 3dstroyproekt.ru

Определение простой { правильной } области

Область $ \mathbf { \textit { D } } $ на плоскости $\mathbf { \textit { Oxy } } $будем называть $\textbf { простой { правильной } в направлении оси } \quad \mathbf { \textit { Oy } } $, если любая прямая, проходящая через внутреннюю точку области $\mathbf { \textit { D } } $ и параллельная оси $\mathbf { \textit { Oy } } $, пересекает границу $\mathbf { \textit { D } } $ в двух точках.

Аналогично определяется область, $\textbf { простая { правильная } в направлении оси } \mathbf { \textit { Ox } } $: любая прямая, проходящая через внутреннюю точку области $\mathbf { \textit { D } } $ и параллельная оси $\mathbf { \textit { Oх } } $, пересекает границу $\mathbf { \textit { D } } $ в двух точках.

Область, правильную { простую } в направлении обеих осей, будем называть $\textbf { правильной } $.

$y=\varphi _1 (x) y=\varphi _2 (x)$ Ограниченную замкнутую область $\mathbf { \textit { D } } $, правильную в направлении оси $\mathbf { \textit { Oy } } $, можно описать неравенствами

$D:\left[ \begin{array} { l } a\leqslant x\leqslant b, \newline \varphi _1 (x)\leqslant y\leqslant \varphi _2 (x) \newline \end{array} \right].$

Числа $\mathbf { \textit { a } } $ и $\mathbf { \textit { b } } $ существуют вследствие ограниченности области $\mathbf { \textit { D } } $, функция $\varphi _1 (x)$ образована нижними точками пересечения прямой $\mathbf { \textit { x } } =\mathbf { \textit { x } } _ { 0 } $ при $a<x_0 <b$ с границей области $\mathbf { \textit { D } } $, функция $\varphi _2 (x)$ — верхними точками пересечения этой прямой с границей области $\mathbf { \textit { D } } $.

Аналогичным образом область $\mathbf { \textit { D } } $, ограниченную, замкнутую и правильную в направлении оси $\mathbf { \textit { Oх } } $, можно описать неравенствами

$D:\left[ \begin{array} { l } c\leqslant y\leqslant d, \newline \psi _1 (y)\leqslant x\leqslant \psi _2 (y) \newline \end{array} \right].$

Функция $\psi _1 (y)$ образована левыми точками пересечения прямой $\mathbf { \textit { y } } =\mathbf { \textit { y } } _ { 0 } $ при $c<y_0 <d$ с границей области $\mathbf { \textit { D } } $, функция $\psi _2 (y)$ — правыми точками пересечения этой прямой с границей области $\mathbf { \textit { D } } $.

$x=\psi _2 (y) x=\psi _1 (y)$ Для правильной области { т.е. области, правильной в направлении обеих осей } существуют оба способа представления:

$D:\left[ \begin{array} { l } a\leqslant x\leqslant b, \newline \varphi _1 (x)\leqslant y\leqslant \varphi _2 (x) \newline \end{array} \right]$ и $D:\left[ \begin{array} { l } c\leqslant y\leqslant d, \newline \psi _1 (y)\leqslant x\leqslant \psi _2 (y) \newline \end{array} \right].$

Двукратный { повторный } интеграл

Пусть $\mathbf { \textit { D } } $ — область, простая в направлении оси $\mathbf { \textit { Oy } } $. Рассмотрим выражение $J(D)=\int\limits_a^b { \left( { \int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } }\right)dx } $. Эта конструкция определяется через два обычных определённых интеграла. После интегрирования по $\mathbf { \textit { у } } $ во внутреннем интеграле { переменная $\mathbf { \textit { х } } $ при этом рассматривается как постоянная } и подстановки по $\mathbf { \textit { у } } $ в пределах от $\varphi _1 (x)$ до $\varphi _2 (x)$ получается функция, зависящая только от $\mathbf { \textit { х } } $, которая интегрируется в пределах от $\mathbf { \textit { a } } $ до $\mathbf { \textit { b } } $. В дальнейшем мы будем обычно записывать этот объект без внутренних скобок:

$$ J(D)=\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } . $$

Можно показать, что двукратный интеграл обладает всеми свойствами двойного интеграла:

Свойства линейности и интегрирования неравенств следуют из этих свойств определённого интеграла; интеграл от единичной функции даёт площадь области $\mathbf { \textit { D } } $: $\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { dy } } =\int\limits_a^b { dx\cdot \left. y \right|_ { \varphi _1 (x) } ^ { \varphi _2 (x) } } =\int\limits_a^b { \left[ { \varphi _2 (x)-\varphi _1 (x) }\right]dx } =s(D)$;

$y=\varphi _1 (x) y=\varphi _2 (x)$ теоремы об оценке и о среднем следуют из перечисленных свойств. Единственное свойство, с которым придётся повозиться — это свойство аддитивности. Мы докажем его в простой, но достаточной для нас форме: если область $\mathbf { \textit { D } } $ разбита на две подобласти $\mathbf { \textit { D } } _ { 1 } $ и $\mathbf { \textit { D } } _ { 2 } $ прямой, параллельной одной из координатных осей, то двукратный интеграл по области $\mathbf { \textit { D } } $ равен сумме интегралов по $\mathbf { \textit { D } } _ { 1 } $ и $\mathbf { \textit { D } } _ { 2 } $: $\mathbf { \textit { J } } (\mathbf { \textit { D } } )=\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 2 } )$.

Первый случай:

прямая $\mathbf { \textit { x } } =\mathbf { \textit { a } } _ { 1 } $ параллельна оси $\mathbf { \textit { Oy } } $. Тогда $J(D)=\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } =\int\limits_a^ { a_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } +\int\limits_ { a_1 } ^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } $ { аддитивность внешнего интеграла } = $\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 2 } )$.

$y=\varphi _2 (x) y=\varphi _2 (x)$

Второй случай:

прямая $\mathbf { \textit { y } } =\mathbf { \textit { c } } _ { 1 } $ параллельна оси $\mathbf { \textit { Oх } } $. Воспользуемся сначала аддитивностью внешнего интеграла: $J(D)=\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } = y=\varphi _1 (x) =\int\limits_a^ { a_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } +\int\limits_ { a_1 } ^ { b_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } +\int\limits_ { b_1 } ^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } =$ { теперь применим свойство аддитивности для внутреннего интеграла в среднем слагаемом } $\textbf { = } \int\limits_a^ { a_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } +\int\limits_ { a_1 } ^ { b_1 } { dx\left[ { \int\limits_ { \varphi _1 (x) } ^ { с_1 } { f(x,y)dy } +\int\limits_ { с_1 } ^ { \varphi _2 (x) } { f(x,y)dy } }\right] } +\int\limits_ { b_1 } ^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } = $ { применяем свойство линейности для внешнего интеграла в среднем слагаемом и перегруппировываем сумму } =$ =\int\limits_a^ { a_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } +\int\limits_ { a_1 } ^ { b_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { с_1 } { f(x,y)dy } } +\int\limits_ { a_1 } ^ { b_1 } { dx\int\limits_ { с_1 } ^ { \varphi _2 (x) } { f(x,y)dy } } +\int\limits_ { b_1 } ^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } =$ $ =\left [ { \int\limits_a^ { a_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } +\int\limits_ { a_1 } ^ { b_1 } { dx\int\limits_ { с_1 } ^ { \varphi _2 (x) } { f(x,y)dy } + } \int\limits_ { b_1 } ^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } }\right ]+ \left [ { \int\limits_ { a_1 } ^ { b_1 } { dx\int\limits_ { \varphi _1 (x) } ^ { с_1 } { f(x,y)dy } } }\right ] $

первая скобка даёт повторный интеграл по $\mathbf { \textit { D } } _ { 1 } $, вторая — по $_ { } \mathbf { \textit { D } } _ { 2 } =\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 2 } )$.

Понятно, что возможны различные случаи взаимного расположения прямых $\mathbf { \textit { y } } =\mathbf { \textit { c } } _ { 1 } $, $\mathbf { \textit { x } } =\mathbf { \textit { a } } _ { 1 } $, $\mathbf { \textit { x } } =\mathbf { \textit { a } } _ { 2 } $ и функций $y=\varphi _1 (x)$, $y=\varphi _2 (x)$, но логика доказательства во всех случаях такая же.

Обобщим доказанное свойство. Пусть прямая разбивает область $\mathbf { \textit { D } } $ на две подобласти $\mathbf { \textit { D } } _ { 1,1 } $ и $\mathbf { \textit { D } } _ { 1,2 } $. Проведём ещё одну прямую, параллельную какой-либо координатной оси. Пусть эта прямая разбивает $\mathbf { \textit { D } } _ { 1,1 } $ на $\mathbf { \textit { D } } _ { 1 } $ и$\mathbf { \textit { D } } _ { 2 } $; $\mathbf { \textit { D } } _ { 1,2 } $ — на $\mathbf { \textit { D } } _ { 3 } $ и $\mathbf { \textit { D } } _ { 4 } $. По доказанному, $\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1,1 } )=\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 2 } )$, $\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1,2 } )=\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 3 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 4 } )$, поэтому $\mathbf { \textit { J } } (\mathbf { \textit { D } } )=\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1,1 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1,2 } )=\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 1 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 2 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 3 } )+\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { 4 } )$. Продолжая рассуждать также, убеждаемся в справедливости следующего утверждения: если область $\mathbf { \textit { D } } $ с помощью прямых, параллельных координатным осям, разбита на подобласти $\mathbf { \textit { D } } _ { 1 } $, $\mathbf { \textit { D } } _ { 2 } , { \ldots } , \mathbf { \textit { D } } _ { n } $, то $J(D)=J(D_1 )+J(D_2 )+\ldots +J(D_n )=\sum\limits_ { i=1 } ^n { J(D_i ) } $.

Теорема о переходе от двойного интеграла к повторному

Пусть $\mathbf { \textit { D } } $ — простая в направлении оси $\mathbf { \textit { Oy } } $ область. Тогда двойной интеграл от непрерывной функции по области $\mathbf { \textit { D } } $ равен повторному интегралу от той же функции по области $\mathbf { \textit { D } } $: $\iint\limits_D { f(x,y)dxdy } =\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } $.

Док-во: Разобьём область $\mathbf { \textit { D } } $ с помощью прямых, параллельных координатным осям, на подобласти $\mathbf { \textit { D } } _ { 1 } $, $\mathbf { \textit { D } } _ { 2 } $, { \ldots } , $\mathbf { \textit { D } } _ { n } $. По доказанному выше, $J(D)=\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } =\sum\limits_ { i=1 } ^n { J(D_i ) } $. К каждому из интегралов $\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { i } )$ применим теорему о среднем: в любой области $\mathbf { \textit { D } } _ { i } $ найдётся точка $\mathbf { \textit { P } } _ { i } $ такая, что $\mathbf { \textit { J } } (\mathbf { \textit { D } } _ { i } )=\mathbf { \textit { f } } (\mathbf { \textit { P } } _ { i } ) \quad \mathbf { \textit { s } } (\mathbf { \textit { D } } _ { i } )$. Следовательно, $J(D)=\sum\limits_ { i=1 } ^n { f(P_i )s(D_i ) } $. В последнем равенстве справа стоит интегральная сумма для двойного интеграла $\iint\limits_D { f(x,y)dxdy } $. Будем мельчить разбиение области так, чтобы $d=\mathop { \max } \limits_ { i=1,2,\ldots ,n } diam(D_i )\to 0$. Вследствие непрерывности функции $\mathbf { \textit { f } } (\mathbf { \textit { x } } $, $\mathbf { \textit { y } } )$ по теореме существования интегральная сумма при этом стремится к двойному интегралу $\iint\limits_D { f(x,y)dxdy } $, т.е. в пределе получим $\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } =\iint\limits_D { f(x,y)dxdy } $, что и требовалось доказать.

Если область $\mathbf { \textit { D } } $ правильная в направлении оси $\mathbf { \textit { Oх } } $, то аналогично доказывается формула $\iint\limits_D { f(x,y)dxdy } =\int\limits_с^d { dy\int\limits_ { \psi _1 (y) } ^ { \psi _2 (y) } { f(x,y)dx } } $. Если $\mathbf { \textit { D } } $ правильна в направлении обеих осей, то для вычисления двойного интеграла можно применять любую из эти формул: $\iint\limits_D { f(x,y)dxdy } =\int\limits_a^b { dx\int\limits_ { \varphi _1 (x) } ^ { \varphi _2 (x) } { f(x,y)dy } } =\int\limits_с^d { dy\int\limits_ { \psi _1 (y) } ^ { \psi _2 (y) } { f(x,y)dx } } $.

Если область не является правильной, её разбивают на правильные подобласти.

3dstroyproekt.ru

Окружность уравнение – .

Решение задач по теме «Уравнение окружности». Видеоурок. Геометрия 9 Класс

Уравнение окружности с центром в точке  и радиусом  имеет вид:

 

 

 

 и  – это координаты точки , лежащей на этой окружности.

Выясните, какие из данных уравнений являются уравнениями окружности, найдите центр окружности и ее радиус:

 

1.

 

2.

 

Решение

 

1.

 

Данное уравнение является уравнением окружности. Центр окружности – это точка с координатами ; радиус окружности – .

 

2.

 

Преобразуем данное уравнение с помощью метода выделения полного квадрата:

 

 

 

 

 

Воспользуемся формулой квадрата суммы и разности. В обеих скобках есть квадрат первого выражения и удвоенное произведение, не хватает квадрата второго выражения, прибавим и отнимем его:

 

 

 

 

 

 

 

Данное уравнение является уравнением окружности. Центр окружности – это точка с координатами ; радиус окружности – .

 


 

Задачи с использованием метода выделения полного квадрата

Выясните, является ли данное уравнение уравнением окружности, найдите центр окружности и ее радиус:

 

1.

 

2.

 

Решение

 

1.

 

Преобразуем данное уравнение с помощью метода выделения полного квадрата:

 

 

 

 

 

 

 

 

 

 

 

Так как  и  (квадрат выражения больше или равен нулю), то выражение в левой части уравнения больше нуля. Следовательно, это уравнение не имеет решения и не является уравнением окружности.

 

Доказать отсутствие решений у исходного уравнения можно также с помощью дискриминанта. Для этого рассмотрим это уравнение как квадратное относительно  с параметром .

 

 

 

 

 

Мы получили квадратный трехчлен с такими коэффициентами:

— коэффициент при  – ;

— коэффициент при  – ;

— свободный член зависит от параметра  – .

 

Найдем корни данного уравнения по известной формуле:

 

 

 

 

 

Выделим полный квадрат в подкоренном выражении:

 

 

Видно, что подкоренное выражение меньше нуля. А так как подкоренное выражение равно четверти дискриминанта, то и дискриминант будет отрицательным числом.

 

 

 

Следовательно, исходное уравнение не имеет решений.

 

2.

 

Преобразуем данное уравнение с помощью метода выделения полного квадрата:

 

 

 

 

 

 

 

 

 

 

 

Данное уравнение является уравнением окружности. Центр окружности – это точка с координатами ; радиус окружности – .


 

Напишите уравнение окружности, проходящей через три заданные точки.

 

Дано: ; ; .

Найти: уравнение окружности, проходящей через данные точки.

 

Решение

Уравнение окружности задается тремя параметрами , , , поэтому необходимо найти эти параметры.

Так как данные точки лежат на окружности, то их координаты удовлетворяют уравнению искомой окружности. Подставим координаты точек в уравнение окружности  в общем виде:

:

 

 

 

 

 

:

 

 

 

:

 

 

 

Мы получили систему из трех уравнений относительно трех неизвестных:

 

 

 

Решим эту систему. Вычтем из третьего уравнения первое:

 

 

 

 

 

 

 

Разложим выражение как разность квадратов:

 

 

 

 

 

 

 

 

 

Подставляем найденное значение  во все три уравнения системы:

 

 

 

 

 

Видно, что первое и третье уравнение одинаковые, поэтому оставляем только одно из них:

 

 

 

Вычтем из первого уравнение второе:

 

 

 

 

 

 

 

 

 

Подставим найденное значение a в уравнение системы:

 

 

 

 

 

Радиус больше нуля, следовательно:

 

 

 

Мы нашли необходимые три параметра, поэтому можно выписать искомое уравнение окружности:

 

 

 

Ответ:  

 


Типовые задачи на нахождение координат точек на окружности

Задача А

Дано:  – центр окружности;  – точка на окружности (см. Рис. 1).

Найти: уравнение окружности.

 

Рис. 1. Иллюстрация к задаче

 

Решение

Уравнение окружности в общем виде:

 

 

 

Так как координаты центра окружности , то ; . Необходимо найти  – радиус данной окружности.

Нам известны две точки, поэтому радиус определим по формуле:

 

 

 

 

 

 

 

Выпишем уравнение окружности:

 

 

 

 

 

Ответ: .

 

Уравнение окружности позволяет найти точки на окружности по одной из координат этих точек.

 

Задача Б

Дано:  – уравнение окружности; ордината искомых точек равна 3 (см. Рис. 2).

Найти: точки окружности с ординатой, равной 3.

 

Рис. 2. Иллюстрация к задаче

 

Решение

Уравнение данной окружности , следовательно, координаты ее центра , а радиус равен 5.

На рисунке видно, что необходимо найти координаты точек  и  (абсциссы данных точек).

Точки  и  лежат на окружности, поэтому их координаты удовлетворяют уравнению этой окружности. Для этих точек известно, что их ординаты равны 3. Получаем систему уравнений:

 

 

 

 

 

 

 

 или

 

Таким образом, координаты точки , а координаты точки .

 

Ответ: , .


 

Напишите уравнение окружности, проходящей через две заданные точки , , если известно, что центр окружности лежит на оси ординат.

 

Дано:, ,  (см. Рис. 3).

Найти: уравнение окружности.

Рис. 3. Иллюстрация к задаче

Решение

Уравнение данной окружности будет иметь следующий вид:

 

 

 

Нам необходимо найти  и .

1-й способ:

Так как окружность проходит через точки  и , то их координаты удовлетворяют уравнению окружности. Подставляем эти координаты в уравнение и получаем систему уравнений:

 

 

 

 

 

Правые части данных уравнений равны, поэтому равны и левые части:

 

interneturok.ru

Уравнение окружности

Пусть окружность имеет радиус , а ее центр находится в точке . Точка лежит на окружности тогда и только тогда, когда модуль вектораравен, то есть. Последнее равенство выполнено тогда и только тогда, когда

(1)

Уравнение (1) и является искомым уравнением окружности.

Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору

Пусть прямая проходит через точку перпендикулярно вектору .

Точка лежит на прямой тогда и только тогда, когда векторы иперпендикулярны. Векторыиперпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю, то есть. Используя формулу вычисления скалярного произведения векторов, заданных своими координатами, уравнение искомой прямой записываем в виде

(2)

Рассмотрим пример. Найти уравнение прямой, проходящей через

середину отрезка АВ перпендикулярно этому отрезку если координаты точек соответственно равны А(1;6), В(5;4).

Будем рассуждать следующим образом. Чтобы найти уравнение прямой мы должны знать точку, через которую эта прямая проходит, и вектор перпендикулярный этой прямой. Вектором, перпендикулярным данной прямой, будет вектор , поскольку, по условию задачи, прямая перпендикулярна отрезку АВ. Точкуопределим из условия, что прямая проходит через середину АВ. Имеем . Таким образоми уравнение примет вид.

Выясним вопрос, проходит ли эта прямая через точку М(7;3).

Имеем , значит, эта прямая не проходит через указанную точку.

Уравнение прямой, проходящей через данную точку, параллельно данному вектору

Пусть прямая проходит через точку параллельно вектору .

Точка лежит на прямой тогда и только тогда, когда векторы иколинеарны. Векторыиколинеарны тогда и только тогда, когда их координаты пропорциональны, то есть

(3)

Полученное уравнение и является уравнением искомой прямой.

