Перевести с формата jpg в pdf – Конвертация JPG в PDF. Изображения JPG в PDF онлайн

Как перевести JPG в PDF?

Формат JPG на данный момент считается самым популярным в интернете. В нем выгружаются практически все фотографии в социальных сетях. PDF же в свою очередь является стандартом для просмотра документации. К примеру, документы Word-форматов могут с ошибками открываться в других текстовых редакторах. С PDF проблем никогда не возникает. Открывая PDF в любом из просмотрщиков, можно быть уверенным, что ошибок форматирования не будет. Иногда возникают случаи, когда нужно сконвертировать картинку в PDF-файл. Попробуем разобраться в том, как перевести JPG в PDF?

Перевести обычный файл формата .jpg в PDF довольно просто. Стандартные средства Windows не позволяют этого сделать, поэтому придется использовать программы или интернет-сервисы.

Классика создания PDF

Для создания PDF-файлов придумано множество утилит, но лучшей среди них является Adobe Professional. Обычный Adobe Reader для просмотра пдф-ок установлен практически на каждой Windows, а вот платная версия Adobe Professional найдется лишь у тех, кто работает с большими объемами документов. Если у вас установлена эта версия, то запускаете программу, кликаете «Создать PDF» и перетаскиваете нужное количество графики прямо в окно программы. По окончании редактирования нужно будет сохранить PDF-файл.

к содержанию ↑

Онлайн-сервис конвертации JPG >> PDF

Как перевести файл JPG в формат PDF, если под рукой нет редакторов? Пожалуй, самым лучшим сервисом в плане конвертирования картинок в формат PDF является сервис http://convert-my-image.com/Ru. Бесплатный и русифицированный онлайн-сервис буквально за пару кликов сконвертирует вашу картинку в обычный пдф. Открываем сайт в браузере, кликаем по кнопке «Выбрать файл» и указываем картинку, которую требуется перевести в PDF.

После выбора картинки жмем зеленую кнопку «Старт» и сохраняем файл в любое удобное место (лучше на рабочий стол).

Все, конвертация успешно завершена. Как видим, все очень просто и не требует особых умений.

Также наши читатели рекомендуют сервис jpg2pdf.com. Можете попробовать его, мы о нем ничего не знаем.

к содержанию ↑

Офисные редакторы

Если у вас нет доступа в интернет, то вам поможет самый обычный Word. В офисном редакторе от Microsoft имеется специальная функция, которая позволяет конвертировать документы в PDF-формат. Чтобы получить из картинки пдф-файл, кликаем на рабочем столе правой кнопкой и создаем новый документ.

Чтобы картинка красиво отображалась в документе PDF, нужно создать максимально узкие поля. Для этого выбираем в Word вкладку «Разметка страницы», кликаем на «Поля» и выбираем «Узкое».

Теперь перетаскиваем картинку в окно редактора и растягиваем на всю страницу.

Осталось только сохранить документ в формате PDF. Нажимаем на круглую иконку в верхнем левом углу и последовательно выбираем «Сохранить как >> PDF или XPS»

Затем останется лишь дать название файлу и сохранить его в любую папку. Подтверждается сохранение кнопкой «Опубликовать».

К примеру, вот так выглядит PDF-документ, сконвертированный из обычного doc-файла с картинкой.

Правда, данный «фокус» работает лишь в MS Office 2007 и выше. Office 2003 не поддерживает конвертирование Doc в PDF. Впрочем, если у вас нет Ворда, то вы можете то же самое повторить с Open Officе.

к содержанию ↑

Специальные программы

Существует ряд специальных утилит, которыми можно сконвертировать любую картинку в PDF-файл. Среди бесплатных программ выделяются PDF Architect 2 (официальный сайт – http://download.pdfforge.org/download/pdfarchitect2/) и JPG2PDF (офсайт – http://www.jpgtopdfconverter.com/down/jpg2pdf.exe), а также Image to PDF Converter Free.

Хотите большего, чем конвертирование? Установите на ПК Adobe Photoshop CS. Мощный графический редактор позволяет сохранять картинки в формате PDF. Заодно и отредактируете картинки на свой лад.

Какой способ выбрать – решать вам. Главное, чтобы качество исходной картинки было на хорошем уровне.

thedifference.ru

Как перевести JPG в PDF ? Конвертирование JPG файла в PDF документ.

Jpg — самый популярный графический формат в Интернете. Иногда возникает необходимость конвертировать его в другой популярный формат документа pdf. Существует несколько способов это сделать:

Как быстро перевести JPG в PDF?

  • Один из вариантов если Вам необходимо конвертировать не более одной страницы это воспользоваться программой JPEG to PDF. Она позволяет конвертировать JPG картинку в одностраничный PDF файл. Программа JPEG to PDF бесплатная.
  • Использовать Photoshop для сохранения jpg в pdf. Выберите «Файл» > «Сохранить как…» и отметьте «Photoshop PDF» в меню «Формат». Можно выбрать параметр «Цвет», если необходимо использовать встроенный профиль или профиль, заданный командой «Параметры цветопробы». Можно также включить слои, примечания, плашечные каналы или альфа-каналы. Нажмите кнопку «Сохранить». Инструкция дана для Adobe Photoshop CS4.
  • Воспользоваться программой PDFCreator, которая позволяет создать pdf документ из любого исходного материала, в том числе из картинки jpg.
  • Использовать программу JPG To PDF Converter. По заявлениям разработчиков она переводит jpg в pdf намного быстрее чем любые другие подобные конвертеры.
  • Открыть изображение в Corel PtotoPaint. Далее вкладка «Файл» —> «Публикация в PDF».

Конвертировать jpg в pdf, видео (на примере программы JPEG TO PDF):

Справка по форматам:

Portable Document Format (PDF или же ПДФ) — кроссплатформенный формат электронных документов, созданный компанией Adobe Systems с использованием целого ряда возможностей языка PostScript. Основное предназначение формата — представление в электронном виде полиграфической продукции.

Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет.

askpoint.org

Конвертация JPG в PDF с помощью Фотоконвертера

JPG — один из самых популярных форматов изображений, которые используются в настоящее время. Главным его преимуществом является возможность хранить изображения хорошего качества в файлах небольшого размера. Это возможно за счет используемого типа сжатия. Механизм этого вида сжатия устанавливает приоритетность одних частей изображения перед другими, сохраняя высококачественные участки изображения наиболее заметные для человеческого глаза.

Формат PDF, также известный как Portable Document Format, стал одним из самых широко используемых форматов для хранения документов, которые включают текст и графику. В отличие от других форматов документов с аналогичными функциями, файлами PDF можно легко обмениваться между различными приложениями и операционными системами. Кроме того, информация в PDF файлах может быть защищена от копирования и печати, паролем или водяным знаком.

Как конвертировать JPG в PDF?

Самый простой способ — это скачать хорошую программу конвертации, например Фотоконвертер. Он работает быстро и эффективно, позволяя конвертировать любое количество JPG файлов за раз. Вы сможете довольно быстро оценить, что Фотоконвертер способен сэкономить массу времени которое вы будете тратить при работе вручную.