Уравнение (3) представим в виде

, где принимает любые значения.

Следовательно, можем записать

, где (4)

Система уравнений (4) называется параметрическими уравнениями прямой.

Рассмотрим пример. Найти уравнение прямой, проходящей через точки . Мы можем построить уравнение прямой, если знаем точку и параллельный или перпендикулярный ей вектор. Точек в наличии целых две. Но если две точки лежат на прямой, то вектор, их соединяющий будет параллелен этой прямой. Поэтому воспользуемся уравнением (3), взяв в качестве вектора вектор. Получаем

(5)

Уравнение (5) называется уравнением прямой, проходящей через две данные точки.

Общее уравнение прямой

Определение. Общим уравнением линии первого порядка на плоскости называется уравнение вида , где.

Теорема. Всякая прямая на плоскости может быть задана в виде уравнения линии первого порядка, и всякое уравнение линии первого порядка является уравнением некоторой прямой на плоскости.

Первая часть этой теоремы доказывается просто. На всякой прямой можно указать некоторую точку перпендикулярный ей вектор . Тогда, согласно (2), уравнение такой прямой имеет вид. Обозначим. Тогда уравнение примет вид .

Теперь перейдем ко второй части теоремы. Пусть имеется уравнение , где. Будем считать для определенности.

Перепишем уравнение в виде:

;

;

.

Рассмотрим на плоскости точку , где. Тогда полученное уравнение имеет вид , и является уравнением прямой, проходящей через точку перпендикулярно вектору . Теорема доказана.

В процессе доказательства теоремы мы попутно доказали

Утверждение. Если имеется уравнение прямой вида , то вектор перпендикулярен данной прямой.

Уравнение вида называется общим уравнением прямой на плоскости.

Далее выведем формулу вычисления расстояния от произвольной точки плоскости до прямой, заданной общим уравнением.

Пусть имеется прямая и точка. Требуется определить расстояние от указанной точки до прямой.

Рассмотрим произвольную точку на прямой. Имеем. Расстояниеот точкидо прямой равно модулю проекции векторана вектор , перпендикулярный данной прямой. Имеем

,

преобразуя, получаем формулу:

.

Пусть даны две прямые, заданные общими уравнениями

, . Тогда векторы перпендикулярны первой и второй прямой соответственно. Уголмежду прямыми равен углу между векторами,.

Тогда формула для определения угла между прямыми имеет вид:

.

Условие перпендикулярности прямых имеет вид:

.

Прямые параллельны или совпадают тогда и только тогда, когда векторы колинеарны. При этомусловие совпадения прямых имеет вид: ,

а условие отсутствия пересечения записывается в виде: . Последние два условия докажите самостоятельно.

Исследуем характер поведения прямой по ее общему уравнению.

Пусть дано общее уравнение прямой . Если, то прямая проходит через начало координат.

Рассмотрим случай, когда ни один из коэффициентов не равен нулю . Уравнение перепишем в виде:

,

,

Где . Выясним смысл параметров . Найдем точки пересечения прямой с осями координат. Приимеем, а приимеем. То есть— это отрезки, которые отсекает прямая на координатных осях.Поэтому уравнение называется уравнением прямой в отрезках.

В случае имеем . То есть прямая будет параллельна оси. В случае имеем . То есть прямая будет параллельна оси.

Напомним, что угловым коэффициентом прямой называется тангенс угла наклона этой прямой к оси. Пусть прямая отсекает на осиотрезоки имеет угловой коэффициент. Пусть точкалежит на данной

прямой.

Тогда ==. И уравнение прямой запишется в виде

.

Пусть прямая проходит через точку и имеет угловой коэффициент. Пусть точкалежит на этой прямой.

Тогда =.

Полученное уравнение называется уравнением прямой, проходящей через данную точку с заданным угловым коэффициентом.

Пусть даны две прямые ,. Обозначим— угол между ними. Пусть,углы наклона к оси Х соответствующих прямых

Тогда =,.

Тогда условие параллельности прямых имеет вид , а условие перпендикулярности

В заключение рассмотрим две задачи.

Задача. Вершины треугольника АВС имеют координаты: A(4;2), B(10;10), C(20;14).

Найти: а) уравнение и длину медианы, проведенной из вершины А;

б) уравнение и длину высоты, проведенной из вершины А;

в) уравнение биссектрисы, проведенной из вершины А;

Определим уравнение медианы АМ.

Точка М() середина отрезка ВС.

Тогда , . Следовательно, точка М имеет координаты M(15;17). Уравнение медианы на языке аналитической геометрии это уравнение прямой, проходящей через точку А(4;2) параллельно вектору ={11;15}. Тогда уравнение медианы имеет вид. Длина медианы АМ=.

Уравнение высоты AS — это уравнение прямой, проходящей через точку А(4;2) перпендикулярно вектору ={10;4}. Тогда уравнение высоты имеет вид 10(x-4)+4(y-2)=0, 5x+2y-24=0.

Длина высоты — это расстояние от точки А(4;2) до прямой ВС. Данная прямая проходит через точку B(10;10) параллельно вектору ={10;4}. Ее уравнение имеет вид, 2x-5y+30=0. Расстояние AS от точки А(4;2) до прямой ВС, следовательно, равно AS=.

Для определения уравнения биссектрисы найдем вектор параллельный этой прямой. Для этого воспользуемся свойством диагонали ромба. Если от точки А отложить единичные векторы одинаково направленные с векторамии, то вектор, равный их сумме, будет параллелен биссектрисе. Тогда имеем=+.

={6;8}, , ={16,12}, .

Тогда =В качестве направляющего вектора искомой прямой может служить вектор={1;1}, коллинеарный данному. Тогда уравнение искомой прямой имеет видилиx-y-2=0.

Задача. Река протекает по прямой линии, проходящей через точки А(4;3) и В(20;11). В точке С(4;8) живет Красная Шапочка, а в точке D(13;20) ее бабушка. Каждое утро Красная Шапочка берет пустое ведро из дома, идет на реку, черпает воду и относит ее бабушке. Найти самую короткую дорогу для Красной Шапочки.

Найдем точку Е, симметричную бабушке, относительно реки.

Для этого сначала найдем уравнение прямой, по которой течет река. Это уравнение можно рассматривать, как уравнение прямой, проходящей через точку А(4;3) параллельно вектору . Тогда уравнение прямой АВ имеет вид.

Далее найдем уравнение прямой DE, проходящей через точку D перпендикулярно АВ. Его можно рассматривать, как уравнение прямой, проходящей через точку D, перпендикулярно вектору . Имеем

.

Теперь найдем точку S — проекцию точки D на прямую АВ, как пересечение прямых АВ и DE. Имеем систему уравнений

.

Следовательно, точка S имеет координаты S(18;10).

Поскольку S середина отрезка DE, то .

Аналогично .

Следовательно, точка Е имеет координаты Е(23;0).

Найдем уравнение прямой СЕ, зная координаты двух точек этой прямой

.

Точку М найдем как пересечение прямых АВ и СЕ.

Имеем систему уравнений

.

Следовательно, точка М имеет координаты .

Тема 2. Понятие об уравнении поверхности в пространстве. Уравнение сферы. Уравнение плоскости, проходящей через данную точку, перпендикулярно данному вектору. Общее уравнение плоскости и его исследование Условие параллельности двух плоскостей. Расстояние от точки до плоскости. Понятие об уравнении линии. Прямая линия в пространстве. Канонические и параметрические уравнения прямой в пространстве. Уравнения прямой, проходящей через две данные точки. Условия параллельности и перпендикулярности прямой и плоскости.

Вначале, дадим определение понятия уравнения поверхности в пространстве.

Пусть в пространстве задана некотораяповерхность . Уравнениеназывается уравнениемповерхности , если выполнены два условия:

1.для любой точки с координатами, лежащей наповерхности, выполнено , то есть ее координаты удовлетворяют уравнениюповерхности;

2. любая точка , координаты которой удовлетворяют уравнению, лежит на линии.

studfiles.net

Уравнение окружности | Треугольники

Уравнение окружности с центром в точке (a;b) и радиусом R в прямоугольной системе координат имеет вид

   

Доказательство:

1. Пусть в прямоугольной системе координат задана окружность с центром в точке A (a;b) и радиусом R (R>0).

Чтобы составить уравнение этой окружности, выберем на окружности произвольную точку B (x;y).

По определению окружности, расстояние от центра до любой точки окружности равно радиусу R, то есть AB=R.

По формуле расстояния между точками

   

откуда

   

Так как B (x;y) — произвольная точка окружности, координаты любой точки окружности удовлетворяют этому уравнению.

2. Если пара чисел (xo;yo) удовлетворяет данному уравнению, то

   

   

А это значит, что расстояние между точками C(xo;yo) и A(a;b) равно R. Значит, точка C(xo;yo) принадлежит окружности с центром в точке A(a;b) и радиусом R.

Следовательно, данное уравнение фигуры является уравнением окружности.

Что и требовалось доказать.

www.treugolniki.ru

Уравнение окружности и прямой

Уравнение линии на плоскости

Введем для начала понятие уравнения линии в двумерной системе координат. Пусть в декартовой системе координат построена произвольная линия $L$ (Рис. 1).

Рисунок 1. Произвольная линия в системе координат

Определение 1

Уравнение с двумя переменными $x$ и $y$ называется уравнением линии $L$, если этому уравнению удовлетворяют координаты любой точки, принадлежащей линии $L$ и не удовлетворяет ни одна точка, не принадлежащая линии $L.$

Уравнение окружности

Выведем уравнение окружности в декартовой системе координат $xOy$. Пусть центр окружности $C$ имеет координаты $(x_0,y_0)$, а радиус окружности равен $r$. Пусть точка $M$ с координатами $(x,y)$ — произвольная точка этой окружности (рис. 2).

Рисунок 2. Окружность в декартовой системе координат

Расстояние от центра окружности до точки $M$ вычисляется следующим образом

Но, так как $M$ лежит на окружности, то получаем $CM=r$. Тогда получим следующее

Уравнение (1) и есть уравнение окружности с центром в точке $(x_0,y_0)$ и радиусом $r$.

В частности, если центр окружности совпадает с началом координат. То уравнение окружности имеет вид

Уравнение прямой.

Выведем уравнение прямой $l$ в декартовой системе координат $xOy$. Пусть точки $A$ и $B$ имеют координаты $\left\{x_1,\ y_1\right\}$ и $\{x_2,\ y_2\}$ соответственно, причем точки $A$ и $B$ выбраны так, что прямая $l$ — серединный перпендикуляр к отрезку $AB$. Выберем произвольную точку $M=\{x,y\}$, принадлежащую прямой $l$ (рис. 3).

Рисунок 3. Прямая в декартовой системе координат

Так как прямая $l$ — серединный перпендикуляр к отрезку $AB$, то точка $M$ равноудалена от концов этого отрезка, то есть $AM=BM$.

Найдем длины данных сторон по формуле расстояния между точками:

Следовательно

Обозначим через $a=2\left(x_1-x_2\right),\ b=2\left(y_1-y_2\right),\ c={x_2}^2+{y_2}^2-{x_1}^2-{y_1}^2$, Получаем, что уравнение прямой в декартовой системе координат имеет следующий вид:

Замечание 1

Здесь можно выделить два частных случая для уравнения прямой. Пусть прямая $l$ проходит через точку $M=\{x_0,y_0\}$, тогда

  1. Если прямая $l$ параллельна оси $Ox$, то она имеет вид

    \[y=y_0\]
  2. Если прямая $l$ параллельна оси $Oy$, то она имеет вид

    \[x=x_0\]

Пример задачи на нахождение уравнений линий в декартовой системе координат

Пример 1

Найти уравнение окружности с центром в точке $(2,\ 4)$. Проходящей через начало координат и прямую, параллельную оси $Ox,$ проходящей через её центр.

Решение.

Найдем сначала уравнение данной окружности. Для этого будем использовать общее уравнение окружности (выведенное выше). Так как центр окружности лежит в точке $(2,\ 4)$, получим

\[{(x-2)}^2+{(y-4)}^2=r^2\]

Найдем радиус окружности как расстояние от точки $(2,\ 4)$ до точки $(0,0)$

\[r=\sqrt{{(2-0)}^2+{(4-0)}^2}=\sqrt{20}=2\sqrt{5}\]

Получаем, уравнение окружности имеет вид:

\[{(x-2)}^2+{(y-4)}^2=20\]

Найдем теперь уравнение окружности, используя частный случай 1. Получим

\[y=4\]

spravochnick.ru

Окружность. Уравнение окружности


Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.

В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.

Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.

Геометрическая интерпретация уравнения окружности – это линия окружности.

Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.

Окружность с центром в точке А и радиусом R поместим в координатную плоскость.

Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:

Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.

Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:



Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.

Примеры решения задач про уравнение окружности

Задача. Составить уравнение заданной окружности

Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.

Решение.
Обратимся к формуле уравнения окружности:
R2 = (x-a)2 + (y-b)2

Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3

Получаем:
(x — 2)2 + (y — (-3))2 = 42
или
(x — 2)2 + (y + 3)2 = 16.

Задача. Принадлежит ли точка уравнению окружности

Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2)2 + (y + 3)2 = 16.

Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.

В уравнение (x — 2)2 + (y + 3)2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3

Проверим истинность полученного равенства
(x — 2)2 + (y + 3)2 = 16
(2 — 2)2 + (3 + 3)2 = 16
0 + 36 = 16 равенство неверно

Таким образом, заданная точка не принадлежит заданному уравнению окружности.

Содержание главы:
 Площадь геометрической фигуры | Описание курса | Задачи про окружность 

   

profmeter.com.ua

7_54-63

Выделяют четыре основных типа кривых второго порядка: окружность, эллипс, гипербола и парабола.

1. Окружность

Определение. Окружностью называется множество, состоящее из всех точек плоскости, находящихся на равном расстоянии R от фиксированной точки С.

Число R называется радиусом окружности, точка Сцентром.

Воспользуемся определением окружности для вывода ее уравнения.

П

Рис. 5

усть точка– центр окружности. Точка– произвольная точка окружности, а радиус этой окружности равен. По определению, тогда, используя формулу вычисления длины вектора, имеем, тогда

. Возведем обе части равенства в квадрат. Тогда уравнение окружности с центром в точке и радиусомR имеет вид:

каноническое уравнение окружности

В частности, уравнение окружности с центром в начале координат и радиусом R имеет вид: .

Пример

Составить каноническое уравнение окружности, центр которой находится в точке , а диаметр.

Решение:

Найдем радиус , тогда уравнение окружности имеет вид

или .

Пример

Построить окружность по заданному уравнению . Привести каноническое уравнение к общему виду.

Решение:

П

Рис. 6

о заданному уравнению определяем, что центр окружности, а радиус. Теперь преобразуем каноническое уравнение к общему видуили, полученное уравнение является общим уравнением окружности с центром в точкеи радиусом.

Возможно решение обратной задачи: общее уравнение преобразовать в каноническое.

2. Эллипс

Определение 1. Эллипсом называется множество, состоящее из всех точек плоскости, сумма расстояний от каждой из которых до двух заданных точек плоскости и, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

В случае, когда фокусы эллипса и расположены на оси Ox (или на оси Oy) симметрично относительно начала координат, его уравнение называется каноническим и имеет вид:

.

Обозначим через 2с расстояние между фокусами эллипса. Если a > b (a < b), то фокусы эллипса расположены на оси Ox (на оси Oy) и (cм. рис. 7). Фокусы эллипса всегда лежат на большей оси. ОтрезкиОА и ОВ называются полуосями эллипса. Точки пересечения линии эллипса с осями координат А, В, А1, В1 называются вершинами эллипса. Эллипс имеет две оси симметрии (в случае, если эллипс задается каноническим уравнением, оси симметрии совпадают с осями координат) и центр симметрии (в случае, если эллипс задается каноническим уравнением, центр симметрии совпадает с началом координат).

Рис. 7

Для количественной оценки формы эллипса введена величина, называемая эксцентриситетом эллипса.

Определение 2. Эксцентриситетом эллипса называется величина, равная отношению расстояния между фокусами к длине его большей оси.

Обозначим эксцентриситет эллипса через . Пусть a > b (a < b). Тогда (). Так как 0< с < a (0 < с < b) , то 0 <  < 1. Чем ближе эксцентриситет к единице, тем эллипс более вытянут вдоль большей оси.

3. Гипербола

Определение 1. Гиперболой называется множество, состоящее из всех точек плоскости, модуль разности расстояний от которых до двух фиксированных точек и, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами, и отличная от нуля.

Каноническое уравнение гиперболы имеет вид:

(1)

(в случае, если фокусы и расположены на оси Ох симметрично относительно начала координат, см. рис. 8) или

(2)

(в случае, если фокусы и расположены на оси Оу симметрично относительно начала координат, см. рис. 9).

Гиперболы, заданные уравнениями (1) и (2), называются сопряженными относительно друг друга.

Обозначим через 2с расстояние между фокусами гиперболы. Тогда .

Рис. 8 Рис. 9

Точки А иА1вершиныгиперболы. ТочкиВиВ1 вершиныгиперболы.

Прямоугольник, составленный прямыми , называетсяосновным прямоугольником гиперболы. Его диагонали совпадают с прямыми , которые являютсяасимптотами гиперболы. Отрезки ОА = a и OB = b называются полуосями гиперболы. Ось координат, на которой расположены фокусы гиперболы (и которую пересекает гипербола) называется действительной, другая ось координат (с которой у гиперболы нет общих точек) – мнимой.

Гипербола называется равносторонней, если длины осей равны .

Форму гиперболы определяет отношение длин основного прямоугольника. Для количественной оценки формы гиперболы, как и в случае эллипса, вводится понятие эксцентриситета.

Определение 2. Эксцентриситетом гиперболы называется величина, равная отношению половины расстояния между фокусами к длине действительной полуоси.

Обозначим эксцентриситет гиперболы через . Для гиперболы, заданной уравнением (1), ; для гиперболы, заданной уравнением (2). Так как 0< а < с и 0 < b < с, то  > 1. Чем ближе эксцентриситет к единице, тем основной прямоугольник гиперболы более вытянут вдоль ее оси, соединяющей вершины.

4. Парабола

Определение. Параболой называется множество, состоящее из всех точек на плоскости, для которых расстояние до некоторой фиксированной точки F, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой.

На рисунках 10–13 представлены все простейшие случаи расположения параболы и соответствующие им канонические уравнения.

p – параметр, он равен расстоянию между фокусом и директрисой;

точка F – фокус.

Рис. 10 Рис. 11

На рис. 10 парабола ; уравнение директрисы.

На рис. 11 парабола ; уравнение директрисы.

Рис. 12 Рис. 13

На рис. 12 парабола ; уравнение директрисы.

На рис. 13 парабола ; уравнение директрисы.

Пример

По заданному каноническому уравнению построить кривую, найти координаты фокусов.

Решение:

Заданное уравнение есть уравнение эллипса, где,, следовательно,,, тогда.

На оси отметим точкии, а на осиотметимиэто вершины эллипса.

Соединим полученные точки плавной линией. Прямоугольных участков быть не должно. Эллипс – это сжатая окружность.

Найдем фокусы эллипса, так как , то фокусы располагаются на осии имеют координатыи.

Пример

Общее уравнение кривой привести к каноническому виду, построить кривую, найти координаты фокусов.

Решение:

Перенесем свободный член вправо . Разделим слагаемое уравнения на 225, получим ,это уравнение соответствует каноническому уравнению эллипса, где ,, следовательно,,, тогда.

На оси отметим точкии, а на осиотметими– это вершины эллипса.

Найдем фокусы эллипса, так как , то фокусы располагаются на осии имеют координатыи.

Пример

Дано каноническое уравнение гиперболы . Записать уравнение гиперболы, сопряженной с заданной. Найти координаты фокусов и построить обе гиперболы.

Решение:

Уравнение соответствует гиперболе, у которой действительная ось симметрии есть ось. Следовательно, уравнение сопряженной гиперболы, у которой действительная ось симметрии есть ось. Межфокусное расстояние у сопряженных гипербол одинаковое, равно, где.

Подготовка к построению сопряженных гипербол одинаковая. На осях координат строим основной прямоугольник со сторонамии. Прямоугольник строится так, чтобы точка пересечения его диагоналей совпадала с началом координат. Продолжение диагоналей являются асимптотами гиперболы. В нашем случае уравнения асимптот имеют вид:. Для уравнения заданной гиперболы вершины гиперболыи, так же как и фокусыи, находятся на оси. Линия гиперболы касается вспомогательного прямоугольника только в одной точке (вершине) и плавно стремится к асимптотам. Для уравнения сопряженной гиперболы вершины гиперболыи, так же как и фокусыи, находятся на оси.

Рис. 16

Пример

Построить по заданному уравнению параболы , определить координаты фокуса, составить уравнение директрисы.

Решение:

Данное уравнение – это уравнение параболы с осью симметрии. Для нахождения координат фокуса надо найти параметр. Сравнивая каноническое уравнение параболы и заданное уравнение , находим, откуда. Следовательно,и уравнение директрисы, а ветви параболы направлены вверх. Кроме вершинынайдем еще хотя бы 4 точки, принадлежащие данной параболе (рис. 17). Для этого составим таблицу

Пример

Привести уравнение к каноническому виду и выполнить задания предыдущего примера.

Решение:

Преобразуем уравнение к каноническому виду . Это уравнение соответствует уравнению , то есть уравнению параболы с осью симметрии. Аналогично предыдущему примерунаходим , откуда. Следовательно,и уравнение директрисы, а ветви параболы направлены влево. Кроме вершинынайдем еще хотя бы 4 точки, принадлежащие данной параболе (рис. 18). Для этого составим таблицу

62

studfiles.net

Уравнение окружности

Прежде всего, давайте вспомним, формулу расстояния между двумя точками и еще, повторим, что уравнение с двумя переменными x и y называется уравнением линии l, если этому уравнению удовлетворяют координаты любой точки линии l и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Сегодня на уроке мы попробуем по геометрическим свойствам линии найти ее уравнение.

В качестве линии рассмотрим окружность радиуса  с центром в точке .

Пусть центр окружности имеет координаты . Возьмем на окружности произвольную точку . Запишем формулу расстояния между точками C и M. Мы знаем, что длина отрезка, который соединяет любую точку на окружности с центром окружности – это радиус. Поэтому можно записать, что MC равно r. Возведем MC в квадрат и получим уравнение MC2 = r2. Заменим MC2 квадрат на выражение  и получим, что если точка лежит на окружности с радиусом r и центром в точке C, то координаты этой точки удовлетворяют уравнению . Если точка не лежит на окружности, то расстояние от этой точки до центра окружности не равно радиусу, поэтому координаты таких точек не будут удовлетворять полученному уравнению. Поэтому можно сказать, что в прямоугольной системе координат уравнение окружности радиуса r с центром в точке C с координатами  имеет вид: .

Задача. Записать уравнение окружности с радиусом  и центром в начале координат.

Решение.

Начало координат имеет координаты (0;0). Подставим их в уравнение окружности и получим, что уравнение окружности с радиусом r и центром в начале координат имеет вид

 

.

Задача. Начертить окружность, заданную уравнением .

Решение.

Запишем общее уравнение окружности и проанализируем исходное уравнение. Прежде всего, определимся с координатами центра окружности. Это будут числа 5 и 3. Теперь давайте определим величину радиуса окружности.

Поскольку в правой части формулы стоит квадрат радиуса, то для того, чтобы найти радиус надо извлечь квадратный корень из 4. Получим 2.

 Значит наша формула задает окружность с центром в точке с координатами пять три и радиусом равным двум.

Задача. Начертить окружность, заданную уравнением .

Решение.

Запишем общее уравнение окружности и проанализируем исходное уравнение. Прежде всего определимся с координатами центра окружности.

Это будут числа -4 и 2. Теперь давайте определим величину радиуса окружности.

Задача. Начертить окружность, заданную уравнением .

Решение. Уравнениями такого типа описываются окружности с центром в начале координат. Теперь давайте определим величину радиуса окружности. Поскольку в правой части формулы стоит квадрат радиуса, то для того, чтобы найти радиус надо извлечь квадратный корень из 9.

Значит наша формула задает окружность с центром в точке с координатами (0;0) и радиусом равным 3.

Теперь давайте попробуем решить задачу обратную данным.

Задача. Составить уравнение окружности, которая показана на рисунке.

Как и в предыдущих задачах мы начнем с определения координат центра окружности. Сделать это нетрудно. Центр этой окружности совпадает с началом координат, поэтому центр окружности имеет координаты (0;0).

Нетрудно заметить, что радиус окружности равен 4.

Запишем уравнение окружности и подставим найденные значения.

 

 

 

Ответ: .

Решим еще одну задачу.

Задача. Составить уравнение окружности, которая показана на рисунке.

Решение.

 – центр окружности

 – радиус окружности

Ответ:.

Задача. Составить уравнение окружности, которая показана на рисунке.

Решение.

 – центр окружности

 – радиус окружности

 

 

 

Ответ:.

Решая задачи, мы с вами выполняли один и тоже порядок действий. Давайте еще раз повторим этот порядок.

Для того, что бы составить уравнение окружности и построить ее надо:

1. Найти координаты центра окружности.

2. Найти длину радиуса этой окружности.

3. Записать уравнение окружности.

4. Подставить полученные значения в уравнение окружности.

5. Построить окружность, если это требуется для решения задачи.

Рассмотрим еще одну задачу.

Написать уравнение окружности с диаметром эм эн, если точка эн имеет координаты два три, точка эм имеет координаты шесть три.

Задача. Написать уравнение окружности с диаметром , если , .

Решение.

Найдем координаты центра окружности. Центр окружности является серединой диаметра. Воспользуемся формулами для нахождения координат середины отрезка.

 

Получим, что центр окружности имеет координаты .

Теперь определим радиус окружности. Для этого найдем расстояние от центра окружности до концов диаметра.

 

 

Запишем общее уравнение окружности и подставим в него найденные значения. Тогда получим, что уравнение данной окружности имеет вид:

Ответ: .

Подведем итоги урока.

На сегодняшнем уроке мы познакомились с формулой, которая задает окружность с центром в точке С (x0; y0) и радиусом r.

Также мы познакомились с формулой, которая задает окружность с центром в начале координат и радиусом r.

Мы рассмотрели задачи на составление уравнения окружности по рисунку и на построение окружности по заданному уравнению.

videouroki.net

Исследование функции периодичность функции – Исследование функции на периодичность

Исследование функции на четность и на периодичность — Мегаобучалка

Правило Лопиталя. исследование Функции.

Правило Лопиталя расскрытия неопределенностей.

 

Теорема (правило Лопиталя).

Если или (то есть, если предел отношения в точке приводит к неопределенности вида или ) и предел существует, то

.

Пример 1:

Пример 2:

Пример 3:

Замечание:

1) Неопределенности вида или можно раскрыть по правилу Лопиталя, предворительно преобразовав их к виду или .

Пример 4:

Пример 5:

Пример 6: Таким образом, .

Полное исследование функции

Полное исследование функции проводится по следующей схеме:

1. Нахождение области определения функции;

2. Нахождение точек разрыва, вертикальных и горизонтальных асимптот графика функции;

3. Нахождение (по возможности) точек пересечения графика функции с осями координат;

4. Исследование функции на четность и на периодичность;

5. Нахождение интервалов монотонности и экстремумов функции;

6. Нахождение интервалов выпуклости, вогнутости и точек перегиба графика функции;

7. Нахождение наклонной асимптоты графика функции;

8. Построение графика функции.

 

Пример 7:Исследовать функцию и построить ее график.

Нахождение области определения функции

Если функция задана только законом соответствия

(то есть область определения не указана), то за область определения функции берется множество { имеет смысл}. — область изменения (множество значений) функции.

 

1. Область определения функции: { имеет смысл} .

Нахождение точек разрыва, вертикальных и горизонтальных асимптот графика функции.

По определению непрерывности функции в точке, функция будет непрерывной в точке , если .

Если в точке функция не определена или не является непрерывной ( то есть не выполняется равенство ),

то точка называется точкой разрыва.

Так как функция является элементарной, то она непрерывна в своей области определения, то есть в интервалах

и . — точка разрыва.

 

Находим пределы функции на концах интервалов и :

Точка — точка разрыва II рода и прямая является вертикальной асимптотой графика функции при и ;



функция не имеет горизонтальную асимптоту.

 

3. Нахождение (по возможности) точек пересечения графика функции с осями координат

Для нахождения точки пересечения графика функции с осью Ох пологаем , а для нахождения точки пересечения с осью Оу полагаем х=0:

,следовательно — точка пересечения графика с осью Ох;

, следовательно — точка пересечения графика с осью Оу.

Исследование функции на четность и на периодичность

Функция называется четной (нечетной), если имеет место равенство ( ).

Область определения четной или нечетной функции- симметрична относительно начала координат.

График четной функции симметричен относительно оси Оу, а нечетной функции симметрична относительно начала координат

Функция не обладает четностью (не является ни четной и ни нечетной), так как ее область определения -не симметрична относительно начала координат ( но ).

График функции не является симметричным относительно оси и относительно начала координат О(0;0).

Функция называется периодической, если для некоторого числа имеет место равенство .

=>

функция непериодична.

megaobuchalka.ru

Периодичность функций

Функция называетсяпериодической, если существует такое число , что для любого значениях из области определения выполняется равенство

,

число Т называется периодом функции.

Примеры периодических функций: ,,,.

Заметим, что периодическую функцию достаточно исследовать в пределах одного периода, т.е. при .

Пример. Найти наименьший период функции .

Решение. Период для функций иравен. Функцияимеет период в 3 раза меньше, т.е.,. Наименьший период суммыдолжен быть таким, чтобыипомещались в нем целое число раз. В данном случае.

Задание 3. Найти наименьший период функции

1)

16)

2)

17)

3)

18)

4)

19)

5)

20)

6)

21)

7)

22)

8)

23)

9)

24)

10)

25)

11)

26)

12)

27)

13)

28)

14)

29)

15)

30)

Простейшие преобразования графиков

Пусть в данной системе координат вычерчен график некоторой функции

Из этого графика с помощью специальных приемов легко получить график сходных функций; таких как

,

а также более общего вида

,

где — некоторые константы.

  1. График функции получается растяжением или сжатиемвm раз исходного графика вдоль оси Оy.

Если же , то, построив сначала график функции, затем строим симметричный с ним относительно осиОх искомый график функции .

  1. График функции получается с помощью параллельного переноса (сдвига) графика вдоль осиОy вверх или внизнаn единиц.

  1. График функции получается из графика сжатиемили растяжениемего ва раз вдоль оси Ох. (т.е. к оси Оy).

  1. График функции y=f(x+b) получается из графика y=f(x) с помощью параллельного переноса (сдвига) его вдоль оси Ох влево (b>0) или вправо (b<0) на b единиц.

Построение графиков подобного рода в общем случае

сводится к проведению в соответствующем порядке операций 1-4.

Пример. Построить график функции .

Решение.

  1. Строим график ;

  2. сжимаем его вдоль осив 2 раза, получаем график;

  3. сдвигаем график влево наи получаем график;

  4. растягиваем график вдоль осив 2 раза и получаем требуемый график.

Пример. Построить график функции .

Решение.

1) строим график ;

2) сдвигаем его влево по осина 1, получаем график функции;

3) сжимаем график вдоль осив 2 раза и строим симметричный ему относительно оси, получаем график;

4) поднимаем график функции по оси Оy вверх на две единицы, получаем искомый график.

Задание 4.

Методом деформации и сдвигов построить график функции

№ зад

№ вар

1

2

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

studfiles.net

Исследование функции

Исследование функции.

1) D(y) – Область опрделения: множество всех тех значений переменной х. при которых алгебраические выражения f(x) и g(x) имеют смысл.

Если функция задана формулой, то область определения состоит из всех значений независимой переменной, при которых формула имеет смысл.

2) Свойства функции: четность/нечетность, периодичность:

Нечётными и чётными называются функции, графики которых обладают симметрией относительно изменения знака аргумента.

  • Нечётная функция — функция, меняющая значение на противоположное при изменении знака независимой переменной (симметричная относительно центра координат).

  • Чётная функция — функция, не изменяющая своего значения при изменении знака независимой переменной (симметричная относительно оси ординат).

  • Ни чётная ни нечётная функция (функция общего вида) — функция, не обладающая симметрией. В эту категорию относят функции, не подпадающие под предыдущие 2 категории.

  • Функции, не принадлежащие ни одной из категорий выше, называются ни чётными ни нечётными (или функциями общего вида).

Нечётные функции

Нечётная степень  где  — произвольное целое число.

  • Синус .

  • Тангенс .

Чётные функции

Чётная степень  где  — произвольное целое число.

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

  • Говоря более формально, функция называется периодической, если существует такое число T≠0 (период), что на всей области определения функции выполняется равенство .

  • Исходя из определения, для периодической функции справедливо также равенство , где  — любое целое число.

  • Все тригонометрические функции являются периодическими.

3) Нули (корни) функции — точки, где она обращается в ноль.

Нахождение точки пересечения графика с осью Oy. Для этого нужно вычислить значение f(0). Найти также точки пересечения графика с осью Ox, для чего найти корни уравнения f(x) = 0 (или убедиться в отсутствии корней). 

Точки, в которых график  пересекает ось , называют нулями функции. Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс», при которых функция обращается в ноль.

4) Промежутки постоянства знаков, знаки в них.

Промежутки, где функция f(x) сохраняет знак.

Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

ВЫШЕ оси абсцисс.

НИЖЕ оси .

5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

Непрерывная функция — функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Устранимые точки разрыва

Если предел функции существует, но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

,

то точка  называется точкой устранимого разрыва функции  (в комплексном анализе —устранимая особая точка).

Если «поправить» функцию  в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности, что и обосновывает название точки, как точки устранимого разрыва.

Точки разрыва первого и второго рода

Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов:

  • если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода. Точки устранимого разрыва являются точками разрыва первого рода;

  • если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.

Аси́мпто́та — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

Вертикальная

Вертикальная асимптота — прямая вида  при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Горизонтальная

Горизонтальная асимптота — прямая вида  при условии существования предела

.

Наклонная

Наклонная асимптота — прямая вида  при условии существования пределов

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при  (или ) не существует.

если  в п. 2.), то , и предел  находится по формуле горизонтальной асимптоты, .

6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f(x)(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f(x). Для этого находят производную f(x) и решают неравенство f(x)0. На промежутках, где это неравенство выполнено, функция f(x)возрастает. Там, где выполнено обратное неравенство f(x)0, функция f(x)убывает.

Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием — локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке [a; b](продолжение)

1. Найти производную функции: f(x).

2. Найти точки, в которых производная равна нулю: f(x)=0x1, x2,…

3. Определить принадлежность точек х1, х2, …отрезку [ab]: пусть x1a;b , а x2a;b .

4. Найти значения функции в выбранных точках и на концах отрезка:f(x1), f(x2),…, f(xa),f(xb),

5. Выбор наибольшего и наименьшего значений функции из найденных.

Замечание. Если на отрезке [ab] имеются точки разрыва, то необходимо в них вычислить односторонние пределы, а затем их значения учесть в выборе наибольшего и наименьшего значений функции.

7) Нахождение интервалов выпуклости и вогнутости. Это делается с помощью исследования знака второй производной f(x). Найти точки перегиба на стыках интервалов выпуклости и вогнутости. Вычислить значение функции в точках перегиба. Если функция имеет другие точки непрерывности (кроме точек перегиба), в которых вторая производная равна 0 либо не существует, то в этих точках также полезно вычислить значение функции. Найдя f(x) , мы решаем неравенство f(x)0. На каждом из интервалов решения функция будет выпуклой вниз. Решая обратное неравенство f(x)0, мы находим интервалы, на которых функция выпукла вверх (то есть вогнута). Определяем точки перегиба как те точки, в которых функция меняет направление выпуклости (и непрерывна).

Точка перегиба функции — это точка, в которой функция непрерывна и при переходе через которую функция меняет направление выпуклости.

Условия существования

Необходимое условие существования точки перегиба: если функция дважды дифференцируемая в некоторой выколотой окрестности точки , то  или .

studfiles.net

Полное исследование функции — шаг за шагом

В статье перечислены основные пункты, по которым принято делать исследование функции. Стать носит теоретический характер, подробно объясняется на «пальцах» что и как нужно исследовать. Поэтому если вас интересуют практические примеры, то смело можно пропускать прочтение данного текста и переходить к примерам, ссылка в конце статьи.

Полное исследование функции включает в себя следующие пункты:

1. Область определения функции D(y).

Область определения D(y) — это множество всех значений аргумента x, на котором задана функция. Другими словами — это промежуток по оси икс, в пределах которого функция f(x) непрерывна и определена.

К примеру, если функция непрерывна, то ответ таков: D(y) = R, где R — это множество всех значений икс, от минус бесконечности до плюс бесконечности. В ином случае, точка разрыва включается в ответ. Пусть функция неопределена в точке х = 1, тогда область определения исключает данную точку: D(y) = (-00; 1),(1;+00). (-00 и +00 это знак бесконечности).

2. Четность, нечетность, периодичность функции.

Четность или нечетность показывает существует ли симметричность функции относительно начала координат или оси ординат. Чтобы определить четность/нечетность, берем икс со знаком минус, подставляем его в исследуемую функцию f(x) на место обычных иксов и считаем. В случае, если на выходе имеем точно такую же функцию, как исходная, с такими же знаками всех коэффициентов, то говорят, что данная функция четная: Записывается так: y(-x) = y(x). График четной функции симметричен относительно центра координат.

В случае, если на выходе получается исходная функция, но со знаком минус за скобками, то говорят что функция нечетная и записывается это так: y(-x) = -y(x). График нечетной функции, симметричен относительно оси ординат. Существует и третий случай, когда на выходе получается «разношерстная» функция, в которой все знаки перемешались и не помогают никакие манипуляции, чтобы функция стала похожей на исходную или исходную со знаком минус. Тогда говорят, что данная функция ни четная, ни нечетная и она не обладает никакой симметрией.

Свойство периодичности присуще тригонометрическим функциям, оно показывает существует ли период или другими словами некоторый повторяющийся регулярный интервал аргумента, при котором функция сохраняет свои значения при добавлении к аргументу этого периода на всей области определения.

3. Точки пересечения с осями координат ОХ и ОУ.

При пересечении графика функции f(x) с осью икс (ОХ), координата у = 0. Найденные точка(и) будет иметь координаты М1(х;0). При пересечении графика функции f(x) оси игрек (ОУ), координата х = 0, соответственно точка(и) пересечения будет иметь координаты М2(0;y).

4. Поиск вертикальных, наклонных или горизонтальных асимптот.

Традиционно исследование начинается с поиска вертикальных асимптот. В случае, если функция f(x) терпит бесконечный разрыв в какой-либо точке х, то прямая, проведенная через эту точку параллельно оси игрек, будет являться вертикальной асимптотой. Чтобы доказать это, необходимо вычислить пределы от исходной функции f(x) при икс стремящемся к минус и плюс бесконечности (если это возможно) или один из этих пределов. В случае, если хоть в одном из них получится ответ бесконечность, это и будет являться доказательством.

Далее идет поиск наклонных или горизонтальных асимптот. Многие иногда путаются в этих понятиях, считая их независимыми, не связанными друг с другом, что конечно же неверно. Наклонная асимптота имеет уравнение y = kx + b, а горизонтальная — это частный случай наклонной, в котором коэффициент при икс равен нулю (k = 0), ее уравнение y = b. Чтобы найти наклонную асимптоту функции необходимо вычислить два предела:

Если коэффициент k = 0, то при поиске коэффициента b будет рассчитываться предел от функции f(x) и при подстановке в формулу y = kx + b мы получим уравнение горизонтальной асимптоты y = b, т.е. прямую, параллельную оси икс. Если коэффициент k будет равен бесконечности, неважно плюс или минус, в таком случае дальнейшие вычисления не осуществляются, а в ответе записываем, что наклонные асимптоты отсутствуют.