Скачайте и установите Фотоконвертер

Фотоконвертер легко скачать, установить и использовать — не нужно быть специалистом в компьютерах, чтобы понять как он работает.

Установить Фотоконвертер

Добавьте JPG файлы в Фотоконвертер

Запустите Фотоконвертер и загрузите .jpg файлы, которые вы хотите конвертировать в .pdf

Вы можете выбрать JPG файлы через меню Файлы → Добавить файлы либо просто перекинуть их в окно Фотоконвертера.

Выберите место, куда сохранить полученные PDF файлы

В секции Сохранить вы можете выбрать папку для сохранения готовых .pdf файлов. Можно так же потратить пару дополнительных минут и добавить эффекты для применения во время конвертации, но это не обязательно.

Выберите PDF в качестве формата для сохранения

Для выбора PDF в качестве формата сохранения, нажмите на иконку PDF в нижней части экрана, либо кнопку + чтобы добавить возможность записи в этот формат.

Теперь просто нажмите кнопку Старт и конвертация начнется мгновенно, а PDF файлы сохранятся в указанное место с нужными параметрами и эффектами.

Попробуйте бесплатную демо-версию

Видео инструкция

Интерфейс командной строки

Профессиональные пользователи могут конвертировать JPG в PDF используя командную строку в ручном или автоматическом режиме. За дополнительными консультациями по использованию cmd интерфейса обращайтесь в службу поддержки пользователей.

Скачать Фотоконвертер Про

Рассказать друзьям

www.photoconverter.ru

Как jpg перевести в pdf 🚩 jpg в pdf как 🚩 Программное обеспечение

Автор КакПросто!

PDF – популярный формат электронных документов. Он служит в качестве инструмента хранения полиграфической продукции и изображений для дальнейшего редактирования или просмотра. При помощи специальных программ можно сконвертировать несколько файлов изображений в формате jpg в pdf.

Статьи по теме:

Инструкция

Для изменения формата изображений с jpg на pdf можно воспользоваться популярной утилитой JPEG to PDF. Программа проста в использовании и позволяет качественно конвертировать нужные файлы в формат электронного документа. Загрузите данную утилиту с официального сайта разработчика и произведите ее установку, запустив файл инсталлятора и следуя инструкциям, появляющимся на экране.

Откройте программу при помощи ярлыка на рабочем столе. В поле JPEG File укажите путь до конвертируемого файла изображения. В поле Save As укажите имя и место сохранения конечного файла для документа pdf.

Нажмите клавишу Convert и дождитесь окончания процедуры конвертации. После завершения работы программы вы можете открыть полученный файл.

Для конвертации одного файла jpg в pdf можно также воспользоваться графическим пакетом Photoshop. Запустите программу и откройте нужный файл изображения при помощи команды «Файл» — «Открыть» (File – Open). После этого вызовите меню «Файл» — «Сохранить как» (File – Save As) и укажите расположение для будущего pdf. В выпадающем списке «Формат» (Format) укажите Photoshop PDF.

Для создания многостраничных pdf можно воспользоваться утилитами PDF Creator или JPG to PDF Converter. Добавление файлов в данных программах производится аналогичным другим утилитам образом при помощи соответствующих пунктов меню.

Перевести графическое изображение в PDF можно также при помощи многочисленных онлайн-сервисов. Например, можно воспользоваться ресурсом Converteronlinefree. Перейдите на сайт конвертера и укажите путь до файла изображения в окне «Изображение», после чего нажмите «Конвертировать». Сохраните полученный файл у себя на компьютере. Вы также можете сконвертировать архив формата zip с несколькими фалами jpg. Для этого перейдите во вкладку «Архив» и укажите путь до файла .zip. После завершения процедуры загрузите полученный файл.

Видео по теме

Обратите внимание

Для просмотра файлов PDF чаще всего используется популярное приложение Adobe Reader.

Источники:

  • Конвертер JPEG to PDF
  • JPG to PDF Converter
  • Converteronlinefree
  • как jpg перевести pdf

Совет полезен?

Статьи по теме:

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

www.kakprosto.ru

Как перевести jpg в pdf. Конвертировать jpg в pdf — Софт

Как перевести jpg в pdf? Конвертировать jpg в pdf

Все мы знаем, что формат pdf, также как и формат djvu, очень полезная и удобная вещь. С его помощью можно не только удобно просматривать журналы, книги или фотографии, но и хранить все важные документы в одном единственном файле. Именно по этим причинам сегодня очень большое количество пользователей компьютера пользуется преимуществами формата pdf. Все казалось бы хорошо, но как создать из набора jpg файлов один pdf файл, знают далеко не все. В сегодняшней статье мы на примере рассмотрим, как перевести jpg в pdf всего за пару кликов мышью.

Переводим jpg в pdf формат

Итак, для того, что бы перевести файлы формата jpg в pdf мы будем использовать специальную программу, которая называется JPG2PDF. Для начала нам необходимо загрузить программу с официального сайта и установить, после инсталляции программы необходимо её зарегистрировать (программа может работать и не зарегистрированной, но в таком случае, в созданном вами pdf документе по всему тексту будет красная надпись, которая в дословном переводе с английского будет означать: «Для того, что бы убрать эту надпись зарегистрируйтесь”). После регистрации программы переходим непосредственно к созданию pdf документа.

Предварительно, все jpg файлы необходимо поместить в одну папку. Также необходимо знать, что если jpg файлы в созданном pdf документе должны иметь какую-то определенную последовательность, то предварительно эти jpg файлы необходимо переименовать в соответствии с положением в будущем документе (Изображение 001.jpg, Изображение 002.jpg, Изображение 003.jpg и так далее). После этого запускаем программу и в главном окне программы нажимаем на кнопку Add Folder:


У вас откроется окно, в котором необходимо добавить папку с jpg файлами для перевода их в pdf.


Находим с помощью проводника папку с jpg файлами, выделяем её и нажимаем кнопку «ОК”:

 

В окне программы у нас появится список всех jpg файлов для перевода в pdf:

 

После этого в правом меню программы, можем ввести заголовок документа, имя автора, дату создания, название документа, ключевые слова, настроить степень сжатия качества.


После всех настроек выбираем место для сохранения pdf документа, для этого нажимаем кнопку Browse и с помощью проводника выбираем место на жестком диске, куда будет сохранен будущий pdf документ. После этого нажимаем кнопку Convert to PDF Now:



По окончании процесса конвертирования jpg в pdf в выбранной Вами папке появится готовый pdf документ:

 

В случае если Вам необходимо перевести с jpg в pdf только один файл, то вместо кнопки Add Folder нажимайте кнопку Add, после чего выполняйте аналогичные действия. Если по каким-то причинам Вы не можете открыть созданный документ формата PDF, то читайте статью чем открыть формат djvu

Как видите, перевести jpg в pdf с помощью данной программы достаточно легко и даже не обладая специальными знаниями можно быстро и удобно создавать pdf документы из наборов jpg файлов.