5. Промежутки возрастания и убывания (промежутки монотонности), экстремумы функции.

Промежутки монотонности функции f(x) находятся при помощи первой производной. Алгоритм таков: берем первую производную от f(x), приравниваем результат производной к нулю f ‘(x) = 0, находим корень(корни) данного уравнения x1, x2 и т. д. Таким образом мы получаем экстремумы функции. Далее чертим ось икс и отмечаем на ней закрашенными кружочками найденные корни x1, x2

Нужно помнить, что если функция имеет точки разрыва в области определения, их также необходимо отметить на числовой оси, отмечая пустыми кружочками.

Получаем несколько промежутков, границами которых вперемешку являются точки из корней и точек разрыва, это не страшно, просто нужно будет это учитывать в дальнейшем при оформлении ответа. Далее начинаем исследовать знаки производной на каждом из полученных промежутков. Берем по одному числу из каждого промежутка, подставляем в производную f ‘(x) и отмечаем знаки (плюс или минус), рисуя их прямо над осью в исследуемом промежутке.

Остается самое интересное! Анализируем результаты, изучая каждую точку :

— закрашенная точка, в которой идет смена знаков с плюса на минус ( смотрим слева и справа от точки )- это точка максимума. Под осью икс рисуем стрелочку вверх, там где плюс и стрелочку вниз, там где минус.

— закрашенная точка, в которой идет смена знаков с минуса на плюс — это точка минимума. Также помечаем стрелочками направления вниз и вверх.

— пустая точка (пустой кружок) — это точка разрыва и ее мы не имеем права записать в минимумы или максимумы, в этой точке функция не определена, не существует.

Итак, с экстремумами «рассчитались» и нам остается найти промежутки возрастания и убывания функции, или другими словами — промежутки монотонности. Собственно, здесь все предельно просто: промежутки, в которых стрелочка смотрит вверх это промежутки возрастания функции, где стрелочка вниз — промежутки убывания. Важный момент — учитываем точки разрыва ( незакрашенные точки ), когда записываем ответ.

Если в промежутке (a;b) имеется точка разрыва c (точка с пустым кружочком), то ответ записывается с учетом этой точки: (a;c),(c;b).

6. Промежутки выпуклости и вогнутости, точки перегиба функции.

Чтобы найти промежутки, в которых функция выпукла и вогнута, а также точки перегиба, необходимо найти вторую производную. Вторая производная берется от первой: ( f ‘(x) )’ = f ‘ ‘(x). Далее, как и в предыдущем пункте, приравниваем вторую производную к нулю, находим корни уравнения. Рисуем ось икс, отмечаем найденные корни закрашенными точками, точки разрыва отмечаем пустыми кружочками.

Исследуем знаки второй производной на каждом из промежутков. Там где вторая производная положительна рисуем скобку в виде улыбки, здесь функция вогнута. В ином случае, рисуем унылую скобку, здесь функция выпукла. Соответственно, при записи промежутков вогнутости и выпуклости функции не забываем учитывать точки разрыва. Точки перегиба находим там, где вторая производная меняет свой знак с + на — и наоборот, и точка закрашенная.

7. Построение графика.

Учитывая все предыдущие расчеты и найденные величины — точки разрыва, точки пересечения с осями координат, асимптоты, точки экстремумы, точки перегиба, строим график исследуемой функции. Желательно делать все это на листке в клетку, с масштабом побольше, чтобы как можно точнее получился график функции.

Конечно, сухая теория без практики это не дело, а потому предлагаю перейти к примерам исследования функции с помощью производной.

matematyka.ru

График функции. Возрастание и убывание функции; периодичность, четность, нечетность

Пусть на некоторой плоскости задана прямоугольная система координат. Графиком некоторой функции , (X- область определения) называется множество точек этой плоскости с координатами , где .

Для построения графика нужно изобразить на плоскости множество точек, координаты которых (x;y) связаны соотношением .

Чаще всего графиком функции является некоторая кривая.

Самый простой способ построения графика — построение по точкам.

Составляется таблица, в которой в одной ячейке стоит значение аргумента, а в противоположной ей значение функции от этого аргумента. Затем полученные точки отмечаются на плоскости, и через них проводится кривая.

Пример построения по точкам графика функции :

Построим таблицу.

Теперь строим график.

Но таким способом не всегда возможно построить достаточно точный график — для точности нужно брать очень много точек. Поэтому используют различные методы исследования функции.

С полной схемой исследования функции знакомятся в высших учебных заведениях. Одним из пунктов исследования функции является нахождение промежутков возрастания (убывания) функции.

Функция называется возрастающей (убывающей)  на некотором промежутке, если , для любых x2 и x1 из этого промежутка, таких, что x2>x1.

Например, функция, график которой изображен на следующем рисунке, на промежутках возрастает, а на промежутке (-5;3) убывает. То есть, на промежутках график идет «в гору». А на промежутке (-5;3) «под гору».

Еще одним из пунктов исследования функции является исследование функции на периодичность.

Функция называется периодичной, если существует такое число T, что .

Число T называют периодом функции. Например, функция периодична, здесь период равен 2П, так

Примеры графиков периодичных функций:

Период первой функции равен 3, а второй – 4.

Функция называется четной, если  Пример четной функции y=x2.

Функция называется нечетной, если  Пример нечетной функции y=x3.

График четной функции симметричен относительно оси ОУ (осевая симметрия).

График нечетной функции симметричен относительно начала координат (центральная симметрия).

Примеры графиков четной (слева) и нечетной (справа) функции:

studyport.ru

П.3. Исследование функций и построение графиков

Полное исследование функции для построения ее графика включает следующие пункты (не обязательно именно в данном порядке).

1) Область определœения функции (ООФ) и область ее значений (ОЗФ).

В случае если область определœения функции не задана специально, то считают, что она совпадает с областью допустимых значений ее аргумента͵ ᴛ.ᴇ. с множеством всœех точек х, для которых выполнима операция f. При нахождении ООФ используют ООФ элементарных функций , , , и др.

Область значений функции находят только в случаях, когда ее можно сразу указать, опираясь на свойства элементарных функций, к примеру, для функции , очевидно, .

2) Четность функции, ее периодичность.

Для установления четности (нечетности) функции , имеющей симметричную область определœения, проверяют справедливость равенств ( ) для всœех ООФ.

В случае четности или нечетности функции исследование ее поведения и построение графика можно проводить только для , а затем достроить график, используя симметрию: для четной функции график симметричен относительно оси OY, а для нечетной – относительно начала координат.

Для установления периодичности функции проверяют справедливость равенства для ООФ, где Т определяется видом функции. В случае периодической функции исследование проводят для одного промежутка периодичности.

3) Непрерывность функции, точки разрыва, вертикальные асимптоты.

Для определœения промежутков непрерывности функции используют непрерывность базовых элементарных функций. В точках, ʼʼподозрительныхʼʼ на разрыв (отдельных точек, не входящих в ООФ), проверяют выполнение условий непрерывности. В случае если функция терпит разрыв в точке х0, то определют тип разрыва.

В случае если функция имеет бесконечный разрыв в некоторой точке х0, то прямая х = х0 является вертикальной асимптотой графика функции. В случае если только один из односторонних пределов при х0– 0 или х0+ 0 является бесконечным, то асимптота принято называть односторонней.

В случае если функция определœена не на всœей числовой оси, то крайне важно вычислить односторонние пределы функции в точках, ограничивающих промежутки ООФ. В случае если односторонний предел функции в точке а, ограничивающей промежуток ООФ, бесконечен, то х = а является односторонней вертикальной асимптотой графика функции. К примеру, в случае если ООФ: , то нужно найти ; если данный предел окажется бесконечным, то х = а является односторонней вертикальной асимптотой графика функции.

4) Промежутки монотонности и экстремумы.

Для определœения промежутков монотонности функции используют достаточный признак монотонности.

Достаточный признак монотонности дифференцируемой функции:

если на интервале хÎ(а, b) производная сохраняет знак, то функция сохраняет монотонность на этом интервале, а именно: если , то f(x) возрастает, в случае если , то f(x) убывает.

Для установления точек экстремумов функции используют необходимый и достаточные признаки существования экстремума.

Необходимое условие существования экстремума функции: если непрерывная функция имеет экстремум в точке х0, то ее производная в этой точке равна нулю или не существует.

Точки, принадлежащие ООФ, в которых производная равна нулю или не существует, называют критическими точками функции по ее первой производной (точками, ʼʼподозрительными на экстремумʼʼ).

Первый достаточный признак существования экстремума: если при переходе через критическую точку х0 (слева направо) производная изменяет свой знак, то в точке х0 есть экстремум причем это максимум, в случае если знак меняется с плюса на минус, и это минимум, в случае если знак меняется с минуса на плюс. В случае если при переходе через критическую точку х0 производная не изменяет свой знак, то в точке х0 нет экстремума функции .

Второй достаточный признак существования экстремума: если – дважды дифференцируемая функция в точке х0 и , тогда: если , то х0 – точка минимума функции, а если , то х0 – точка максимума.

Стоит сказать, что для нахождения точек экстремумов функции сначала находят критические точки по первой производной. После этого проверяют выполнение в них достаточных условий существования экстремума функции.

5) Промежутки выпуклости, вогнутости графика и точки перегиба.

Дуга кривой L принято называть выпуклой, в случае если всœе ее точки расположены не выше касательной, проведенной в любой точке этой дуги (рис. 27), и принято называть вогнутой, в случае если всœе ее точки расположены не ниже касательной, проведенной в любой точке дуги кривой.

Точки, принадлежащие кривой, и отделяющие участки выпуклости от участков вогнутости, называются точками перегиба кривой (рис. 27).

Достаточное условие выпуклости, вогнутости графика функции:если функция является дважды дифференцируемой и ее вторая производная сохраняет знак при всœех xÎ(a;b), то график функции имеет постоянное направление выпуклости на этом интервале: при <0 – выпуклость вверх, при >0 – вогнутость (выпуклость вниз).

Необходимое условие для точки перегиба: если х0 – абсцисса точки перегиба графика функции , то ее вторая производная в этой точке равна нулю или не существует.

Точки, принадлежащие графику функции , в которых или не существует, называются критическими точками функции по ее второй производной (точками, ʼʼподозрительными на перегибʼʼ).

Достаточное условие для точек перегиба: если вторая производная при переходе через точку х0, подозрительную на перегиб, изменяет знак, то точка графика с абсциссой х0 является точкой перегиба. В случае если не изменяет знак при переходе через точку х0, то перегиба нет.

При нахождении промежутков выпуклости, вогнутости графика функции сначала находят критические точки по второй производной, после этого выделяют промежутки знакопостоянства второй производной на ООФ: если , то кривая вогнутая, а если , то кривая выпуклая. Точки перегиба определяют, используя достаточные условия перегиба.

6) Наклонные и горизонтальные асимптоты.

Асимптотой кривой, имеющей бесконечную ветвь, принято называть прямая, расстояние до которой от текущей точки М кривой стремится к нулю при удалении точки М от начала координат (рис. 28).

В случае если график функции имеет наклонную асимптоту с уравнением , то параметры k и b в уравнении асимптоты можно найти по формулам:

, (26)

. (27)

В случае если хотя бы один из этих пределов является бесконечным или не существует, то наклонных асимптот нет. В случае, когда k = 0, график имеет горизонтальную асимптоту с уравнением y = b.

В некоторых случаях (как правило, в случае если f(x) выражена через показательную или логарифмическую функцию), график может иметь асимптоты только при или только при .

Иногда ветви графика при и при имеют разные асимптоты.

7) Точки пересечения графика с осями координат или другие дополнительные точки графика.

Дополнительные точки графика находят в случаях, когда недостаточно информации для выбора масштаба по осям координат, ᴛ.ᴇ. когда на некотором промежутке ООФ нет ни точек экстремумов, ни точек перегибов, ни точек пересечения графика с осями координат.

referatwork.ru

Исследование функции и построение её графика

Если требуется построить график функции , то необходимо предварительно провести исследование её свойств. Это можно сделать по следующему плану:

1. Область определения функции .

2. Точки разрыва, поведение функции в окрестности точек разрыва.

3. Вертикальные асимптоты.

4. Точки пересечения графика функции с координатными осями.

5. Интервалы знакопостоянства функции.

6. Чётность, нечётность функции.

7. Периодичность функции.

8. Наклонные асимптоты графика функции.

9. Интервалы монотонности.

10. Экстремумы.

11. Интервалы выпуклости, вогнутости, точки перегиба.

12. Для более точного построения графика, можно найти значения функции в дополнительных точках.

Заметим, что приведённая схема исследования функций не является обязательной, этот порядок исследования может быть изменён в каждом конкретном случае.

Пример.Исследовать функцию и построить её график.

Решение.

1. Область определения функции .

2. – точка разрыва

3. Прямая является вертикальной асимптотой графика функции.

4. Точки пересечения графика функции с координатными осями:

Отсюда видно, что график рассматриваемой функции пересекает обе координатные оси в начале координат, т.е. в точке .

5. Интервалы знакопостоянства функции:

а)

б)

6. Чётность, нечётность функции: рассматриваемая функция не является ни чётной, ни нечётной, поскольку её область определения не симметричная относительно нуля. К этому же выводу можно прийти, рассмотрев

7. Рассматриваемая функция не является периодической.

8. Наклонная асимптота графика имеет уравнение

 

где

Следовательно, – наклонная асимптота при и при .

9. Интервалы монотонности найдём, исследуя производную функции:

Критические точки:

а) не существует при

б) при

Отсюда видно, что функция возрастает при и при , убывает при .

10. Экстремумы:

Из п. 9 видим, что точкой максимума является вычислим

.

11. Интервалы выпуклости, вогнутости и точки перегиба найдём, исследуя производную второго порядка:

Критические точки II рода:

а) не существует при

б) при

Отсюда видно, что функция имеет выпуклый график на интервале и и вогнутый на интервале .

Кроме того, график имеет точку перегиба, ее вторая координата , таким образом – точка перегиба.

 

Результаты проведенных исследований можно свести в таблицу:

 


Похожие статьи:

poznayka.org

Построить график функции что значит – Функции. Основные виды, графики, способы задания

Как построить график функции у = f(x) + m, если известен график функции у = f(x)

На этом уроке вы узнаете, как построить график функции y=f (x) + m, если известен график функции y= f(x)

На прошлом уроке мы научились график функции . Сейчас же наша задача – научиться строить график функции . Рассмотрим пример:

Дано:

у = х2(графиком данной функции будет парабола) (рис. 1)

Рис. 1. Иллюстрация к задаче

Построить:

а) у = х2 + 1

б) у = х2 — 1

Решение: Поясним характер кривых, их взаимное расположение поясним с помощью таблицы:

х

0

1

-1

2

-2

у = х2

0

1

1

4

4

у = х2 + 1

1

2

2

5

5

у = х2 – 1

-1

0

0

3

3

Строим график функции у = х2 + 1 (рис. 2):

Рис. 2. График функции у = х2 + 1

График этой функции получается с помощью сдвига вверх на 1 единицу графика исходной функции.

График же следующей функции мы получим сдвигом исходной функции вниз на 1 единицу (рис. 3):

Рис. 3. График функции у = х2 – 1

Итак, чтобы построить график функции у = х2 + 1, надо график исходной функции сдвинуть на 1 единицу вверх. Чтобы построить график функции у = х2 – 1, необходимо график исходной функции сдвинуть на 1 единицу вниз.

Сдвиги вверх и вниз приводят к изменению множества значений. Множество значений иллюстрирует эти сдвиги:

       

;             

;       

Мы рассмотрели частный случай, когда к х2 прибавляли или отнимали единицу. Отсюда следует правило:

Правило построения не изменится при . Правило также не изменится, если мы возьмем любую другую функцию.

Сформулируем важное для нас правило:

Чтобы получить у = f(х) + m, надо кривую у = f(x):

— сдвинуть на  единиц вверх, если m > 0,

— сдвинуть на  единиц вниз, если m < 0

Рисунок отображает графически данное правило (рис. 4):

Рис. 4. Иллюстрация правила

Дана кривая . Построить кривые: а) ; б)

Построение:

а) Строим график функции  и сдвигаем его на 1 единицу вверх (согласно правилу) (рис. 5):

Рис. 5. Иллюстрация к задаче а)   

График функции а) построен сдвигом графика исходной функции на 1 единицу вверх.

б) Строим график функции  и сдвигаем его на 1 единицу вниз (согласно правилу) (рис. 6):

         

Рис. 6. Иллюстрация к задаче б)

Кривые а) и б) построены. Сделаем некоторый анализ:

У нас есть 3 кривые (у = ; у =  и у = . Каждая из них есть гипербола. Шаблоном для всех остальных является гипербола . Но у каждой гиперболы есть свой центр симметрии. Отметим их:

(0; 0) –

(0; 1) –

(0; -1) –

Итак, построены 3 гиперболы, и для каждой из них указан центр.

           

Далее рассмотрим горизонтальные асимптоты:

Теперь проанализируем множества значений для каждой из функций:

    

   

    

Найти все значения параметра а, при которых уравнения: а) ;

б)  = а; в)  = а не имеют решений.

Решение:

а)

Ответ для этой задачи ясен сразу. Уравнение , если .

Ответ: это уравнение не имеет решений, когда .

б) Преобразуем левую часть:

=>

Эту функцию мы уже рассматривали в задаче 2. Эта функция принимает все значения, кроме 1.

Если  , то это уравнение не имеет решений.

 =  + 1 =>  =  =>  => = 1 =>  

Ответ: это уравнение не имеет решений, когда .

в) Запишем его следующим образом:

 =>

Мы только что рассматривали эту функцию в задаче 2 и выяснили, что она принимает все значения, кроме -1.

Если , то это уравнение не имеет решений.

Ответ: это уравнение не имеет решений, когда .

Дадим геометрическую интерпретацию каждой из задач (рис. 7)

Рис. 7. Иллюстрация к задачам

Итак, мы решили 3 задачи и дали иллюстрации к каждой из них.

Решить уравнение .

Решение:

Для начала попробуем решить аналитическим методом.

а) Приведем к общему знаменателю и получим:

 = 0

Дробь равна 0 тогда, и только тогда, когда числитель ( равен 0, а знаменатель (х) не равен 0. Но уравнения третьей степени мы сейчас решать не можем. Значит, единственным возможным методом остается графический.

б) Перепишем данное уравнение  

График функции как из левой, так и из пр

interneturok.ru

Где построить график функции?

Раньше, когда все работы выполнялись в тетрадках, такого вопроса, где построить график функции (в каком редакторе) не возникало. Сейчас нам больше нравится тыкать на кнопки клавиатуры, нежели писать ручками. Оформленная на компьютере работа выглядит аккуратно, а если немного приноровиться, то скорость выполнения будет выше рукописной.

Каждый из нас знает в каком редакторе набрать текст, но вот с графиками дело обстоит чуть хуже. Я использую для этих целей Geogebra. 

Определение с Википедии: GeoGebra — свободно распространяемая (GPL) динамическая геометрическая среда, которая даёт возможность создавать чертежи в планиметрии, в частности, для построений с помощью циркуля и линейки. Скачать ее можно тут совершенно бесплатно: http://www.geogebra.org/cms/ru/

Это очень простая в использовании программа, не требующая каких либо дополнительных знаний.

Для того, чтобы скачать ее и понять как построить график функции на плоскости, вам достаточно будет пяти минут.

Если она вас заинтересует, то можно заняться ей более плотно, так как она обладает огромными возможностями.

Пример построения:

 

Разберем по шагам как это сделать.

После скачивания и установки программы на рабочем столе появится вот такой ярлык:

Кликаем по нему. Запускается Geogebra. Открывается вот такое окно программы:

 

Закрываем ненужное окно таблиц, оно не понадобиться для нашего построения.

Добавляем нужные объекты: панель объектов и строку ввода.  Находятся данные пункты на вкладке Вид.

Рабочее окно программы теперь выглядит так:

 

Чтобы каждый раз при запуске программы не производить вышеописанные действия, необходимо сохранить настройки.

Пункт меню Настройки → Сохранить настройки.

В строке ввода пишем функцию, которую хотим построить.

Например: y=x3 . Степень вводим значком ^. Для этого на клавиатуре одновременно нажимаем [Shift] и [6].

Имеем в строке y=x^3. Жмем Enter. График функции построен.

Немного подкорректируем график: добавим подпись, линию графика сделаем чуть толще. 

 

Перемещая бегунок регулируем толщину линии. При желании можно выбрать другой тип линии. 

Если толщина линии по умолчанию вас не устраивает, то лучше изменить ее в настройках программы один раз, а не править для каждого графика функций.

Пункт меню Настройки → Дополнительно → Настройки по умолчанию

Не забываем после изменения, сохранить настройки.

 

В раскрывающимся списке выбираем «Имя и значение» для добавления подписи к построенному графику. Подпись можем перемещать мышкой вдоль графика по своему усмотрению.

Если удерживать клавишу [Ctrl]  и левую кнопку мыши, то можно перемещать рабочую область построения.

Можно изменить масштаб построения одновременно удерживая  [Ctrl] и крутя колесико мыши.

Операции перемещения и изменения масштаба можно найти и в раскрывающимся списке панели инструментов:

Построим еще один график функции, приведенный как пример в начале статьи.

В новом окне в строке ввода пишем: y=(x^2-1)/(x^2+1)

Незабываем, что «крышечка» ^ означает степень числа.

Допустим необходимо добавить на график горизонтальную асимптоту: y=1

Вводим это уравнение в строке ввода. Подкорректируем тип, толщину и цвет линии. Добавим подпись к графику.

Пока на этом все. Возникли вопросы? Пишите.  

matecos.ru

Графики функций. Простейшие построения

График функции — это наглядный образ некоторой функции f(x). Здесь каждому значению х соответствует единственное значение y. Это множество точек на плоскости, координаты которых удовлетворяют заданному уравнению y = f(x).

График уравнения — это множество всех точек плоскости, которые удовлетворяют заданному уравнению, т.е. обращают уравнение в верное числовое равенство. Зависимость в данном случае не обязательно является функцией.

Рассмотрим ряд элементарных функций, таких, как прямая, парабола, гипербола, их свойства и правила построения.

 

1. Прямая.

Прямая задается линейной функцией , т.е. уравнением первой степени вида y = ax + b.

при a>0 график функции возрастает (y=3x+1, a=3, a>0), при a

Рассмотрим частные случаи расположения линейных функций.

y = ax — график функции проходит через начало координат, т.е. точку О(0;0),

y = c (c = const) — график функции параллелен оси Ox,

x = c (c = const) — график функции параллелен оси Oy.

Для построения прямой достаточно получить координаты двух точек, принадлежащих заданному уравнению. 

 

 

 

2. Парабола.

Парабола задается квадратичной функцией вида y = ax2 + bx + c.

при a > 0 ветви параболы направлены вверх,

 

при a < 0 ветви параболы направлены вниз.

 

 

 

 

3. Гипербола.

not found

4. Кубическая парабола.

 

matecos.ru

Примеры построения графиков функций

1.Построить график функции

Такая функция, задаваемая явно, но несколькими формулами, называетсякусочно заданной функцией.

Решение

Чтобы построить график этой кусочно заданной функции, нужно

  • построить графики известных функций ,,;

  • выделить сужение каждой из этих функций на указанное множество;

  • объединить сужения в общий график.

Таким образом, график кусочно заданной функции получается компиляцией (объединением, склеиванием) «кусков» графиков известных функций.

2.Перейти от неявно заданной функцииy(x)уравнениемк явному заданию и построить график.

Решение

Решаем данное уравнение относительно y:

, где.

Получили равенство, которое каждому значению ставит в соответствие два значенияy. Можно было бы его истолковать как двузначную функцию. Но функциональная зависимость по определению однозначная, т. к. этим определением каждому значениюxставится в соответствие единственное значениеy. Поэтому нужно перейти от якобы двузначной функции к совокупности двух однозначных функций:

3.Построить график функции.

Решение

По определению модулей имеем, что

Преобразуем данную функцию, раскрыв оба модуля на каждом из промежутков знакопостоянства подмодульных выражений:

.

Строим график получившейся кусочно-заданной функции:

график функции

4.Построить график функции, заданной параметрически

Линия, описываемая этими уравнениями, называетсяциклоидой.

Решение

Построение графика любой функции, заданной параметрически, проводится поточечно с помощью таблицы соответствующих значений параметра, аргумента и функции.

t

0

2

0

R

2R

0

2R

R

0

Точки графика

(0; 0)

Нетрудно видеть, что эта функция является периодической с наименьшим периодом .

Известно геометрическое определение циклоиды как линии, которую описывает фиксированная точка окружности радиуса R, если окружность катится без скольжения по прямой:

фиксированная точка окружности в начальный момент времени.

5.Построить график функциив полярной системе координат.

Решение

Построение линии в полярной системе координат выполняется по точкам с помощью таблицы соответствующих друг другу значений аргумента и функции. При построении таблицы учтем, что функция является четной, поэтому.

0

2a

a

0

Точка на графике

T1

T2, T3

T4, T5

T6, T7

О

Линия, описываемая уравнением, называетсякардиоидой.

studfiles.net

Конвертер xlsx в xls онлайн – Конвертер Xlsx в Xls

XLSX в XLS | Zamzar

Расширение файла .xlsx
Категория Document File
Описание Был представлен другой открытый тип документов XML, как часть продуктов «Microsoft Office 2007». На этот раз в сфере «Excel», «Excel» известен во всем мире. Это мощный инструмент, который можно использовать для создания и форматирования таблиц, графиков, решения сложных математических задач и многого другого. Вы можете создавать различные таблицы с несколькими рабочими книгами, формулами и различными источниками данных. Файлы можно сохранить в формате XLSX, который основан на открытом формате XML и использует сжатие ZIP для более маленького размера файлов.
Действия XLSX в XLS — Конвертировать файл сейчас
View other document file formats
Технические детали XLSX улучшает управление файлами и данными, а также восстановление данных. XLSX расшираяет возможности бинарных файлов предыдущих версий. Любое приложение, поддерживающее XML может получить доступ и работать с данными в новом формате файлов. Приложение не должно быть продуктом от «Microsoft», оно может быть любое. Пользователи также могут использовать стандартные преобразования для извлечения или перепрофилирования данных. Кроме того, проблемы безопасности существенно уменьшается, поскольку информация хранится в XML, который по существу является обычный текст. Таким образом, данные могут проходить через корпоративные шлюзы безопасности беспрепятственно.
Ассоциированные программы Microsoft Excel 2007
OpenOffice
OxygenOffice Progessional (Linux)
Разработано Microsoft
Тип MIME application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
Полезные ссылки Подробнее о формате XLSX
Convert XLSX file

www.zamzar.com

Конвертеры XLSX в XLS онлайн

Если у вас возникла необходимость открыть XLSX-файл в табличном редакторе Excel старше 2007 года, документ придется конвертировать в более ранний формат — XLS. Такое преобразование можно произвести с помощью соответствующей программы либо прямо в браузере — онлайн. Как это сделать, мы и расскажем в данной статье.

Как конвертировать XLSX в XLS онлайн

Преобразование Excel-документов — дело не самое сложное, и скачивать отдельную программу для этого не очень-то хочется. Лучшим решением в таком случае можно по праву считать онлайн-конвертеры — сервисы, использующие собственные сервера для преобразования файлов. Давайте же познакомимся с лучшими из них.

Способ 1: Convertio

Данный сервис является наиболее удобным инструментом для преобразования табличных документов. Помимо файлов MS Excel, Конвертио умеет конвертировать аудио- и видеозаписи, изображения, различного рода документы, архивы, презентации, а также популярные форматы электронных книг.

Онлайн-сервис Convertio

Чтобы воспользоваться этим конвертером, регистрироваться на сайте совсем не обязательно. Преобразовать нужный нам файл можно буквально в пару кликов.

  1. Сначала нужно загрузить XLSX-документ непосредственно на сервер Convertio. Для этого воспользуемся красной панелью, расположенной по центру главной страницы сайта.
    Здесь у нас есть несколько вариантов: можем выгрузить файл с компьютера, загрузить по ссылке, либо же импортировать документ с облачного хранилища Dropbox или Google Диск. Чтобы воспользоваться каким-либо из способов, кликаем на соответствующую иконку на этой же панели.

    Сразу стоит уточнить, что бесплатно можно преобразовать документ размером до 100 мегабайт. В ином случае придется покупать подписку. Впрочем, для наших целей подобный лимит более чем достаточен.

  2. После загрузки документа в Convertio он сразу же появится в списке файлов для преобразования.
    Требуемый формат для конвертации — XLS — уже установлен по умолчанию (1), а статус документа объявлен как «Подготовлено». Кликаем на кнопку «Преобразовать» и ждем окончания процесса конвертирования.
  3. О завершении преобразования будет свидетельствовать статус документа «Завершено». Чтобы загрузить конвертированный файл на компьютер, кликаем на кнопку «Скачать».

    Полученный XLS-файл можно также импортировать в одно из вышеупомянутых облачных хранилищ. Для этого в поле «Сохранить результат в» кликаем на кнопку с обозначением нужного нам сервиса.

Способ 2: Standard Converter

Этот онлайн-сервис и выглядит значительно проще, и работает с меньшим количеством форматов, нежели предыдущий. Однако для наших целей это не столь важно. Главное, что с преобразованием документов XLSX в XLS данный конвертер справляется «на отлично».

Онлайн-сервис Standard Converter

На главной странице сайта нам сразу предлагают выбрать сочетания форматов для конвертирования.

  1. Интересует нас пара XLSX -> XLS, поэтому, чтобы приступить к процедуре преобразования, кликаем на соответствующую кнопку.
  2. На открывшейся странице жмем «Выберите файл» и при помощи Проводника открываем нужный документ для загрузки на сервер.
    Затем кликаем на большую красную кнопку с надписью «Convert».
  3. Процесс преобразования документа занимает всего несколько секунд, а по его окончании XLS-файл автоматически скачивается на ваш компьютер.

Именно благодаря сочетанию простоты и быстродействия Standard Converter можно считать одним из лучших инструментов для конвертирования файлов Excel онлайн.

Способ 3: Convert Files

Конверт Файлс — многопрофильный онлайн-конвертер, который поможет вам быстро преобразовать XLSX в XLS. Сервис также поддерживает другие форматы документов, умеет конвертировать архивы, презентации, электронные книги, видео- и аудиофайлы.

Онлайн-сервис Convert Files

Интерфейс сайта особо удобным не назовешь: основной проблемой можно считать недостаточный размер шрифта и элементов управления. Однако в целом использовать сервис можно без каких-либо затруднений.

Для того чтобы приступить к конвертированию табличного документа, нам даже не придется покидать главную страницу Convert Files.

  1. Здесь находим форму «Select a file to convert».
    Эту область основных действий спутать ни с чем нельзя: среди всех элементов на странице ее выделяет заливка зеленого цвета.
  2. В строке «Choose a local file» жмем на кнопку «Browse» для загрузки XLS-документа непосредственно с памяти нашего компьютера.
    Либо же импортируем файл по ссылке, указав ее в поле «or download it from».
  3. После выбора .XLSX-документа в выпадающем списке «Output format» будет автоматически выбрано итоговое расширение файла — .XLS.
    Все, что нам остается — это отметить пункт «Send a download link to my email» для отправки преобразованного документа на электронный ящик (если требуется) и нажать «Convert».
  4. По окончании конвертирования вы увидите сообщение о том, что файл был успешно преобразован, а также ссылку для перехода к странице загрузки итогового документа.
    Собственно, на этот «линк» и кликаем.
  5. Дальше остается лишь скачать наш XLS-документ. Для этого переходим по ссылке, расположенной после надписи «Please download your converted file».

Вот и все действия, которые нужны для преобразования XLSX в XLS при помощи сервиса Convert Files.

Способ 4: AConvert

Данный сервис является одним из самых мощных онлайн-конвертеров, ведь помимо поддержки всевозможных форматов файлов, AConvert умеет еще и преобразовывать несколько документов одновременно.

Онлайн-сервис AConvert

Конечно же, присутствует здесь и нужная нам пара XLSX -> XLS.

  1. Для преобразования табличного документа в левой части портала AConvert находим меню с поддерживаемыми видами файлов.
    В этом списке выбираем пункт «Document».
  2. На открывшейся странице нас снова встречает привычная форма загрузки файла на сайт.

    Чтобы выгрузить XLSX-документ с компьютера, жмем на кнопку «Выберите файл» и через окно Проводника открываем локальный файл. Другой вариант — загрузка табличного документа по ссылке. Для этого в триггере слева переключаем режим на «URL» и вставляем интернет-адрес файла в появившуюся строку.
  3. После того, как вы любым из вышеуказанных способов загрузили документ XLSX на сервер, в выпадающем списке «Target format» выберите «XLS» и нажмите кнопку «Convert Now!».
  4. В итоге, спустя несколько секунд, ниже, в табличке «Conversion Results», мы можем наблюдать ссылку на загрузку преобразованного документа. Расположена она, как можно догадаться, в столбце «Output file».
    Можно пойти и другим путем — воспользоваться соответствующей пиктограммой в столбце «Action». Кликнув на нее, мы попадем на страницу с информацией о преобразованном файле.

    Отсюда же можно импортировать XLS-документ в облачное хранилище DropBox или Google Диск. А для быстрой загрузки файла на мобильное устройство нам предлагают воспользоваться QR-кодом.

Способ 5: Zamzar

Если вам быстро нужно преобразовать XLSX-документ размером до 50 Мб, почему бы не воспользоваться онлайн-решением Zamzar. Данный сервис и вовсе практически «всеядный»: поддерживается большинство существующих форматов документов, аудио, видео и электронных книг.

Онлайн-сервис Zamzar

Перейти к конвертированию XLSX в XLS можно прямо на главной странице сайта.

  1. Сразу под «шапкой» с изображением хамелеонов находим панель для загрузки и подготовки файлов к преобразованию.
    При помощи вкладки «Convert Files» мы можем выгрузить документ на сайт с компьютера. А вот чтобы воспользоваться загрузкой по ссылке, придется перейти на вкладку «URL Converter». В остальном же процесс работы с сервисом для обоих способов идентичен. Для загрузки файла с компьютера жмем на кнопку «Choose Files» или перетаскиваем документ на страницу из Проводника. Ну а если файл мы хотим импортировать по ссылке, на вкладке «URL Converter» вписываем его адрес в поле «Step 1».
  2. Дальше, в выпадающем списке раздела «Step 2» («Шаг №2») выбираем формат для преобразования документа. В нашем случае это «XLS» в группе «Document Formats».
  3. Следующий шаг — вводим наш адрес электронной почты в поле раздела «Step 3».

    Именно на этот ящик в качестве вложения к письму будет отправлен преобразованный XLS-документ.

  4. И наконец для запуска процесса конвертации жмем на кнопку «Convert».

    По окончании преобразования, как уже было сказано, файл XLS будет отправлен в качестве вложения на указанный электронный ящик. Чтобы скачивать конвертированные документы непосредственно с сайта, предлагается платная подписка, но это нам ни к чему.

Читайте также: Программы для конвертирования XLSX в XLS

Как вы могли заметить, существование онлайн-конвертеров делает совсем необязательным использование специализированных программ для преобразования табличных документов на компьютере. Все вышеперечисленные сервисы отлично справляются со своей задачей, а вот с каким из них работать — это ваш личный выбор.

Мы рады, что смогли помочь Вам в решении проблемы.
Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

lumpics.ru

XLS в XLSX | Zamzar

Расширение файла .xlsx
Категория Document File
Описание Был представлен другой открытый тип документов XML, как часть продуктов «Microsoft Office 2007». На этот раз в сфере «Excel», «Excel» известен во всем мире. Это мощный инструмент, который можно использовать для создания и форматирования таблиц, графиков, решения сложных математических задач и многого другого. Вы можете создавать различные таблицы с несколькими рабочими книгами, формулами и различными источниками данных. Файлы можно сохранить в формате XLSX, который основан на открытом формате XML и использует сжатие ZIP для более маленького размера файлов.
Действия Convert XLSX file
View other document file formats
Технические детали XLSX улучшает управление файлами и данными, а также восстановление данных. XLSX расшираяет возможности бинарных файлов предыдущих версий. Любое приложение, поддерживающее XML может получить доступ и работать с данными в новом формате файлов. Приложение не должно быть продуктом от «Microsoft», оно может быть любое. Пользователи также могут использовать стандартные преобразования для извлечения или перепрофилирования данных. Кроме того, проблемы безопасности существенно уменьшается, поскольку информация хранится в XML, который по существу является обычный текст. Таким образом, данные могут проходить через корпоративные шлюзы безопасности беспрепятственно.
Ассоциированные программы Microsoft Excel 2007
OpenOffice
OxygenOffice Progessional (Linux)
Разработано Microsoft
Тип MIME application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
Полезные ссылки Подробнее о формате XLSX
Convert XLSX file

www.zamzar.com

Средняя линия прямоугольного треугольника формула – Средняя линия прямоугольного треугольника – формула

Прямоугольный треугольник

Дополнительное построение, ведущее к теореме о средней линии треугольника, трапеции и свойствам подобия треугольников.

Проводим из вершины прямого угла отрезок прямой, составляющий с катетом CA угол, равный углу CAB заданного прямоугольного треугольника ABC. В результате получим равнобедренный треугольник ACM с углами при основании . Но другой треугольник, получающийся при таком построении, также будет равнобедренным, поскольку каждый его угол при основании равен (по свойству углов прямоугольного треугольника и по построению — из прямого угла «вычли» угол ). В силу того, что треугольники BMC и AMC равнобедренные с общей стороной MC имеем равенство MB=MA=MC, т.е. MC – медиана, проведенная к гипотенузе прямоугольного треугольника, и она равна половине гипотенузы.
Следствие 1. Середина гипотенузы является центром окружности, описанной вокруг этого треугольника, поскольку получилось, что середина гипотенузы равноудалена от вершин прямоугольного треугольника.
Следствие 2. Средняя линия прямоугольного треугольника, соединяющая середину гипотенузы и середину катета, параллельна противоположному катету и равна его половине.
Опустим в равнобедренных треугольниках BMC и AMC высоты MH и MG на основания. Поскольку в равнобедренном треугольнике, высота, опущенная на основание, является также и медианой (и биссектрисой), то MH и MG –линии прямоугольного треугольника, соединяющие середину гипотенузы с серединами катетов. По построению они оказываются параллельными противоположным катетам и равные их половинам, поскольку треугольники равны MHC и MGC равны (причем MHCG – прямоугольник). Этот результат является основанием для доказательства теоремы о средней линии произвольного треугольника и, далее, средней линии трапеции и свойства пропорциональности отрезков, отсекаемых параллельными прямыми на двух пересекающих их прямых.

Все прямоугольные треугольники с одинаковым острым углом — подобны. Взгляд на тригонометрические функции.

Пример дополнительного построения — высота, опущенная на гипотенузу. Вывод теоремы Пифагора на основе подобия треугольников.

basharov.me

Признаки подобия треугольников. Средняя линия.

Тестирование онлайн

  • Подобие треугольников

  • Пропорциональные отрезки в треугольнике

Определение

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.

Теорема. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.