Статья написана при поддержке автора статьи: нет звука на компьютере

www.vashmirpc.ru

Как jpeg перевести в pdf

Многие пользователи ПК не раз сталкивались с ситуацией, когда нужно конвертировать аудио-, видеофайлы, тексты, изображения из одного формата в другой. Сколько времени уходит на поиск нужного конвертера! Поэтому, если у вас появилась необходимость, но вы не знаете, как jpeg перевести в pdf, вы найдете в этой статье полезную для вас информацию.

Краткие сведения о форматах JPEG и PDF

Формат PDF обладает способностью поддерживать несколько типов документов: текст, формы, фон, векторные и растровые изображения. В данном формате документы сохраняются в разных цветовых вариантах, с каждым из объектов согласован профиль 1СС, а также цветовой режим, который поддерживает профили 1СС. Документ в формате PDF может сохранять несколько CMYK, RGB и полутоновые объекты, имеющие отдельные исходные профайлы. PDF обладает собственными техническими форматами, применяемыми в полиграфии: PDF/Х-1 и PDF/Х-3. Он способен включать электронные подписи для протекции и проверки подлинности файлов.

Алгоритм JPEG применяется в основном для сжатия фотографических изображений и картин, которые содержат реалистичные изображения, имеющие плавные переходы цветов и тонов. Наибольшую популярность этот формат получил в технике цветовой фотографии, для сохранения и передачи изображений, которые используются в интернете.

Конвертация JPEG в PDF

Как jpeg перевести в pdf? В формат PDF, применяемый в основном в полиграфической отрасли для предоставления ее продукции в электронном виде, можно преобразовать файлы JPEG с использованием BullZip PDFРrinter. Используя средства Windows для просмотра фотографий, открываете jpeg-файлы. В верхней панели нажимаете «Печать». В окне, которое открылось, нажимаете «Печать изображений». Выбираете в качестве устройства PDFРrinter. После выбора критериев качества и размеров картинки нажимаете «Печать». В открывшемся окне «Создать файл» даете документу наименование, место, где он будет находиться, и нажимаете «Сохранить».

На этом решение задачи перевода файла из формата JPEG в PDF можно считать найденным. Документ- pdf будет сохранен в указанном вами месте.

Способы преобразования PDF в JPEG

Трансформацию полиграфического формата PDF в JPEG начинаете с открытия нужного PDF документа. Файл должен быть масштабирован таким образом, чтобы предназначенное для перевода изображение полностью помещалось на экране. Нажав сочетание кнопок Alt+PrtScr, открываете любой графический редактор, вставив копию окна-просмотрщика pdf-файла из буфера обмена. При необходимости часть изображения обрезается, и полученный документ сохраняется в JPEG.

Следующим вариантом, как jpeg перевести в pdf, является использование скачанной на компьютер программы Universal Document Converter. Также можно использовать онлайн-конвертеры. С помощью некоторых программ можно получать постраничные изображения файла. Конвертеры позволяют выбирать качественные характеристики и лимит страниц конечного документа. Результат преобразования сохраняется в виде архива с jpeg-изображениями.

kakznatok.ru

Если определитель матрицы равен 0 сколько решений имеет система – Если определитель равен нулю то система уравнений – как вычислить матрицу

Если определитель равен нулю то система уравнений – как вычислить матрицу

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных.

Метод Крамера . Применение для систем линейных уравнений

Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения  и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.


Пример 1. Решить систему линейных уравнений:

. (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.


Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.


Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:


Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 4.  Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 5.  Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 6.  Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 7.  Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Системы линейных уравнений

Другое по теме «Системы уравнений и неравенств»

Калькулятор — решение систем уравнений онлайн

Программная реализация метода Крамера на C++

Решение систем линейных уравнений методом подстановки и методом сложения

Решение систем линейных уравнений методом Гаусса

Условие совместности системы линейных уравнений.

Теорема Кронекера-Капелли

Решение систем линейных уравнений матричным методом (обратной матрицы)

Системы линейных неравенств и выпуклые множества точек

Начало темы «Линейная алгебра»

Определители

Матрицы

Поделиться с друзьями

laservirta.ru

4.Свойства определителей. Определитель произведения матриц.

Ответ: СВОЙСТВО 1. Величина определителя не изменится, если все его строки заменить столбцами, причем каждую строку заменить столбцом с тем же номером, то есть

.СВОЙСТВО 2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1. Например,

.СВОЙСТВО 3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.СВОЙСТВО 4. Умножение всех элементов одного столбца или одной строки определителя на любое число k равносильно умножению определителя на это число k. Например,

.СВОЙСТВО 5. Если все элементы некоторого столбца или некоторой строки равны нулю, то сам определитель равен нулю. Это свойство есть частный случае предыдущего (при k=0).СВОЙСТВО 6. Если соответствующие элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.СВОЙСТВО 7. Если каждый элемент n-го столбца или n-й строки определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один в n-м столбце или соответственно в n-й строке имеет первые из упомянутых слагаемых, а другой — вторые; элементы, стоящие на остальных местах, у вех трех определителей одни и те же. Например,

СВОЙСТВО 8. Если к элементам некоторого столбца (или некоторой строки) прибавить соответствующие элементы другого столбца (или другой строки), умноженные на любой общий множитель, то величина определителя при этом не изменится. Например,

.

Дальнейшие свойства определителей связаны с понятием алгебраического дополнения и минора. Минором некоторого элемента называется определитель, получаемый из данного путем вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.Алгебраическое дополнение любого элемента определителя равняется минору этого элемента, взятому со своим знаком, если сумма номеров строки и столбца, на пересечении которых расположен элемент, есть число четное, и с обратным знаком, если это число нечетное.Алгебраическое дополнение элемента мы будем обозначать большой буквой того же наименования и тем же номером, что и буква, кторой обозначен сам элемент.СВОЙСТВО 9. Определитель

равен сумме произведений элементов какого-либо столбца (или строки) на их алгебраические дополнения.

Определитель. Это многочлен, комбинирующий элементы квадратной матрицы таким образом, что его значение сохраняется при транспонировании и линейных комбинациях строк или столбцов.То есть, определитель характеризует содержание матрицы. В частности, если в матрице есть линейно-зависимые строки или столбцы, — определитель равен нулю.Определитель играет ключевую роль в решении в общем виде систем линейных уравнений, на его основе вводятся базовые понятия.В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.Определитель матрицы А обозначается как: det(A), |А| или Δ(A).

5.Вырожденная матрица. Обратная матрица, её свойства, вычисление, теорема существования.

Ответ: Вы́рожденной, особой (сингулярной) матрицей называется квадратная матрица А , если её определитель (Δ) равен нулю. В противном случае матрица А называется невырожденной.

Рассмотрим проблему определения операции, обратной умножению матриц.

Пусть — квадратная матрица порядка. Матрица, удовлетворяющая вместе с заданной матрицейравенствам:

называется обратной. Матрицу называютобратимой, если для нее существует обратная, в противном случае — необратимой.

Из определения следует, что если обратная матрица существует, то она квадратная того же порядка, что и. Однако не для всякой квадратной матрицы существует обратная. Если определитель матрицыравен нулю, то для нее не существует обратной. В самом деле, применяя теорему об определителе произведения матриц для единичной матрицыполучаем противоречие

так как определитель единичной матрицы равен 1. Оказывается, что отличие от нуля определителя квадратной матрицы является единственным условием существования обратной матрицы. Напомним, что квадратную матрицу, определитель которой равен нулю, называют вырожденной {особой), в противном случае — невырожденной {неособой).