Признаки подобия треугольников

Теорема. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Теорема. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Теорема. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Средняя линия треугольника

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Теорема. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

fizmat.by

math-public:srednyaya_liniya_treugolnika [Президентский ФМЛ №239]

Определение

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника.

Свойства средней линии треугольника

Средняя линия треугольника параллельна стороне треугольника и равна ее половине.

Доказательство

Рассмотрим $\triangle ABC$, с основанием $AC$ и средней линией $MN$.

Докажем, что $MN\parallel AC$ и $MN=\dfrac{1}{2}\cdot AC$.

На прямой $MN$ за точкой $N$ выберем точку $D$ так, чтобы выполнялось $MN=ND$.

Тогда $\triangle BMN=\triangle NDC$ по первому признаку равенства ($BN=NC, MN=ND$, $\angle BNM=\angle DNC$).

Тогда $\angle 1=\angle 2$, следовательно, $AB\parallel DC$.

Кроме того, из равенства треугольников следует, что $MB=DC$.

Но $MB=MA$, следовательно $MA=DC$.

Тогда $AMDC$ – параллелограмм ($DC=MA$, $MA\parallel DC$).

Следовательно, $MD\parallel AC$ и $AC=MD=2\cdot MN$.

Признаки средней линии треугольника

  1. Если в треугольнике $ABC$ точка $M$ – середина стороны $AB$, а точка $N$ принадлежит стороне $BC$, и при этом $MN\parallel AC$, то $MN$ – средняя линия.

  2. Если в треугольнике $ABC$ точки $M$ и $N$ принадлежат сторонам $AB$ и $BC$ соответственно, при этом $MN\parallel AC$ и $2|MN|=|AC|$, то $MN$ – средняя линия.

Доказательство

Докажем первый пункт теоремы.

Рассмотрим $\triangle ABC$, в котором $M$ – середина $AB$, $N$ лежит на стороне $BC$, $MN\parallel AC$.

Докажем, что $MN$ – средняя линия.

Выберем на прямой $MN$ за точкой $N$ такую точку $D$, что $MD=AC$.

Тогда $AMDC$ – параллелограмм ($AC=MD$, $AC\parallel MD$).

Следовательно, $\angle B=\angle 3, \angle 1=\angle 2$, так как $AM\parallel CD$.

Кроме того $AM=DC$, как противоположные стороны параллелограмма.

Следовательно, $BM=MA=DC$.

Тогда $\triangle BMN=\triangle NDC$ по второму признаку равенства.

Следовательно, $BN=NC$, то есть $MN$ – средняя линия.

Докажем второй пункт теоремы.

Рассмотрим треугольник $ABC$, в котором на сторонах $AB$ и $BC$ взяты точки $M$ и $N$ соответственно так, что $MN\parallel AC$ и $2\cdot MN=AC$.

Докажем, что тогда $MN$ – средняя линия треугольника $ABC$.

Пусть $D$ – это середина $AC$. Тогда $MNCD$ – параллелограмм ($MN=DC$, $MN\parallel DC$).

Следовательно, $MD\parallel NC$.

Тогда $\angle 1=\angle C=\angle 2$, как соответственные при параллельных прямых.

Кроме того $\angle A=\angle 3$.

Следовательно, $\triangle BMN=\triangle AMD$ по второму признаку равенства.

Тогда $BM=MA$ и $BN=MD=NC$, то есть $MN$ – средняя линия $\triangle ABC$.

Замечание

Третий признак средней линии неверен.

math-public/srednyaya_liniya_treugolnika.txt · Последние изменения: 2016/04/13 19:46 — labreslav

wiki.sch239.net

Треугольник — ov1098s Jimdo-Page!

1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.

2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны.

3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то треугольники равны.

1. По двум катетам.

2. По катету и гипотенузе.

3. По гипотенузе и острому углу.

4. По катету и острому углу.

1. Сумма внутренних углов треугольника равна 180 градусов.

2. Внешний угол треугольника равен сумме двух внутренних не смежных с ним углов.

3. Сумма внутренних углов выпуклого n-угольника равна 180(n-2).

4. Сумма внешних углов n-угольника равна 360 градусов.

5. Угол между биссектрисами смежных углов равен 90.

6. Биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны.

1. Сумма двух сторон треугольника больше его третьей стороны.

2. Сумма звеньев ломаной больше отрезка, соединяющего начало первого звена с концом последнего.

3. Против большего угла треугольника лежит большая сторона.

4. Против большей стороны треугольника лежит больший угол.

5. Гипотенуза прямоугольного треугольника больше катета.

6. Если из одной точки проведены к прямой перпендикуляр м наклонные, то

1)перпендикуляр короче наклонных

2) большей наклонной соответствует большая проекция и наоборот.

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника.

Средняя линия треугольника параллельна стороне треугольника и равна ее половине.

1. Медианы  треугольника пересекаются в одной точке и делятся ею в отношении 2:1, считая от вершины.

2. Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный.

3. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника.

Прямые, содержащие высоты треугольника, пересекаются в одной точке.

Биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в треугольник.

Биссектриса треугольника делит его сторону на отрезки пропорциональные двум другим сторонам.

1. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

2. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то треугольники подобны.

3. Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то треугольники подобны.

1. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

2. Если два треугольника имеют равные углы, то их площади относятся как произведения сторон, заключающих эти углы.

1. Катет прямоугольного треугольника равен произведению гипотенузы на синус противолежащего или косинус прилежащего к этому катету острого угла.

2. Катет прямоугольного треугольника равен другому катету, умноженному на тангенс противолежащего или котангенс прилежащего к этому катету острого угла.

3. Катет прямоугольного треугольника, лежащий против угла 30 градусов, равен половине гипотенузы.

4. R=c:2;  r=(a+b-c):2=p-с, где a,b-катеты, а с-гипотенуза; R-радиус описанной окружности, r- радиус вписанной окружности, p- полупериметр.

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное проекций катетов на гипотенузу, а каждый катет есть среднее пропорциональное гипотенузы и своей проекции на гипотенузу.

 

Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Стороны треугольника пропорциональны синусам противолежащих углов.

Отношение стороны треугольника к синусу противолежащего угла равно диаметру окружности, описанной около треугольника.

площадь треугольника.doc

Microsoft Word Document 17.5 KB

Параллелограммом называется четырехугольник, противолежащие стороны которого параллельны.

1. Диагональ разбивает параллелограмм на два равных треугольника.

2. Противоположные стороны параллелограмма попарно равны.

3. Противоположные углы параллелограмма попарно равны.

4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.

5. Если противоположные стороны четырехугольника попарно равны, то этот четырехугольник — параллелограмм.

6. Если две противоположные стороны четырехугольника равны  и параллельны,то этот четырехугольник — параллелограмм.

7. Если диагонали четырехугольника делятся точкой пересечения пополам,то этот четырехугольник — параллелограмм.

Середины сторон любого четырехугольника являются вершинами параллелограмма, площадь которого равна половине площади четырехугольника.

Прямоугольником называется параллелограмм с прямым углом.

1. Диагонали прямоугольника равны.

2. Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.

Квадратом называется прямоугольник, все стороны которого равны.

Ромбом называется параллелограмм, у которого все стороны равны.

1. Диагонали ромба перпендикулярны.

2. Диагонали ромба делят его углы пополам.

3. Если диагонали параллелограмма перпендикулярны, то это параллелограмм-ромб.

4. Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм-ромб.

Трапецией называется четырехугольник, у которого только две противоположные стороны ( основания) параллельны. Средней линией трапеции называется отрезок, соединяющий середины непараллельных сторон (боковых сторон).

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.

Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

1. Углы при основании равнобедренной трапеции равны.

2. Диагонали равнобедренной трапеции равны.

3. Если углы при основании трапеции равны, то она равнобедренная.

4. Если диагонали трапеции равны, то она равнобедренная.

5. Проекция боковой стороны равнобедренной трапеции на основание равна полуразности оснований, а проекция диагонали — полусумме оснований.

1. Площадь параллелограмма равна произведению основания на высоту.

2.Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.

3. Площадь прямоугольника равна произведению двух его соседних сторон.

4. Площадь ромба равна половине произведения его диагоналей.

5. Площадь трапеции равна произведению полусуммы оснований на высоту.

6. Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

7. Формула Герона для четырехугольника, около которого можно описать окружность

формула Герона.doc

Microsoft Word Document 16.0 KB

1. Отношение соответствующих линейных размеров подобных фигур равно коэффициенту подобия.

2. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

правильный многоугольник.doc

Microsoft Word Document 16.0 KB

Окружностью называется множество точек плоскости, удаленных от данной точки, называемой центром окружности, на одно и то же расстояние.

1. Диаметр, перпендикулярный хорде, делит хорду и стягиваемые ею дуги пополам.

2. Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

3. Серединный перпендикуляр к хорде проходит через центр окружности.

4. Равные хорды удалены от центра окружности на равные расстояния.

5. Хорды окружности, удаленные от центра на равные расстояния, равны.

6. Окружность симметрична относительно любого своего диаметра.

7. Дуги окружности, заключенные между параллельными хордами, равны.

8. Из двух хорд больше та, которая менее удалена от центра.

9. Диаметр есть наибольшая хорда окружности.

Прямая, имеющая с окружностью единственную общую точку, называется касательной к окружности.

1. Касательная перепндикулярна радиусу, проведенному в точку касания.

2. Если прямая а, проходящая через точку на окружности, перпендикулярна радиусу, проведенному в эту точку, то прямая а-касательная к окружности.

3. Если прямые, проходящие через точку М, касаются окружности в точках А и В, то МА=МВ, и угол АМО равен углу ВМО, где О-центр окружности.

4. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Говорят, что две окружности касаются, если они имеют единственную общую точку (точку касания).

1. Точка касания двух окружностей лежит на их линии центров.

2. Окружности радиусов r и R с центрами А и В касаются внешним образом тогда и только тогда, когда r+R=AB.

3. Окружности радиусов r и R (r<R) с центрами А и В касаются внутренним образом тогда и только тогда, когда R-r=AB.

4. Окружности с центрами M и N касаютя внешним образом в точке К. Некоторая прямая касается этих окружностей в различных точках А и В и пересекается с общей касательной, проходящей через точку К, в точке С. Тогда углы АКВ и MCN  равны по 90 градусов.

1. Величина дуги окружности равна величине центрального угла, на нее опирающегося.

2. Вписанный угол равен половине угловой величины дуги, на которую он опирается.

3. Вписанные углы, опирающиеся на одну и  ту же дугу, равны.

4. Угол между пересекающимися хордами равен полусумме противоположных дуг, высекаемых хордами.

5. Угол между двумя секущими, пересекающимися вне круга, равен полуразности дуг, высекаемых секущими на окружности.

6. Угол между касательной и хордой равен половине угловой величины дуги, заключенной между ними.

1. Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде.

2. Произведения длин отрезков хорд АВ и CD окружности, пересекающихся в точке Е, равны, то есть АЕ*ЕВ=СЕ*ЕD.

1. Центры вписанной и описанной окружностей правильного треугольника совпадают.

2.Центр окружности, описанной около прямоугольного треугольника-середина гипотенузы.

3. Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.

4. Если четырехугольник можно вписать в окружность, то сумма его противоположных углов равна 180 градусов.

5. Если сумма противоположных улов четырехугольника равна 180 градусов, то около него можно описать окружность.

6. Если в трапецию можно вписать окружность, то боковая сторона трапеции видна из центра окружности под прямым углом.

7. Если в трапецию можно вписать окружность, то радиус окружности, есть среднее пропорциональное отрезков, на которые точка касания делит боковую сторону.

8. Если в многоугольник можно вписать окружность, то его площадь равна произведению полупериметра многоугольника на радиус этой окружности.

1. Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на ее внешнюю часть равно квадрату касательной.

2. Произведение всей секущей на ее внешнюю часть для данной точки и данной окружности постоянно.

ov1098.jimdo.com

Котангенс четная или нечетная – Четность и нечетность тригонометрических функций

Четность, нечетность, периодичность тригонометрических функций

Основные понятия

Вспомним для начала определения четной, нечетной и периодической функции.

Определение 1

Нечетная функция — функция, которая меняет свое значение на противоположное при изменении знака независимой переменной:

\[f\left(-x\right)=-f(x)\]

Определение 2

Четная функция — функция, которая не меняет свое значение при изменении знака независимой переменной:

\[f\left(-x\right)=f(x)\]

Определение 3

Функция, которая повторяет свои значения через некоторый регулярный интервал времени:

\[f\left(x\right)=f(x+T)\]

T — период функции.

Четность и нечетность тригонометрических функций

Рассмотрим следующий рисунок (рис. 1):

Рисунок 1.

Здесь $\overrightarrow{OA_1}=(x_1,y_1)$ и $\overrightarrow{OA_2}=(x_2,y_2)$ — симметричные относительно оси $Ox$ векторы единичной длины.

Очевидно, что координаты этих векторов связаны следующими соотношениями:

Так как тригонометрические функции синуса и косинуса можно определять с помощью единичной тригонометрической окружности, то получаем, что функция синуса будет нечетной, а функция косинуса — четной функцией, то есть:

Рассмотрим теперь функции тангенса и котангенса. Так как $tgx=\frac{sinx}{cosx}$, то

Так как $сtgx=\frac{cosx}{sinx}$, то

Периодичность тригонометрических функций

Рассмотрим следующий рисунок (рис. 2).

Рисунок 2.

Здесь $\overrightarrow{OA}=(x,y)$ — вектор единичной длины.

Сделаем полный оборот вектором $\overrightarrow{OA}$. То есть повернем данный вектор на $2\pi $ радиан. После этого вектор полностью вернется в начальное положение.

Так как тригонометрические функции синуса и косинуса можно определять с помощью единичной тригонометрической окружности, то получаем, что

То есть функции синуса и косинуса являются периодическими функциями с наименьшим периодом $T=2\pi $.

Рассмотрим теперь функции тангенса и котангенса. Так как $tgx=\frac{sinx}{cosx}$, то

Так как $сtgx=\frac{cosx}{sinx}$, то

Примеры задач на использование четности, нечетности и периодичности тригонометрических функций

Пример 1

Доказать следующие утверждения:

а) $tg{385}^0=tg{25}^0$

б) ${cos \left(-13\pi \right)\ }=-1$

в) $sin{(-721}^0)=-sin1^0$

Решение.

а) $tg{385}^0=tg{25}^0$

Так как тангенс — периодическая функция с минимальным периодом ${360}^0$, то получим

\[tg{385}^0=tg{(360}^0+{25}^0)=tg{25}^0\]

б) ${cos \left(-13\pi \right)\ }=-1$

Так как косинус — четная и периодическая функция с минимальным периодом $2\pi $, то получим

\[{cos \left(-13\pi \right)\ }={cos 13\pi \ }={cos \left(\pi +6\cdot 2\pi \right)=cos\pi \ }=-1\]

в) $sin{(-721}^0)=-sin1^0$

Так как синус — нечетная и периодическая функция с минимальным периодом ${360}^0$, то получим

\[sin{(-721}^0)=-sin{721}^0=-{sin \left({720}^0+1^0\right)\ }=-sin1^0\]

spravochnick.ru

четность, нечетность, периодичность. Знаки значений тригонометрических функций по четвертям.

Синусом числа а называется ордината точки, изображающей это число на числовой окружности. Синусом угла в а радиан называется синус числа а.

Синус — функция числа x. Ее область определения — множество всех чисел, так как у любого числа можно найти ординату изображающей его точки.

Область значений синуса — отрезок от -1 до 1, так как любое число этого отрезка на оси ординат является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период синуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.

Знак синуса:

1. синус равен нулю при , где n — любое целое число;

2. синус положителен при , где n — любое целое число;

3. синус отрицателен при

, где n — любое целое число.

Синус — функция нечетная. Во-первых, область определения этой функции есть множество всех чисел, а значит, симметрична относительно начала отсчета. А во-вторых, если отложить от начала два противоположных числа: x и -x, то их ординаты — синусы — окажутся также противоположными. То есть для любого x.

1. Синус возрастает на отрезках , где n — любое целое число.

2. Cинус убывает на отрезке , где n — любое целое число.

при ;

при .

Косинус

Косинусом числа а называется абсцисса точки, изображающей это число на числовой окружности. Косинусом угла в а радиан называется косинус числа а.

Косинус — функция числа. Ее область определения — множество всех чисел, так как у любого числа можно найти ординату изображающей его точки.

Область значений косинуса — отрезок от -1 до 1, так как любое число этого отрезка на оси абсцисс является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период косинуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.

Знак косинуса:

1. косинус равен нулю при , где n — любое целое число;

2. косинус положителен при , где n — любое целое число;

3. косинус отрицателен при , где n — любое целое число.

Косинус — функция четная. Во-первых, область определения этой функции есть множество всех чисел, а значит, симметрична относительно начала отсчета. А во-вторых, если отложить от начала два противоположных числа: x и -x, то их абсциссы — косинусы — окажутся равными. То есть

для любого x.

1. Косинус возрастает на отрезках , где n — любое целое число.

2. Косинус убывает на отрезках , где n — любое целое число.

при ;

при .

Тангенс

Тангенсом числа называется отношение синуса этого числа к косинусу этого числа: .

Тангенсом угла в а радиан называется тангенс числа а.

Тангенс — функция числа. Ее область определения — множество всех чисел, у которых косинус не равен нулю, так как никаких других ограничений в определении тангенса нет. И так как косинус равен нулю при , то , где .

Область значений тангенса — множество всех действительных чисел.

Период тангенса равен . Ведь если взять любые два допустимые значенияx (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию тангенсов в некоторой точке t. Вот и получится, что , то есть число является периодом тангенса.

Знак тангенса: тангенс — отношение синуса к косинусу. Значит, он

1. равен нулю, когда синус равен нулю, то есть при , где n — любое целое число.

2. положителен, когда синус и косинус имеют одинаковые знаки. Это бывает только в первой и в третьей четвертях, то есть при , где а — любое целое число.

3. отрицателен, когда синус и косинус имеют разные знаки. Это бывает только во второй и в четвертой четвертях, то есть при , где а — любое целое число.

Тангенс — функция нечетная. Во-первых, область определения этой функции симметрична относительно начала отсчета. А во-вторых, . В силу нечетности синуса и четности косинуса, числитель полученной дроби равен , а ее знаменатель равен , а значит, сама эта дробь равна .

Вот и получилось, что .

Значит, тангенс возрастает на каждом участке своей области определения, то есть на всех интервалах вида , где а — любое целое число.

Котангенс

Котангенсом числа называется отношение косинуса этого числа к синусу этого числа: . Котангенсом угла в а радиан называется котангенс числа а. Котангенс — функция числа. Ее область определения — множество всех чисел, у которых синус не равен нулю, так как никаких других ограничений в определении котангенса нет. И так как синус равен нулю при , то , где

Область значений котангенса — множество всех действительных чисел.

Период котангенса равен . Ведь если взять любые два допустимые значения x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию котангенсов в некоторой точке t. Вот и получится, что , то есть, что число является периодом котангенса.

Знак котангенса: котангенс — отношение косинуса к синусу. Значит, он

1. равен нулю, когда косинус равен нулю, то есть при .

2. положителен, когда синус и косинус имеют одинаковые знаки. Это бывает только в первой и в третьей четвертях, то есть при .

3. отрицателен, когда синус и косинус имеют разные знаки. Это бывает только во второй и в четвертой четвертях, то есть при .

Котангенс — функция нечетная. Во-первых, область определения этой функции симметрична относительно начала отсчета. А во-вторых, .

В силу нечетности синуса и четности косинуса, числитель полученной дроби равен , а ее знаменатель равен , а значит, сама эта дробь равна .

Вот и получилось, что . Котангенс убывает на каждом участке своей области определения, то есть на всех интервалах вида .



infopedia.su

y=(7-tgx) четная или нечетная функция? и почему

tg(x) — это всегда нечетная функция, т. к. tg(-x)=-tg(x). Для справки: у четной функции f(-x) = f(x). Например, cos(-x)=cos(x) (единственная чеиная простейшая тригонометрическая функция) Следовательно, y=(7-tgx) — также нечетная фукция.