Теорема 4.1 о существовании и единственности обратной матрицы. Квадратная матрица , определитель которой отличен от нуля, имеет обратную матрицу и притом только одну:

где — матрица, транспонированная для матрицы, составленной из алгебраических дополнений элементов матрицы.

Матрица называетсяприсоединенной матрицей по отношению к матрице .

В самом деле, матрица существует при условии. Надо показать, что она обратная к, т.е. удовлетворяет двум условиям:

Докажем первое равенство. Согласно п.4 замечаний 2.3, из свойств определителя следует, что . Поэтому

что и требовалось показать. Аналогично доказывается второе равенство. Следовательно, при условии матрицаимеет обратную

Единственность обратной матрицы докажем от противного. Пусть кроме матрицы существует еще одна обратная матрицатакая, что. Умножая обе части этого равенства слева на матрицу, получаем. Отсюда, что противоречит предположению. Следовательно, обратная матрица единственная.

Замечания 4.1

1. Из определения следует, что матрицы иперестановочны.

2. Матрица, обратная к невырожденной диагональной, является тоже диагональной:

3. Матрица, обратная к невырожденной нижней (верхней) треугольной, является нижней (верхней) треугольной.

4. Элементарные матрицы имеют обратные, которые также являются элементарными (см. п.1 замечаний 1.11).

Свойства обратной матрицы

Операция обращения матрицы обладает следующими свойствами:

если имеют смысл операции, указанные в равенствах 1-4.

Докажем свойство 2: если произведение невырожденных квадратных матриц одного и того же порядка имеет обратную матрицу, то.

Действительно, определитель произведения матриц не равен нулю, так как

, где 

Следовательно, обратная матрица существует и единственна. Покажем по определению, что матрицаявляется обратной по отношению к матрице. Действительно:

Из единственности обратной матрицы следует равенство . Второе свойство доказано. Аналогично доказываются и остальные свойства.

Замечания 4.2

1. Для комплексной матрицы справедливо равенство, аналогичное свойству 3:

, где — операция сопряжения матриц.

2. Операция обращения матриц позволяет определить целую отрицательную степень матрицы. Для невырожденной матрицы и любого натурального числаопределим.

6.системы линейных уравнений. Коэффициенты при неизвестных , свободных членах. Решение системы линейных уравнений. Совместность системы линейных уравнений. Система линейных однородных уравнений и её особенности.

Ответ: Системой линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида

 

где числа aij называются коэффициентами системы, числа bi— свободными членами. Подлежат нахождению числа xn.

Такую систему удобно записывать в компактной матричной форме

AX=B

Здесь А — матрица коэффициентов системы, называемая основной матрицей;

 

 —вектор-столбец из неизвестных xj.

 —вектор-столбец из свободных членов bi.

Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов

 

Решением системы называется n значений неизвестных  х1=c1, x2=c2, …, xn=cn, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записатьв виде матрицы-столбца

 

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

 Эквивалентные системы получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

 

Однородная система всегда совместна, так как  x1=x2=x3=…=xn=0 является решением системы. Это решение называется нулевым или тривиальным.

4.2. Решение систем линейных уравнений.

Теорема Кронекера-Капелли

Пусть дана произвольная система n линейных уравнений с n неизвестными

 

Исчерпывающий ответ на вопрос о совместности этой системы дает теоремаКронекера-Капелли.

Теорема 4.1. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы.

Примем ее без доказательства.

Правила практического разыскания всех решений совместной системы линейных уравнений вытекают из следующих теорем.

Теорема 4.2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 4.3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Правило решения произвольной системы линейных уравнений

1.  Найти ранги основной и расширенной матриц системы. Если r(A)≠r(A), то система несовместна.

 2.  Если r(A)=r(A)=r, система совместна. Найти какой-либо базисный минор порядка r(напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять r уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные n-r неизвестных называют свободными и переносят в правые части уравнений.

 3. Найти выражения главных неизвестных через свободные. Получено общее решение системы.

 4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений.

Пример 4.1.

 4.3 Решение невырожденных линейных систем. Формулы Крамера

Пусть дана система n линейных уравнений с n неизвестными

     (4.1)

или в матричной форме А*Х=В.

Основная матрица А такой системы квадратная. Определитель этой матрицы

 

называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.

Найдем решение данной системы уравнений в случае 

Умножив обе части уравнения А*Х=В слева на матрицу A-1, получим

A-1*A*X=A-1*B Поскольку. A-1*A=E  и Е*Х=Х , то

X=A-1*B        (4.1)

Отыскание решения системы по формуле (4.1) называют матричным способомрешения системы.

Матричное равенство (4.1) запишем в виде

  

то есть

 

Отсюда следует, что

 

Но есть разложение определителя

 

по элементам первого столбца. Определитель получается из определителя  путем замены первого столбца коэффициентов столбцом из свободных членов. Итак,

 

Аналогично:

 ,

 где 2  получен из   путем замены второго столбца коэффициентов столбцом из свободных членов:

 ,…,

Формулы

 

называются формулами Крамера.

Итак, невырожденная система n линейных уравнений с n неизвестными имеет единственное решение, которое может быть найдено матричным способом (4.1) либо по формулам Крамера (4.2).

Пример 4.3.

4.4 Решение систем линейных уравнений методом Гаусса

Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных.

Пусть дана система уравнений

 

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид

 

где

Коэффициенты aii называются главными элементами системы.

На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

Опишем метод Гаусса подробнее.

 Прямой ход.

Будем считать, что элемент (если a11=0 , то первым в системе запишем уравнение, в котором коэффициент при х1 отличен от нуля).

Преобразуем систему (4.3), исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалентную систему

 

Здесь — новые значения коэффициентов и правых частей, которые получаются после первого шага.

Аналогичным образом, считая главным элементом , исключим неизвестное х2из всех уравнений системы, кроме первого я второго, и так далее. Продолжаем этот процесс, пока это возможно.

Если в процессе приведения системы (4.3) к ступенчатому виду появятся нулевые уравнения, т. е. равенства вида 0=0, их отбрасывают Если же появится уравнение вида то это свидетельствует о несовместности системы.

Второй этап (обратный ход) заключается в решении ступенчатой системы. Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений, В последнем уравнении этой системы выражаем первое неизвестное xkчерез остальные неизвестные (xk+1,…,xn). Затем подставляем значение xk  в предпоследнее уравнение системы и выражаем xk-1 через (xk+1,…,xn). , затем находим xk-2,…,x1.. Придавая свободным неизвестным (xk+1,…,xn). произвольные значения, получим бесчи­сленное множество решений системы.

Замечания:

1. Если ступенчатая система оказывается треугольной, т. е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим xn из предпоследнего уравнения xn-1, далее подни­маясь по системе вверх, найдем все остальные неизвестные (xn-1,…,x1).

2. На практике удобнее работать не с системой (4.3), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a111).

Пример 4.4.

Решить систему методом Гаусса:

Решение: В результате элементарных преобразований над расширенной матрицейсистемы

исходная система свелась к ступенчатой:

Поэтому общее решение системы: x2=5x4-13x3-3;x1=5x4-8x3-1 Если положить, например, x3=0,x4=0, то найдем одно из частных решений этой системы  x1=-1,x2=-3,x3=0,x4=0.

Пример 4.5.

Решить систему методом Гаусса:

  Решение: Произведем элементарные преобразования над строчками расширенной матрицы системы:

Полученная матрица соответствует системе

Осуществляя обратный ход, находим x3=1, x2=1,x1=1.

 4.5 Системы линейных однородных уравнений

Пусть дана система линейных однородных уравнений

 

Очевидно, что однородная система всегда совместна , она имеет  нулевое (тривиальное) решение x1=x2=x3=…=xn=0.

При каких условиях однородная система имеет и ненулевые решения?

Теорема 4.4. Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n  неизвестных, т. е. r<n.  

Необходимость.

Так как ранг не может превосходить размера матрицы, то, очевидно, r<=n. Пусть r=n. Тогда один из минеров размера nхn отличен от нуля. Поэтому соответствующаясистема линейных уравнений имеет единственное решение:

 

Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r<n.

Достаточность:

Пусть r<n. Тогда однородная система, будучи совместной, является неопределенной. Значит, она имеет бесчисленное множество решений, т. е. имеет и ненулевые решения. Пусть дана однородная система n линейных уравнений с n неизвестными

 

 

Теорема 4.5. Для того, чтобы однородная система n линейных уравнений с n неизвестными имела ненулевые решения, необходимо и достаточно, чтобы ее определитель  был равен нулю, т. е. =0.

Если система имеет ненулевые решения, то =0. Ибо при 0 система имеет только единственное, нулевое решение. Если же =0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r<n. И, значит, система имеет бесконечное множество (ненулевых) решений.

Пример 4.6.

Решить систему

 

Положив x3=0,получаем одно частное решение: x1=0, x2=0, x3=0. Положив x3=1, получаем второе частное решение: x1=2, x2=3, x3=1 и т д.

studfiles.net

Определители и системы линейных уравнений

1.1. Системы двух линейных уравнений и определители второго порядка

Рассмотрим систему двух линейных уравнений с двумя неизвестными:

Коэффициенты при неизвестных и имеют два индекса: первый указывает номер уравнения, второй – номер переменной.

Главным определителем системы называется таблица, составленная из коэффициентов при неизвестных и заключенная в прямые скобки:

Вспомогательным определителем называют определитель, полученный из главного определителя заменой одного из столбцов на столбец свободных членов:

Главнаядиагональ определителя – это диагональ, направленная из левого верхнего угла в правый нижний угол. Вторая диагональ называетсяпобочной.

Определитель второго порядка равен разности между произведением элементов главной диагонали и произведением элементов побочной диагонали:

Правило Крамера: Решение системы находят путем деления вспомогательных определителей на главный определитель системы

,

Замечание 1.Использование правила Крамера возможно, если определитель системы не равен нулю.

Замечание 2.Формулы Крамера обобщаются и на системы большего порядка.

Пример 1. Решить систему: .

Решение.

; ;

;

Проверка:

Вывод: Система решена верно: .

1.2. Системы трех линейных уравнений и определители третьего порядка

Рассмотрим систему трех линейных уравнений с тремя неизвестными:

Определитель, составленный из коэффициентов при неизвестных, называется определителем системы или главным определителем:

.

Если то система имеет единственное решение, которое определяется по формулам Крамера:

где

где определители – называются вспомогательными и получаются из определителя путем замены его первого, второго или третьего столбца столбцом свободных членов системы.

Пример 2.Решить систему .

Сформируем главный и вспомогательные определители:

Осталось рассмотреть правила вычисления определителей третьего порядка. Их три: правило дописывания столбцов, правило Саррюса, правило разложения.

а) Правило дописывания первых двух столбцов к основному определителю:

.

Вычисление проводятся следующим образом: со своим знаком идут произведения элементов главной диагонали и по параллелям к ней, с обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней.

б) Правило Саррюса:

Со своим знаком берут произведения элементов главной диагонали и по параллелям к ней, причем недостающий третий элемент берут из противоположного угла. С обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней, третий элемент берут из противоположного угла.

в) Правило разложения по элементам строки или столбца:

Определитель равен сумме произведений элементов какой-нибудь строки (столбца) на их соответствующие алгебраические дополнения.

Если , тогда .

Алгебраическое дополнение– это определитель более низкого порядка, получаемый путем вычеркивания соответствующей строки и столбца и учитывающий знак , где– номер строки,– номер столбца.

Например,

, , и т.д.

Вычислим по этому правилу вспомогательные определители и , раскрывая их по элементам первой строки.

Вычислив все определители, по правилу Крамера найдем переменные:

Проверка:

Вывод: система решена верно: .

    1. Основные свойства определителей

Необходимо помнить, что определитель – это число, найденное по некоторым правилам. Его вычисление может быть упрощено, если пользоваться основными свойствами, справедливыми для определителей любого порядка.

Свойство 1.Значение определителя не изменится от замены всех его строк соответствующими по номеру столбцами и наоборот.

Операция замены строк столбцами называется транспонированием. Из этого свойства вытекает, что всякое утверждение, справедливое для строк определителя, будет справедливым и для его столбцов.

Свойство 2.Если в определителе поменять местами две строки (столбца), то знак определителя поменяется на противоположный.

Свойство 3.Если все элементы какой-нибудь строки определителя равны 0, то определитель равен 0.

Свойство 4.Если элементы строки определителя умножить (разделить) на какое-нибудь число , то и значение определителя увеличится (уменьшится) в раз.

Если элементы какой-нибудь строки, имеют общий множитель, то его можно вынести за знак определителя.

Свойство 5. Если определитель имеет две одинаковые или пропорциональные строки, то такой определитель равен 0.

Свойство 6. Если элементы какой-нибудь строки определителя представляют собой сумму двух слагаемых, то определитель равен сумме двух определителей.

Свойство 7. Значение определителя не изменится, если к элементам какой-нибудь строки добавить элементы другой строки, умноженной на одно и то же число.

В этом определителе вначале ко второй строке прибавили третью, умноженную на 2, затем из третьего столбца вычли второй, после чего вторую строку прибавили к первой и третьей, в результате получили много нулей и упростили подсчет.

Элементарными преобразованиями определителя называются упрощения его благодаря использованию указанных свойств.

Пример 1.Вычислить определитель

Непосредственный подсчет по одному из рассмотренных выше правил приводит к громоздким вычислениям. Поэтому целесообразно воспользоваться свойствами:

а) из І строки вычтем вторую, умноженную на 2;

б) из ІІ строки вычтем третью, умноженную на 3.

В результате получаем:

Разложим этот определитель по элементам первого столбца, содержащего лишь один ненулевой элемент.

.