Нечетная: график не отображается зеркально относительно оси ординат

y(x)=7-tgx y(-x)=7-tg(-x)=7+tgx; tg(-x)=-tgx, т. к. tgx — нечётная функция; y(-x) (не равно) y(x) и y(-x) (не равно) -y(x) =&gt; y(x)=7-tg — функция общего вида. Настя, единственно верный ответ y(x)=7-tg — функция общего вида, y(-x)=7+tgx; у (х) =7-tgx; -у (х) =-7+tgx; y(-x) (не равно) y(x) и y(-x) (не равно) -y(x)

Ни чётная, ни нечётная, т. к. при подстановке (-х) вместо х знак у 7 не меняется, а у tgx меняется.

touch.otvet.mail.ru

Периодичность тригонометрических функций: четные и нечетные

 

Зависимость переменной y от переменно x, при которой каждому значению х соответствует единственное значение y называется функцией. Для обозначения используют запись y=f(x). У каждой функции существует ряд основных свойств, таких как монотонность, четность, периодичность и другие.

Свойства четности и периодичности

Рассмотрим подробнее свойства четности и периодичности, на примере основных тригонометрических функций: y=sin(x),y=cos(x), y=tg(x), y=ctg(x).

Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).

Если построить график четной функции, он будет симметричен относительно оси Оу.

Например, тригонометрическая функция y=cos(x) является четной.

Свойства нечетности и периодичности

Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = -f(x).

График нечетной функции симметричен относительно точки О – начала координат.

Например, тригонометрические функции y=sin(x), y=tg(x), y=ctg(x) являются нечетными.

Периодичность тригонометрических функций

Функция у=f (х)называется периодической, если существует некоторое число Т !=0 (называемое периодом функции у=f (х) ), такое что при любом значении х, принадлежащем области определения функции, числа х+Т и х-Т также принадлежат области определения функции и выполняется равенство f(x)=f(x+T)=f(x-T).

Следует понимать, что если Т — период функции, то число k*T, где k любое целое число отличное от нуля, также будет являться периодом функции. Исходя из вышесказанного, получаем, что любая периодическая функции имеет бесконечно много периодов. Чаще всего разговор ведется о наименьшем периоде функции.

Тригонометрические функции sin(x) и cos(x) являются периодическими, с наименьшим периодом равным 2*π.

Тригонометрические функции tg(x) и ctg(x) являются периодическими, с наименьшим периодом равным π.

Нужна помощь в учебе?



Предыдущая тема: Тригонометрические функции: свойства и их графики
Следующая тема:&nbsp&nbsp&nbspСвойства тригонометрических функций: гармонические колебания

Все неприличные комментарии будут удаляться.

www.nado5.ru

Тема 5.Четность и нечетность тригонометрических функций

⇐ ПредыдущаяСтр 6 из 11Следующая ⇒

Определение: Функция f(х) называется чётной, если для каждого х из области определения этой функции выполняется равенство:

f(-х)=f(х)

Свойство: График чётной функции симметричен относительно оси ординат.

 

Определение: Функция f(х) называется нечётной, если для каждого х из области определения этой функции выполняется равенство:

f(-х)=-f(х)

Свойство: График нечётной функции симметричен относительно начала координат.

 

Рассмотрим рисунок

На этом рисунке

 

Следовательно, справедливы формулы:

откуда вытекают формулы:

 

Таким образом, косинус – чётная функция, а синус, тангенс и котангенс – нечётные функции.

 

cos(-α)=cosα

sin(-α)=-sinα

tg(-α)=-tgα

ctg(-α)=-ctgα

Задание 1: Заполнить таблицу:

 

функция упростить Ответ
sin(-90º) -sin90º -1
tg(- )    
cos(-45º)    
ctg(- )    

Задание 2: Вычислить:

· 2sin(-30º)=-2sin30º=-2∙ =-1

· 3tg(- )=-3tg =-3∙….

· 4cos(- )∙sin(- )+tg(- )=4∙ ∙ )+(-1)=- ∙ -1=…..

· 2sin(- )∙cos(- )+tg(- )+sin2(- )=…..

Задание 3: Упростить (по аналогии с решённым):

mykonspekts.ru

3 к 2 сколько это – Соотношения

3 Доллара в Рублях

 

 

 RUBРоссийский рубль63.3877190.16 
 

 

 USDДоллар США1.00003.00 
 

 

 EURЕвро0.88602.66 
 

 

 GBPФунт Стерлингов Великобритании0.78592.36 
 

 

 AUDАвстралийский доллар1.44494.33 
 

 

 AZNАзербайджанский манат1.69655.09 
 

 

 AMDАрмянский драм477.60111 432.80 
 

 

 BGNБолгарский лев1.73195.20 
 

 

 BRLБразильский реал3.839011.52 
 

 

 HUFВенгерский форинт286.9105860.73 
 

 

 DKKДатская крона6.611219.83 
 

 

 INRИндийская рупия69.5950208.79 
 

 

 KZTКазахстанский тенге380.07461 140.22 
 

 

 CADКанадский доллар1.32083.96 
 

 

 KGSКиргизский сом69.8500209.55 
 

 

 CNYКитайский юань6.850420.55 
 

 

 MDLМолдавский лей18.190054.57 
 

 

 RONНовый румынский лей4.186912.56 
 

 

 TMTНовый туркменский манат3.495010.48 
 

 

 NOKНорвежская крона8.567625.70 
 

 

 PLNПольский злотый3.771011.31 
 

 

 XDRСДР (спец. права заимствования)0.72402.17 
 

 

 SGDСингапурский доллар1.35724.07 
 

 

 TJSТаджикский сомони9.440728.32 
 

 

 TRYТурецкая лира5.737817.21 
 

 

 UZSУзбекский сум8533.236925 599.71 
 

 

 UAHУкраинская гривна26.400079.20 
 

 

 CZKЧешская крона22.685068.05 
 

 

 SEKШведская крона9.414928.24 
 

 

 CHFШвейцарский франк0.98762.96 
 

 

 ZARЮжноафриканский ранд14.234442.70 
 

 

 KRWЮжнокорейская вона1160.17983 480.54 
 

 

 JPYЯпонская иена107.7251323.18 
 

 

 BYNBYN2.04836.14 
 

 

 HKDHKD7.814723.44 

calculator888.ru

2 Доллара в Рублях

 

 

 RUBРоссийский рубль63.3877126.78 
 

 

 USDДоллар США1.00002.00 
 

 

 EURЕвро0.88601.77 
 

 

 GBPФунт Стерлингов Великобритании0.78591.57 
 

 

 AUDАвстралийский доллар1.44492.89 
 

 

 AZNАзербайджанский манат1.69653.39 
 

 

 AMDАрмянский драм477.6011955.20 
 

 

 BGNБолгарский лев1.73193.46 
 

 

 BRLБразильский реал3.83907.68 
 

 

 HUFВенгерский форинт286.9105573.82 
 

 

 DKKДатская крона6.611213.22 
 

 

 INRИндийская рупия69.5950139.19 
 

 

 KZTКазахстанский тенге380.0746760.15 
 

 

 CADКанадский доллар1.32082.64 
 

 

 KGSКиргизский сом69.8500139.70 
 

 

 CNYКитайский юань6.850413.70 
 

 

 MDLМолдавский лей18.190036.38 
 

 

 RONНовый румынский лей4.18698.37 
 

 

 TMTНовый туркменский манат3.49506.99 
 

 

 NOKНорвежская крона8.567617.14 
 

 

 PLNПольский злотый3.77107.54 
 

 

 XDRСДР (спец. права заимствования)0.72401.45 
 

 

 SGDСингапурский доллар1.35722.71 
 

 

 TJSТаджикский сомони9.440718.88 
 

 

 TRYТурецкая лира5.737811.48 
 

 

 UZSУзбекский сум8533.236917 066.47 
 

 

 UAHУкраинская гривна26.400052.80 
 

 

 CZKЧешская крона22.685045.37 
 

 

 SEKШведская крона9.414918.83 
 

 

 CHFШвейцарский франк0.98761.98 
 

 

 ZARЮжноафриканский ранд14.234428.47 
 

 

 KRWЮжнокорейская вона1160.17982 320.36 
 

 

 JPYЯпонская иена107.7251215.45 
 

 

 BYNBYN2.04834.10 
 

 

 HKDHKD7.814715.63 

calculator888.ru

Что выходит за четверть?. Страница 1 из 97.

ВОЛГОДОНСК
ЕКАТЕРИНБУРГ
КРАСНОЯРСК
МОСКВА
НИЖНИЙ НОВГОРОД
НОВОСИБИРСК
РОСТОВ-НА-ДОНУ
САМАРА
САНКТ-ПЕТЕРБУРГ
УФА
ЧЕЛЯБИНСК
ФОРУМ ДЛЯ РОДИТЕЛЕЙ
ФОРУМ ДЛЯ УЧИТЕЛЕЙ
ФОРУМ ДЛЯ ШКОЛЬНИКОВ
ОБРАТНАЯ СВЯЗЬ
актуальность темы

 # 46379  ·  17-06-2019 в 17:27 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что выходит если за первую четверть 4, за вторую и третью 4, а за четвёртую 2

4

актуальность темы
 # 46357  ·  10-06-2019 в 15:49 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что выйдет за четверть если у тебя 5,4,5,4,2,2,3,3,4

4

актуальность темы
 # 46354  ·  10-06-2019 в 08:53 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение
  • 1 четверть 3
  • 2 четверть 4
  • 3 четверть 3
  • 4 четверть 3

Экзамен 4

Что будет?

3

актуальность темы
 # 46343  ·  02-06-2019 в 08:42 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Впр на 5 а контрольная за год 3 какая оценка?

актуальность темы
Российский кодекс профессиональных и этических принципов в области связей с общественностьюстатьи на habit.ru
 # 46337  ·  28-05-2019 в 14:49 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Если у меня стоит 4,4,4,5,5,5,7 и 3 за контрольную работу то что выходит?

5

актуальность темы
 # 46331  ·  27-05-2019 в 13:25 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

9 класс.

  • 1ч — 3
  • 2ч -3
  • 3ч — 4
  • 4ч — 4

За год вышла — 4

А если огэ напишу на 3, какая оценка будет в итоге??

4

актуальность темы
Хартия «Политические консультанты за честные выборы»статьи на habit.ru
 # 46329  ·  27-05-2019 в 10:07 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

1 полугодие было 4, на втрой 4.86. Вдруг экзамен на 3 напишу, какая оценка будет?

актуальность темы
 # 46324  ·  25-05-2019 в 17:28 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Беда по физике!

  • 1-я: 4
  • 2-я:4
  • 3-я: 3
  • 4-я: 3

Что выйдет за год?

4

актуальность темы
Принципы научного менеджментастатьи на habit.ru
 # 46320  ·  24-05-2019 в 15:46 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение
  • 1 четверть — 3
  • 2 четверть — 4
  • 3 четверть — 5
  • 4 четверть — 5

Какая оценка будет ?

4

актуальность темы
 # 46318  ·  24-05-2019 в 10:43 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что выйдет за год, если оценки были такие:

  • 1 чт. 4
  • 2 чт. 3
  • 3 чт. 3

Заранее спасибо

3

актуальность темы
 # 46316  ·  23-05-2019 в 22:50 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

без вопросов 4 так как учитель всегда ставит в пользу ученика

актуальность темы
Общие принципы функционирования организмастатьи на habit.ru
 # 46315  ·  23-05-2019 в 22:32 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

8 класс

Что выйдет за год. Первая четверть — 3. Вторая — 3. Третья — 2 (оценки были 222222). Четвертая — 2 (оценки так же 2222222, учительница говорит, на подобие: думаешь я тебе в пользу ученика поставлю? Отдыхаешь мол, хотя я по другим предметам не отдыхал.

Знакомые говорят что у них такая же ситуация была и им ставили 3) В прошлом учебном году, была ситуация по трём предметам, что за первую к примеру 2, за вторую 2, за остальные 3, ставили за год 3. Никогда такого не было чтобы ставили не в пользу ученика. Возможности исправить оценку нету, т.к. конец четверти и уже послезавтра сдаём дневники. Больше волнуюсь за то что учительница сказала.

3

актуальность темы
 # 46314  ·  23-05-2019 в 16:33 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Какая оценка выйдет за год

Годовая контрольная — 2

актуальность темы
 # 46312  ·  22-05-2019 в 23:28 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что будет в годовой по биологии

4

актуальность темы
Общие свойства живых организмовстатьи на habit.ru
 # 46306  ·  22-05-2019 в 16:26 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

если у меня к примеру выйдут 2 двойки в четверти а в году 3ти две 2 не повлияют на следующий год

актуальность темы
Кратко о Москве: история районов, улиц, бульваров, мостовстатьи на habit.ru
 # 46302  ·  22-05-2019 в 09:56 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

 

Выдит — ли у меня 3 если у меня две оценки 2 и 4

да

 

актуальность темы
 # 46297  ·  22-05-2019 в 06:48 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Какя оценка за год если за все предыдущие четверти были 5 я годовую написала на 4?

5

актуальность темы
Водастатьи на habit.ru
 # 46292  ·  21-05-2019 в 12:22 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Здравствуйте. За четверти 4555 за экзамен 4 какая оценка за год? 7 класс

5

актуальность темы
Русские писатели и поэты XX векастатьи на habit.ru
 # 46289  ·  21-05-2019 в 07:22 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

какая оцнка выйдет за год? если стоит:

  • 1-ч 4
  • 2-ч 4
  • 3-ч 3
  • 4-ч н/а
актуальность темы
Рецензия на произведение Шарля Бодлера «Поэма гашиша»статьи на habit.ru
 # 46286  ·  20-05-2019 в 20:28 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что выйдет в году если в 1 четверти 3 во 2 четверти 3 в 3 четверти 3 в 4 четверти 5

4

актуальность темы
 # 46285  ·  20-05-2019 в 16:25 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Скажите, пожалуйста, если выходит 4.5 и годовую на 2 написал то что выходит

актуальность темы
Антиутопия Дж. Оруэлла «1984»статьи на habit.ru
 # 46282  ·  20-05-2019 в 07:06 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что выйдет за год если оценки за четвёртая 2332

3

актуальность темы
Необычный мир инсталляцийстатьи на habit.ru
 # 46275  ·  18-05-2019 в 17:21 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Скажите пожалуйста, что выйдет. Если 45555, 4 — контрольная работа, а 5 — экзамен.

5

актуальность темы
 # 46272  ·  18-05-2019 в 08:06 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что выйдет по географии, русскому, по литературе, физикеза год если скажите пожалуйста. Является 7 классе

1ч-4 1ч-4. 1ч-3. 1ч-3

2ч-4 2ч-3. 2ч-3. 2ч-4

3ч-4. 3ч-4. 3ч-4. 3ч-4

4ч-3. 4ч-4. 4ч-4 4ч-4

4

актуальность темы
 # 46270  ·  17-05-2019 в 21:06 МСК  ·  ip адрес записан  ·  наверх ↑  ·  написать мнение

Что выйдет если за 3 четверть по биологии стоит оценка 4 а за 4 четверть оценки: 4, 3, 3, 2

Срочно

3

актуальность темы
Страница 1 из 97:   1234567891011… 97

Читайте также:

  • Кодекс профессионального поведения Международной ассоциации по связям с общественностью – Кодекс IPRA
    Настоящий кодекс профессионального поведения и этики был принят Международной ассоциацией по связям с общественностью (IPRA) на ее Генеральной ассамблее в Венеции в мае 1961 году и является обязательным для всех членов ассоциации.
  • Общие принципы функционирования организма
    Общие принципы функционирования организма – корреляция, регуляция, рефлекс и саморегуляция — отработаны живыми организмами в течение миллионов лет эволюционного развития. Не стоит пугаться этих терминов – прочитайте статью и они станут частью вашего лексикона.
  • Русские писатели и поэты XIX века
    В таблице представлены настоящие имена и псевдонимы писателей и поэтов XIX века, года их жизни.
  • Теория и практика «эпического театра» Б. Брехта
    Бертольта Брехта можно по праву назвать талантливым немецким писателем, теоретиком искусства, театральным и общественным деятелем. Творческое наследие Бертольта Брехта не утрачивает своей притягательной силы с течением времени. В конце века, отмеченного печатью его могучего таланта и обаянием неповторимо самобытной личности, пьесы драматурга–новатора по–прежнему ставятся на сценах всего мира, по популярности он уступает тут только Шекспиру. Театры всего мира ставят его пьесы, открывая в них все новые стороны, привлекающие зрителей шестидесятых годов. В наше время постановка брехтовских пьес – такой же экзамен на зрелость для театральной труппы, как трагедия Шекспира или комедия Мольера.
  • Рецензия на работу Хосе Ортега–и–Гассета «Воля к барокко»
    Хосе Ортега-и-Гассет – испанский философ, котрого можно назвать одним из самых прозорливых европейских мыслителей XX века. Его художественные очерки обращены не к эрудитам, а к думающему человеку, и требуют от него не соглашаться, а спорить и думать.

www.habit.ru

Определение площади фигуры – Формулы площади. Площадь треугольника, квадрата, прямоугольника, ромба, параллелограмма, трапеции, круга, эллипса.

Площадь фигуры — Википедия. Что такое Площадь фигуры

ФигураФормулаКомментарий
Правильный треугольник34⋅a2{\displaystyle {\tfrac {\sqrt {3}}{4}}{\cdot }a^{2}}a{\displaystyle a} — длина стороны треугольника.
Треугольникp⋅(p−a)⋅(p−b)⋅(p−c){\displaystyle {\sqrt {p{\cdot }(p-a){\cdot }(p-b){\cdot }(p-c)}}}Формула Герона. p{\displaystyle p} — полупериметр, a{\displaystyle a}, b{\displaystyle b} и c{\displaystyle c} — длины сторон треугольника.
Треугольник12⋅a⋅b⋅sin⁡γ{\displaystyle {\tfrac {1}{2}}{\cdot }a{\cdot }b{\cdot }\sin \gamma }a{\displaystyle a} и b{\displaystyle b} — две стороны треугольника, а γ{\displaystyle \gamma } — угол между ними.
Треугольник12⋅b⋅h{\displaystyle {\tfrac {1}{2}}{\cdot }b{\cdot }h}b{\displaystyle b} и h{\displaystyle h} — сторона треугольника и высота, проведённая к этой стороне.
Квадратa2{\displaystyle a^{2}}a{\displaystyle a} — длина стороны квадрата.
Прямоугольникa⋅b{\displaystyle a{\cdot }b}a{\displaystyle a} и b{\displaystyle b} — длины сторон прямоугольника.
Ромбa2⋅sin⁡α,12bc{\displaystyle a^{2}{\cdot }\sin \alpha ,{\tfrac {1}{2}}bc}a{\displaystyle a} — сторона ромба, α{\displaystyle \alpha } — внутренний угол, b,c{\displaystyle b,c} — диагонали.
Параллелограммb⋅h{\displaystyle b{\cdot }h}b{\displaystyle b} — длина одной из сторон параллелограмма, а h{\displaystyle h} — высота, проведённая к этой стороне.
Трапеция12⋅(a+b)⋅h{\displaystyle {\tfrac {1}{2}}{\cdot }(a+b){\cdot }h}a{\displaystyle a} и b{\displaystyle b} — длины параллельных сторон, а h{\displaystyle h} — расстояние между ними (высота).
Четырёхугольник12⋅m⋅n⋅sin⁡ϕ{\displaystyle {\tfrac {1}{2}}{\cdot }m{\cdot }n{\cdot }\sin \phi }n{\displaystyle n} и m{\displaystyle m} — длины диагоналей, и ϕ{\displaystyle \phi } — угол между ними.
Правильный шестиугольник3⋅32⋅a2{\displaystyle {\tfrac {3{\cdot }{\sqrt {3}}}{2}}{\cdot }a^{2}}a{\displaystyle a} — длина стороны шестиугольника.
Правильный восьмиугольник2⋅(1+2)⋅a2{\displaystyle 2{\cdot }(1+{\sqrt {2}}){\cdot }a^{2}}a{\displaystyle a} — длина стороны восьмиугольника.
Правильный многоугольникn⋅a24⋅tan⁡(π/n){\displaystyle {\frac {n{\cdot }a^{2}}{4{\cdot }\tan(\pi /n)}}}a{\displaystyle a} — длина стороны многоугольника, а n{\displaystyle n} — количество сторон многоугольника.
12⋅a⋅p{\displaystyle {\tfrac {1}{2}}{\cdot }a{\cdot }p}a{\displaystyle a} — апофема (или радиус вписанной в многоугольник окружности), а p{\displaystyle p} — периметр многоугольника.
Произвольный многоугольник12|∑i=0n−1det(xixi+1yiyi+1)|{\displaystyle {1 \over 2}\left|\sum _{i=0}^{n-1}\det {\begin{pmatrix}x_{i}&x_{i+1}\\y_{i}&y_{i+1}\end{pmatrix}}\right|}Формула площади Гаусса. (xi,yi){\displaystyle (x_{i},y_{i})} — координаты вершин n{\displaystyle n}-угольника, (xn,yn)=(x0,y0){\displaystyle (x_{n},y_{n})=(x_{0},y_{0})}
Кругπ⋅r2{\displaystyle \pi {\cdot }r^{2}} или π⋅d24{\displaystyle {\frac {\pi {\cdot }d^{2}}{4}}}r{\displaystyle r} — радиус окружности, а d{\displaystyle d} — её диаметр.
Сектор круга12⋅r2⋅θ{\displaystyle {\tfrac {1}{2}}{\cdot }r^{2}{\cdot }\theta }r{\displaystyle r} и θ{\displaystyle \theta } — соответственно радиус и угол сектора (в радианах).
Эллипсπ⋅a⋅b{\displaystyle \pi {\cdot }a{\cdot }b}a{\displaystyle a} и b{\displaystyle b} — большая и малая полуоси эллипса.

wiki.sc

Определение площади

Площадь это:

Площадь У этого термина существуют и другие значения, см. Площадь (значения). Размерность Единицы измерения СИ СГС Примечания
Площадь

м²

см²

скаляр

Площадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры[1], неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.