    1. Системы и определители высших порядков

Систему линейных уравнений с неизвестными можно записать в таком виде:

Для этого случая также можно составить главный и вспомогательные определители, а неизвестные определять по правилу Крамера. Проблема состоит в том, что определители более высокого порядка могут быть вычислены только путем понижения порядка и сведения их к определителям третьего порядка. Это может быть осуществлено способом прямого разложения по элементам строк или столбцов, а также с помощью предварительных элементарных преобразований и дальнейшего разложения.

Пример 4. Вычислить определитель четвертого порядка

Решение найдем двумя способами:

а) путем прямого разложения по элементам первой строки:

б) путем предварительных преобразований и дальнейшего разложения

а) из І строки вычтем ІІІ

б) ІІ строку прибавим к ІV

а) из IV строки вынесем 2

б) сложим III и IV столбцы

в) умножим на 2 III столбец и прибавим ко II

Пример 5.Вычислить определитель пятого порядка, получая нули в третьей строке с помощью четвертого столбца

из первой строки вычтем вторую, из третьей вычтем вторую, из четвертой вычтем вторую, умноженную на 2.

из второго столбца вычтем третий:

из второй строки вычтем третью:

Пример 6.Решить систему:

Решение.Составим определитель системы и, применив свойства определителей, вычислим его:

(из первой строки вычтем третью, а затем в полученном определителе третьего порядка из третьего столбца вычитаем первый, умноженный на 2). Определитель , следовательно, формулы Крамера применимы.

Вычислим остальные определители:

Четвертый столбец умножили на 2 и вычли из остальных

Четвертый столбец вычли из первого, а затем, умножив на 2, вычли из второго и третьего столбцов.

.

Здесь выполнили те же преобразования, что и для .

.

При нахождении первый столбец умножили на 2 и вычли из остальных.

По правилу Крамера имеем:

.

После подстановки в уравнения найденных значений убеждаемся в правильности решения системы.

2. МАТРИЦЫ и ИХ ИСПОЛЬЗОВАНИЕ

В РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

studfiles.net

Метод Крамера решения систем линейных уравнений

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения  и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.


Пример 1. Решить систему линейных уравнений:

.                         (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.


Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.


Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:


Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8.  Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Другое по теме «Системы уравнений и неравенств»

Начало темы «Линейная алгебра»

Поделиться с друзьями

function-x.ru

Системы линейных уравнений (Лекция №14)

Системой m линейных уравнений с n неизвестными называется система вида

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A: . Поскольку A-1A = E и EX = X, то получаем решение матричного уравнения в виде X = A-1B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.

Примеры. Решить системы уравнений.

  1. Найдем матрицу обратную матрице A.

    ,

    Таким образом, x = 3, y = – 1.

  2. Итак, х1=4,х2=3,х3=5.

  3. Решите матричное уравнение: XA+B=C, где

    Выразим искомую матрицу X из заданного уравнения.

    Найдем матрицу А-1.

    Проверка:

  4. Решите матричное уравнение AX+B=C, где

    Из уравнения получаем .

    Следовательно,

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

.

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

  1. Итак, х=1, у=2, z=3.

  2. Решите систему уравнений при различных значениях параметра p:

    Система имеет единственное решение, если Δ ≠ 0.

    . Поэтому .

    1. При
    2. При p = 30 получаем систему уравнений которая не имеет решений.
    3. При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y, yÎR.

МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

  1. Вернувшись к системе уравнений, будем иметь

  2. Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

    Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

  3. Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

    Вернемся к системе уравнений.

    Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Таким образом, система имеет бесконечное множество решений.

toehelp.ru

Метод Крамера . Применение для систем линейных уравнений

Задана система N линейных алгебраических уравнений (СЛАУ) с неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами — числа

Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй — при котором из неизвестным он находится.

Если определитель матрицы не равен нулю

то система линейных алгебраических уравнений имеет единственное решение.

Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность чисел , которая при превращает каждое из уравнений системы в правильную равенство.

Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной

Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае — несовместимой.

Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственный, систему уравнений называют неопределенной.

Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.

Эквивалентные преобразования СЛАУ

1) перестановка местами уравнений;

2) умножение (или деление) уравнений на отличное от нуля число;

3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.

Решение СЛАУ можно найти разными способами.

МЕТОД КРАМЕРА

ТЕОРЕМА КРАМЕРА. Если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера:

— определители, образованные с заменой -го столбца, столбцом из свободных членов.

Если , а хотя бы один из отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений. Рассмотрим примеры с применением метода Крамера.

—————————————————————

Задача 1.

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера

Решение.

Найдем определитель матрицы коэффициентов при неизвестных

Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:

По формулам Крамера находим неизвестные

Итак единственное решение системы.

Задача 2.

Дана система четырех линейных алгебраических уравнений. Решить систему методом Крамера.

Решение.

Найдем определитель матрицы коэффициентов при неизвестных. Для этого разложим его по первой строке.

Найдем составляющие определителя:

Подставим найденные значения в определитель

Детерминант , следовательно система уравнений совместная и имеет единственное решение. Вычислим определители по формулам Крамера:

Разложим каждый из определителей по столбцу в котором есть больше нулей.

По формулам Крамера находим

Решение системы

Данный пример можно решить математическим калькулятором YukhymCALC . Фрагмент программы и результаты вычислений наведены ниже.



——————————

МЕТОД К Р А М Е Р А

|1,1,1,1|

D=|5,-3,2,-8|

|3,5,1,4|

|4,2,3,1|

 

D=1*(-3*1*1+2*4*2+(-8)*5*3-((-8)*1*2+2*5*1+(-3)*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))+1*(5*5*1+(-3)*4*4+(-8)*3*2-((-8)*5*4+(-3)*3*1+5*4*2))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(-3+16-120+16-10+36)-1*(5+32-72+32-6-60)+1*(25-48-48+160+9-40)-1*(75-12+12-40+27-10)=1*(-65)-1*(-69)+1*58-1*52=-65+69+58-52=10

 

|0,1,1,1|

Dx1=|1,-3,2,-8|

|0,5,1,4|

|3,2,3,1|

 

Dx1=-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(1*5*1+(-3)*4*3+(-8)*0*2-((-8)*5*3+(-3)*0*1+1*4*2))-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))= -1*(1+24+0+24+0-12)+1*(5-36+0+120+0-8)-1*(15-9+0-30+0-2)= -1*(37)+1*81-1*(-26)=-37+81+26=70

 

|1,0,1,1|

Dx2=|5,1,2,-8|

|3,0,1,4|

|4,3,3,1|

 

Dx2=1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(1+24+0+24+0-12)+1*(0+16-72+0-3-60)-1*(0+4+18+0-9-15)= 1*37+1*(-119)-1*(-2)=37-119+2=-80

 

|1,1,0,1|

Dx3=|5,-3,1,-8|

|3,5,0,4|

|4,2,3,1|

 

Dx3=1*(-3*0*1+1*4*2+(-8)*5*3-((-8)*0*2+1*5*1+(-3)*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))= 1*(0+8-120+0-5+36)-1*(0+16-72+0-3-60)-1*(75+0+6-20+27+0)= 1*(-81)-1*(-119)-1*88=-81+119-88=-50

 

|1,1,1,0|

Dx4=|5,-3,2,1|

|3,5,1,0|

|4,2,3,3|

 