Общий метод вычисления площади геометрических фигур предоставило интегральное исчисление. Обобщением понятия площади стала теория меры множества, пригодная для более широкого класса геометрических объектов.

Для приближенного вычисления площади на практике используют палетку или специальный измерительный прибор — планиметр.

Содержание

  • 1 Свойства
  • 2 Общий метод определения площади
    • 2.1 Площадь плоской фигуры
      • 2.1.1 Декартовы координаты
      • 2.1.2 Полярные координаты
    • 2.2 Площадь поверхности
  • 3 Единицы измерения площади
    • 3.1 Метрические единицы
    • 3.2 Русские устаревшие
    • 3.3 Античные
  • 4 Формулы вычисления площадей простейших фигур
    • 4.1 Планиметрические фигуры
    • 4.2 Формулы для вычисления площади круга, его частей, описанных и вписанных в круг фигур
    • 4.3 Формулы для вычисления площади поверхности тел в пространстве
  • 5 См. также
  • 6 Литература
  • 7 Ссылки
  • 8 Примечания

Свойства

  • Площадь единичного квадрата равна 1.
  • Площадь аддитивна.
  • Площадь неотрицательна.
  • Площади конгруэнтных фигур равны.

Для фигур на плоскости, не состоящих из целого количества единичных квадратов, а также для искривлённых трёхмерных поверхностей, площадь определяется с помощью предельного перехода; при этом требуется, чтобы как фигура, так и её граница были кусочно-гладкими[2].

Общий метод определения площади

Площадь плоской фигуры
Декартовы координаты
Определённый интеграл как площадь фигуры Площадь между графиками двух функций равна разности интегралов от этих функций в одинаковых пределах интегрирования

Площадь, заключённая между графиком непрерывной функции на интервале и горизонтальной осью, может быть вычислена как определённый интеграл от этой функции:

Площадь, заключённая между графиками двух непрерывных функций на интервале находится как разность определённых интегралов от этих функций:

Полярные координаты

В полярных координатах: площадь, ограниченная графиком функции и лучами .

Площадь поверхности
Основная статья: Площадь поверхности

Площадь искривлённой поверхности A, заданной вектор-функцией , даётся двойным интегралом:

То же в координатах:

Здесь .

Единицы измерения площади

Метрические единицы
  • Квадратный километр, 1 км² = 1 000 000 м²
  • Гектар, 1 га = 10 000 м²
  • Ар (сотка), 1 а = 100 м²
  • Квадратный метр, производная единица системы СИ 1 м² = 1 са (сантиар)
  • Квадратный дециметр, 100 дм² = 1 м²;
  • Квадратный сантиметр, 10 000 см² = 1 м²;
  • Квадратный миллиметр, 1 000 000 мм² = 1 м².
Русские устаревшие
  • Квадратная верста = 1,13806 км²
  • Десятина = 10925,4 м²
  • Копна = 0,1 десятины — сенные покосы меряли копнами
  • Квадратная сажень = 4,55224 м²

Мерами земли при налоговых расчетах были выть, соха, обжа, размеры которых зависели от качества земли и социального положения владельца. Существовали и различные местные меры земли:коробья, веревка, жеребья и др.

Античные

Формулы вычисления площадей простейших фигур

Планиметрические фигуры
Фигура Формула Переменные
Квадрат  — длина стороны квадрата.
Правильный треугольник  — длина стороны треугольника.
Правильный шестиугольник  — длина стороны шестиугольника.
Правильный восьмиугольник  — длина стороны восьмиугольника.
Правильный многоугольник  — периметр, а  — количество сторон.
Прямоугольный треугольник и  — катеты треугольника.
Произвольный треугольник  — сторона треугольника,  — высота, проведенная к этой ст

zna4enie.ru

Определение площади сложной фигуры с помощью теории вероятностей / Habr

Зачем определять площадь сложной фигуры?

Да мало ли зачем. Например, возникла необходимость определить площадь территории на карте. Конечно, можно посмотреть в справочнике или поискать в интернете, но иногда и территории бывают нестандартными — допустим, вы озаботились проблемами лесов в пойме Амазонки и хотите ежемесячно измерять площадь зелёных пятен на фотографиях со спутника. Если вы ботаник (в хорошем смысле слова), то вам может понадобиться измерить площадь листовой поверхности разных сортов одного растения. Или, к примеру, более прозаичная задача — нужно зашпатлевать кусок стены, а банки шпатлёвки хватает только на 1 кв. м. — нужно выяснить, покупать одну банку или раскошелиться на две.
В чём сложность нахождения площади?

Конечно, если фигура представляет собой прямоугольник, круг или, что хуже, эллипс, то проблема решается с помощью Google и калькулятора. Но где бы найти формулу, да попроще, для нахождения площади, скажем, такого рисунка?
Теория вероятностей, Ваш выход!

Сразу оговорюсь, что теория вероятностей по своей сути не подразумевает точного решения задач. Так будет и в этом случае — если вам нужна космическая точность, то предлагаю копать в сторону методов имитационного моделирования. Если же погрешность в пределах 2-5% вас вполне устраивает, то будет достаточно того же калькулятора, базовых навыков программирования и умения считать до ста.
Суть метода

Суть метода проста до банальности. Допустим, мы пасмурным деньком выложили капустный листочек (см. ремарку про биолога выше) на прямоугольный поддон, а поддон выставили под накрапывающий дождик. А потом засекли определённое время (к примеру, пять минут) и посчитали, сколько капелек упало на поддон, а сколько непосредственно на лист. Если принять во внимание, что дождь обычно капает равномерно, то получается простая пропорция — лист во столько раз меньше поддона, во сколько раз на него упало меньше капель дождя, чем на весь поддон.
Возвращаемся к нашей фигуре

Итак, как же определить площадь той розовой пятерни? Да очень просто — заключить фигуру в прямоугольные границы и проставить случайным образом много точек. Чем больше, тем лучше (в соответствии с законом больших чисел). А потом подсчитать количество точек, попавших на фигуру.

Я намеренно не обсуждаю вопросы реализации такого алгоритма, потому что вариантов масса. Можно просто закрыть глаза и наугад тыкать шариковой ручкой, а можно действовать более научно — с помощью языков программирования. Например, код на PHP занял у меня не больше 15 строчек, а в результате получилось вот что:

Точки общим числом 300, разумеется, проставлены с помощью генератора случайных чисел. Для удобства подсчета точек я разбил изображение на 36 секторов — теперь нужно подсчитать количество точек, попавших на изображение, в каждом секторе, а результаты сложить. Сведём данные в таблицу (ячейка таблицы соответствует сектору на картинке):

0 4 8 4 0 0
0 7 5 6 0 4
3 6 13 7 8 5
1 10 10 13 7 2
0 2 3 7 10 2
0 0 2 5 3 0

Теперь у нас есть все данные для того, чтобы вычислить площадь розовой пятерни:
площадь описанного прямоугольника — 20 см х 20 см = 400 кв. см;
количество точек в прямоугольнике — 300;
количество точек внутри фигуры (сумма значений из таблицы) — 157;
площадь фигуры — 209,33 кв. см.
И насколько это точно?

Действительно, осталось определиться с точностью данного метода. Конечно, всё зависит от количества точек, и здесь нужно соблюдать золотую середину — десяти для нашего примера было бы явно недостаточно, а от тысячи слишком рябило бы в глазах. Поэтому попробуем определить погрешность для трёхсот точек и описанного квадрата со стороной 20 см. Для этого возьмём фигуру, площадь которой нам известна заранее. Например, такую:

Проставляем точки:

Результаты заносим в таблицу:

0 6 11 8 5 0
9 15 8 5 13 2
11 8 5 14 13 5
10 11 8 8 4 4
2 14 9 10 4 1
0 3 5 6 0 0

Рассчитываем площадь фигуры:
площадь описанного прямоугольника — 20 см х 20 см = 400 кв. см;
количество точек в прямоугольнике — 300;
количество точек внутри фигуры (сумма значений из таблицы) — 237;
площадь фигуры — 316 кв. см.

Нетрудно посчитать, что реальная площадь круга с радиусом 10 см составляет 314,16 кв. см. Таким образом, погрешность метода составила 0,59%, чего в большинстве случаев достаточно для прикладного использования.

habr.com

Все площади геометрических фигур, формулы

Дата публикации

 

Существует бесконечное количество плоских фигур самой разной формы, как правильных, так и неправильных. Общее свойство всех фигур – любая из них обладает площадью. Площади фигур – это размеры части плоскости, занимаемой этими фигурами, выраженные в определенных единицах. Величина эта всегда бывает выражена положительным числом. Единицей измерения служит площадь квадрата, чья сторона равняется единице длины (например, одному метру или одному сантиметру). Приблизительное значение площади любой фигуры можно вычислить, умножив количество единичных квадратов, на которые она разбита, на площадь одного квадрата.

Другие определения данного понятия выглядят следующим образом:

1. Площади простых фигур – скалярные положительные величины, удовлетворяющие условиям:

– у равных фигур – равные величины площадей;

– если фигура делится на части (простые фигуры), то ее площадь – сумма площадей данных фигур;

– квадрат, имеющий стороной единицу измерения, служит единицей площади.

2. Площади фигур сложной формы (многоугольников) – положительные величины, имеющие свойства:

– у равных многоугольников – одинаковые величины площадей;

– в случае, если многоугольник составляют несколько других многоугольников, его площадь равняется сумме площадей последних. Это правило справедливо для неперекрывающихся многоугольников.

В качестве аксиомы принято утверждение, что площади фигур (многоугольников) – положительные величины.

Определение площади круга дается отдельно как величины, к которой стремится площадь правильного многоугольника, вписанного в окружность данного круга – при том, что число его сторон стремится к бесконечности.

Площади фигур неправильной формы (произвольных фигур) не имеют определения, определяются лишь способы их вычисления.

Вычисление площадей уже в древности было важной практической задачей при определении размеров земельных участков. Правила вычисления площадей за несколько сотен лет до нашей эры были сформулированы греческими учеными и изложены в «Началах» Евклида как теоремы. Интересно, что правила определения площадей простых фигур в них – те же, что и в настоящее время. Площади геометрических фигур, имеющих криволинейный контур, рассчитывались с применением предельного перехода.

Читайте также: отель в Мадриде 2 звезды

Вычисление площадей простых фигур (треугольника, прямоугольника, квадрата), знакомых всем со школьной скамьи, достаточно просто. Необязательно даже запоминать содержащие буквенные обозначения формулы площадей фигур. Достаточно помнить несколько простых правил:

1. Чтобы рассчитать площадь квадрата, нужно длину его стороны умножить саму на себя (или возвести во вторую степень).

2. Площадь прямоугольника вычисляется умножением его длины на ширину. При этом необходимо, чтобы длина и ширина были выражены в одних и тех же единицах измерения.

3. Площадь сложной фигуры вычисляем, разделив ее на несколько простых и сложив полученные площади.

4. Диагональ прямоугольника делит его на два треугольника, чьи площади равны и равняются половине его площади.

5. Площадь треугольника вычисляется как половина произведения его высоты и основания.

6. Площадь круга равняется произведению квадрата радиуса на всем известное число «π».

7. Площадь параллелограмма вычисляем как произведение смежных сторон и синуса лежащего между ними угла.

8. Площадь ромба – ½  результата умножения диагоналей на синус внутреннего угла.

9. Площадь трапеции находим умножением ее высоты на длину средней линии, которая равняется среднему арифметическому оснований. Другой вариант определения площади трапеции – перемножить ее диагонали и синус лежащего между ними угла.

Детям в начальной школе для наглядности часто даются задания: найти площадь нарисованной на бумаге фигуры с помощью палетки или листа прозрачной бумаги, разграфленной на клеточки. Такой лист бумаги накладывается на измеряемую фигуру, считается число полных клеточек (единиц площади), поместившихся в ее контуре, затем число неполных, которое делится пополам.



Опубликовано в Образование и наука

Добавить комментарий

www.vigivanie.com

Площадь фигуры — Википедия

Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.

Об определении[править]

Формальное введение понятия площадь и объём можно найти в статье мера Жордана, здесь мы приводим лишь намётки определения с комментариями.

Площадь — это вещественнозначная функция, определённая на определённом классе фигур евклидовой плоскости и удовлетворяющая четырём условиям:

  1. Положительность — площадь неотрицательна;
  2. Нормировка — квадрат со стороной единица имеет площадь 1;
  3. Конгруэнтность — конгруэнтные фигуры имеют равную площадь;
  4. Аддитивность — площадь объединения двух фигур без общих внутренних точек равна сумме площадей.

Определённый класс должен быть замкнут относительно пересечения и объединения, а также относительно движений плоскости и включать в себя все многоугольники. Из этих аксиом следует монотонность площади, то есть

  • Если одна фигура принадлежит другой фигуре, то площадь первой не превосходит площади второй:

Чаще всего за «определённый класс» берут множество квадрируемых фигур. Фигура называется квадрируемой, если для любого существует пара многоугольников и , такие что и , где обозначает площадь .

Связанные определения[править]

  • Две фигуры называются равновеликими, если они имеют равную площадь.

Существует математически строгий, но неоднозначный способ определить площадь для всех ограниченных подмножеств плоскости. То есть на множестве всех ограниченных подмножеств плоскости существуют различные функции площади, удовлетворяющие вышеприведённым аксиомам, а множество квадрируемых фигур является максимальным множеством фигур, на которых площадь определяется однозначно.

То же самое можно сделать для длины на прямой, но нельзя для объёма в евклидовом пространстве и также нельзя для площади на единичной сфере в евклидовом пространстве, (смотри соответственно парадокс удвоения шара и парадокс Хаусдорфа).

Площади некоторых фигур[править]

Формулы для нахождения площадей различных фигур[править]

Фигура Формула Комментарий
Правильный треугольник — длина стороны треугольника.
ТреугольникФормула Герона.  — полупериметр, , и  — длины сторон треугольника.
Треугольник и  — две стороны треугольника, а  — угол между ними.
Треугольник и  — сторона треугольника и высота, проведённая к этой стороне.
Квадрат — длина стороны квадрата.
Прямоугольник и  — длины сторон прямоугольника.
Ромб — сторона ромба,  — внутренний угол,  — диагонали.
Параллелограмм — длина одной из сторон параллелограмма, а  — высота, проведённая к этой стороне.
Трапеция и  — длины параллельных сторон, а  — расстояние между ними (высота).
Правильный шестиугольник — длина стороны шестиугольника.
Правильный восьмиугольник — длина стороны восьмиугольника.
Правильный многоугольник — длина стороны многоугольника, а  — количество сторон многоугольника.
 — апофема (или радиус вписанной в многоугольник окружности), а  — периметр многоугольника.
Круг или — радиус окружности, а  — её диаметр.
Сектор круга и  — соответственно радиус и угол сектора (в радианах).
Эллипс и  — большая и малая полуоси эллипса.
Поверхность Цилиндра и  — радиус и высота цилиндра соответственно.
Боковая поверхность цилиндра и  — радиус и высота цилиндра соответственно.
Поверхность конуса и  — радиус и длина образующей соответственно.
Боковая поверхность конуса и  — радиус и длина образующей соответственно.
Поверхность сферы и  — радиус и диаметр соответственно.
Поверхность эллипсоидаСм. статью.
  • Площадь треугольника равна половине произведения стороны на высоту, проведенную к этой стороне:
  • Площадь прямоугольника равна произведению его смежных сторон:
  • Площадь произвольного четырехугольника ABCD равна половине произведения диагоналей и синуса угла между ними:
    ,
где  — угол между диагоналями.
  • Площадь ромба ABCD равна половине произведения диагоналей:
  • Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне:
  • Площадь трапеции равна произведению полусуммы оснований на высоту:
  • В.Болтянский, О понятиях площади и объёма. Квант, № 5, 1977
  • Б. П. Гейдман, Площади многоугольников, Библиотека «Математическое просвещение», выпуск 16, (2002).
  • В. А. Рохлин, Площадь и объём, Энциклопедия элементарной математики, Книга 5, Геометрия, под редакцией П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина.

www.wiki-wiki.ru

Площадь фигуры Википедия

Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.

Об определении[ | ]

Формальное введение понятия площадь и объём можно найти в статье мера Жордана, здесь мы приводим лишь намётки определения с комментариями.

Площадь — это вещественнозначная функция, определённая на определённом классе фигур евклидовой плоскости и удовлетворяющая четырём условиям:

  1. Положительность — площадь неотрицательна;
  2. Нормировка — квадрат со стороной единица имеет площадь 1;
  3. Конгруэнтность — конгруэнтные фигуры имеют равную площадь;
  4. Аддитивность — площадь объединения двух фигур без общих внутренних точек равна сумме площадей.

При этом определённый класс должен быть замкнут относительно пересечения и объединения, а также относительно движений плоскости и включать в себя все многоугольники. Из этих аксиом следует монотонность площади, то есть

  • Если одна фигура принадлежит другой фигуре, то площадь первой не превосходит площади второй:

Чаще всего за «определённый класс» берут множество квадрируемых фигур. Фигура F{\displaystyle F} называется квадрируемой, если для любого ε>0{\displaystyle \varepsilon >0} существует пара многоугольников P{\displaystyle P} и Q{\displaystyle Q}, такие что P⊂F⊂Q{\displaystyle P\subset F\subset Q} и S(Q)−S(P)<ε{\displaystyle S(Q)-S(P)<\varepsilon }, где S(P){\displaystyle S(P)} обозначает площадь P{\displaystyle P}.

Примеры квадрируемых фигур

ru-wiki.ru