Dx4=1*(-3*1*3+2*0*2+1*5*3-(1*1*2+2*5*3+(-3)*0*3))-1*(5*1*3+2*0*4+1*3*3-(1*1*4+2*3*3+5*0*3))+1*(5*5*3+(-3)*0*4+1*3*2-(1*5*4+(-3)*3*3+5*0*2))= 1*(-9+0+15-2-30+0)-1*(15+0+9-4-18+0)+1*(75+0+6-20+27+0)= 1*(-26)-1*(2)+1*88=-26-2+88=60

 

x1=Dx1/D=70,0000/10,0000=7,0000

x2=Dx2/D=-80,0000/10,0000=-8,0000

x3=Dx3/D=-50,0000/10,0000=-5,0000

x4=Dx4/D=60,0000/10,0000=6,0000

Посмотреть материалы:

{jcomments on}

yukhym.com

Решение систем линейных уравнений

Каталин Дэвид

Системы линейных уравнений имеют следующий общий вид:

$ \begin{cases} a_{1,1}\cdot x_{1} + a_{1,2}\cdot x_{2} + a_{1,3}\cdot x_{3} + \cdots a_{1,n} \cdot x_{n} =b_{1} \\ a_{2,1}\cdot x_{1} + a_{2,2}\cdot x_{2}+ a_{2,3}\cdot x_{3} + \cdots + a_{2,n}\cdot x_{n} = b_{2} \\ a_{3,1}\cdot x_{1} + a_{3,2}\cdot x_{2}+a_{3,3}\cdot x_{3}+ \cdots + a_{3,n}\cdot x_{n}=b_{3} \\ \cdots\\ a_{m,1}\cdot x_{1}+ a_{m,2}\cdot x_{2}+a_{m,3}\cdot x_{3}+\cdots + a_{m,n}\cdot x_{n} =b_{n} \end{cases}$

$ A= \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & . & . & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & . & . & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ a_{m,1} & a_{m,2} & a_{m,3} & . & . & a_{m,n} \end{pmatrix}$ — матрица системы, а $b_{1}, b_{2},b_{3} \cdots b_{n}$ — свободные члены системы.

Если все свободные члены равны 0, то система однородна.

Матрица системы — квадратная (m=n)

Надо вычислить определитель матрицы системы.

$\Delta = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} & . & . & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & . & . & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ a_{n,1} & a_{n,2} & a_{n,3} & . & . & a_{n,n} \end{vmatrix}$

Определитель матрицы системы не равен 0

Система называется невырожденной системой с единственным решением. Чтобы найти решение системы, используем метод Крамера.

Вычислим $ \Delta_{x_{1}}$ — определитель матрицы, полученной заменой столбца с коэффициентами соответствующей переменной $x_{1}$ столбцом свободных членов.
$\Delta_{x_{1}}= \begin{vmatrix} b_{1} & a_{1,2} & a_{1,3} & . & . & a_{1,n} \\ b_{2} & a_{2,2} & a_{2,3} & . & . & a_{2,n} \\ b_{3} & a_{3,2} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ b_{n} & a_{n,2} & a_{n,3} & . & . & a_{n,n} \end{vmatrix}$

Получаем $ x_{1} = \dfrac{\Delta_{x_{1}}}{\Delta}$

Вычислим $ \Delta_{x_{2}}$ — определитель матрицы, полученной заменой столбца с коэффициентами соответствующей переменной $x_{2}$ столбцом свободных членов.
$\Delta_{x_{2}}= \begin{vmatrix} a_{1,1} & b_{1} & a_{1,3} & . & . & a_{1,n} \\ a_{2,1} & b_{2} & a_{2,3} & . & . & a_{2,n} \\ a_{3,1} & b_{3} & a_{3,3} & . & . & a_{3,n} \\ \cdots \\ a_{n,1} & b_{n} & a_{n,3} & . & . & a_{n,n} \end{vmatrix}$

Получаем $ x_{2} = \dfrac{\Delta_{x_{2}}}{\Delta}$

Вычислим $ \Delta_{x_{3}}$ — определитель матрицы, полученной заменой столбца с коэффициентами соответствующей переменной $x_{3}$ столбцом свободных членов.
$\Delta_{x_{3}}= \begin{vmatrix} a_{1,1} & a_{1,2} & b_{1} & . & . & a_{1,n} \\ a_{2,1} & a_{2,2} & b_{2} & . & . & a_{2,n} \\ a_{3,1} & a_{3,2} & b_{3} & . & . & a_{3,n} \\ \cdots \\ a_{n,1} & a_{n,2} & a_{n} & . & . & a_{n,n} \end{vmatrix}$

Получаем $ x_{3} = \dfrac{\Delta_{x_{3}}}{\Delta}$

Продолжаем делать это с остальными переменными, и в конце-концов записываем решение системы.
$x_{n}=\dfrac{\Delta_{x_{n}}}{\Delta}$

Пример 53
$\begin{cases} 2\cdot x + 3\cdot y -5\cdot z = \color{red}{-7}\\ -3 \cdot x + 2\cdot y + z = \color{red}{-9}\\ 4\cdot x — y + 2\cdot z = \color{red}{17} \end{cases}$

Матрица системы:
$ \begin{pmatrix} 2 & 3 & -5\\ -3 & 2 & 1\\ 4 & -1 & 2 \end{pmatrix}$

Вычисляем определитель матрицы и получаем $\Delta = 8 -15 + 12 +40 +2 + 18 = 65$
Вычисляем $ \Delta_{x}= \begin{vmatrix} \color{red}{-7} & 3 & -5\\ \color{red}{-9} & 2 & 1\\ \color{red}{17} & -1 & 2 \end{vmatrix}= -28 — 45 + 51 + 170 — 7 +54 = 195$

Вычисляем $ \Delta_{y}= \begin{vmatrix} 2 & \color{red}{-7} & -5\\ -3 & \color{red}{-9} & 1\\ 4 & \color{red}{17} & 2 \end{vmatrix}=-36 + 255 -28 -180 -34 -42 = -65$

Вычисляем $ \Delta_{z}= \begin{vmatrix} 2 & 3 &\color{red}{-7}\\ -3 & 2 & \color{red}{-9}\\ 4 & -1 & \color{red}{17} \end{vmatrix}= 68 -21 -108 + 56 -18 + 153 =130$

Решение системы:
$x = \dfrac{\Delta_{x}}{\Delta} =\dfrac{195}{65} = 3$
$y = \dfrac{\Delta_{y}}{\Delta} = -\dfrac{65}{65}= -1$
$z = \dfrac{\Delta_{z}}{\Delta} =\dfrac{130}{65}= 2$
$S=\{3;-1;2\}$

Пример 54
$\begin{cases} 4\cdot x + 5\cdot y -2\cdot z = \color{red}{3}\\ -2 \cdot x + 3\cdot y — z = \color{red}{-3}\\ -1\cdot x — 2\cdot y + 3\cdot z = \color{red}{-5} \end{cases}$

Матрица системы: $ \begin{pmatrix} 4 & 5 & -2\\ -2 & 3 & -1\\ -1 & -2 & 3 \end{pmatrix}$

Вычисляем определитель матрицы и получаем $\Delta = 36 -8 + 5 -6 -8 + 30 = 49$

Вычисляем $ \Delta_{x}= \begin{vmatrix} \color{red}{3} & 5 & -2\\ \color{red}{-3} & 3 &1\\ \color{red}{-5} & -2 & 3 \end{vmatrix}= 27 — 12 + 25 — 30 — 6 + 45 = 49$

Вычисляем $ \Delta_{y}= \begin{vmatrix} 4 & \color{red}{3} & -2\\ -2 & \color{red}{-3} & -1\\ -1 & \color{red}{-5} & 3 \end{vmatrix}=-36 -20+ 3 +6 -20 + 18 = -49$

Вычисляем $ \Delta_{z}= \begin{vmatrix} 4 & 5 & \color{red}{3}\\ -2 & 3 & \color{red}{-3}\\ -1& -2 & \color{red}{-5} \end{vmatrix}= -60 + 12 + 15 + 9 — 24 -50 = — 98$

Решение системы:
$x = \dfrac{\Delta_{x}}{\Delta} =\dfrac{49}{49} = 1$
$y = \dfrac{\Delta_{y}}{\Delta} = -\dfrac{-49}{49}= -1$
$z = \dfrac{\Delta_{z}}{\Delta} =\dfrac{-98}{4}= -2$
$S=\{1;-1;-2\}$

Если система однородна, то ее решение есть {0;0;0}, потому что в матрицах, определителями которых являются $\Delta_{x}$,$\Delta_{y}$ и $\Delta_{z}$, есть столбцы из одних нулей, следовательно, эти определители равны 0.

Пример 55
$\begin{cases} 2\cdot x + 3\cdot y -5\cdot z = \color{red}{0}\\ -3 \cdot x + 2\cdot y + z = \color{red}{0}\\ 4\cdot x — y + 2\cd

www.math10.com

Онлайн решение системы неравенств – Калькулятор онлайн — Решение систем неравенств (линейных, квадратных и дробных) (с подробным решением)

Неравенства онлайн. Математика онлайн

Решение неравенств онлайн на Math34.biz для закрепления студентами и школьниками пройденного материала.                                                     И тренировки своих практических навыков. Неравенство в математике — утверждение об относительной величине или порядке двух объектов (один из объектов меньше или не больше другого), или о том, что два объекта не одинаковы (отрицание равенства). В элементарной математике изучают числовые неравенства, в общей алгебре, анализе, геометрии рассматриваются неравенства также и между объектами нечисловой природы. Для решения неравенства обязательно должны быть определены обе его части с одним из знаков неравенства между ними. Строгие неравенства подразумевают неравенство двух объектов. В отличие от строгих, нестрогие неравенства допускают равенство входящих в него объектов. Линейные неравенства представляют собой простейшие с точки зрения начала изучения выражения, и для решения таких неравенств используются самые простые методики. Главная ошибка учеников в решении неравенств онлайн в том, что они не различают особенность строгого и нестрогого неравенства, от чего зависит войдут или нет граничные значения в конечный ответ. Несколько неравенств, связанных между собой несколькими неизвестными, называют системой неравенств. Решением неравенств из системы является некая область на плоскости, либо объемная фигура в трехмерном пространстве. Наряду с этим абстрагируются n-мерными пространствами, однако при решении таких неравенств зачастую не обойтись без специальных вычислительных машин. Для каждого неравенства в отдельности нужно найти значения неизвестного на границах области решения. Множество всех решений неравенства и является его ответом. Замена одного неравенства равносильным ему другим неравенством называется равносильным переходом от одного неравенства к другому. Аналогичный подход встречается и в других дисциплинах, потому что помогает привести выражения к стандартному виду. Вы оцените по достоинству все преимущества решение неравенств онлайн на нашем сайте. Неравенство — это выражение, содержащее один из знаков = >. По сути это логическое выражение. Оно может быть либо верным, либо нет — в зависимости от того, что стоит справа и слева в этом неравенстве. Разъяснение смысла неравенства и основные приемы решения неравенств изучаются на разных курсах, а также в школе. Решение любых неравенств онлайн — неравенства с модулем, алгебраические, тригонометрические, трансцендентные неравенства онлайн. Тождественное неравенство, как строгие и нестрогие неравенства, упрощают процесс достижения конечного результата, являются вспомогательным инструментом для разрешения поставленной задачи. Решение любых неравенств и систем неравенств, будь то логарифмические, показательные, тригонометрические или квадратных неравенства, обеспечивается с помощью изначально правильного подхода к этому важному процессу. Решение неравенств онлайн на сайте Math34.biz всегда доступно всем пользователям и абсолютно бесплатно. Решениями неравенства с одной переменной называются значения переменной, которые обращают его в верное числовое выражение. Уравнения и неравенства с модулем: модуль действительного числа — это абсолютная величина этого числа. Стандартный метод решения этих неравенств заключается в возведении обеих частей неравенства в нужную степень. Неравенства – это выражения, указывающие на сравнение чисел, поэтому грамотное решение неравенств обеспечивает точность таких сравнений. Они бывают строгими (больше, меньше) и нестрогими (больше или равно, меньше или равно). Решить неравенство – значит найти все те значения переменных, которые при подстановке в исходное выражение обращают его в верное числовое представление. Вашему вниманию мы предлагаем сравнить решение неравенств онлайн на сайте Math34.biz с другим аналогичным сервисом. Понятие неравенства, его сущность и особенности, классификация и разновидности — вот что определяет специфику данного математического раздела. Основные свойства числовых неравенств, применимые ко всем объектам данного класса, обязательно должны быть изучены учениками на начальном этапе ознакомления с данной темой. Неравенства и промежутки числовой прямой очень тесно связаны, когда речь идет о решении неравенств онлайн. Графическое обозначение решения неравенства наглядно показывает суть такого выражения, становится понятно к чему следует стремиться при решении какой-либо поставленной задачи. В основу понятия неравенства входит сравнение двух или нескольких объектов. Неравенства, содержащие переменную, решаются как аналогично составленные уравнения, после чего делается выборка интервалов, которые будут приняты за ответ. Любое алгебраическое неравенство, тригонометрическое неравенство или неравенства содержащие трансцендентные функции, вы с легкостью и мгновенно сможете решить, используя наш бесплатный сервис. Число является решением неравенства, если при подстановке этого числа вместо переменной получаем верное выражение, то есть знак неравенства показывает истинное понятие. Попробуйте найти решение неравенств с помощью сайта Math34.biz. Решение неравенств онлайн на Math34.biz каждый день для полноценного изучения студентами пройденного материала и закрепления своих практических навыков. Зачастую тема неравенства онлайн в математике изучается школьниками после прохождения раздела уравнений. Как и положено применяются все принципы при решении, чтобы определить интервалы решений. Найти в аналитическом виде ответ бывает сложнее, чем сделать то же самое, но в числовом виде. Однако такой подход дает более наглядное и полное представление об целостности решения неравенства. Сложность может возникнуть на этапе построения линии абсцисс и нанесения точек решения однотипного уравнения. После этого решение неравенств сводится к определению знака функции на каждом выявленном интервале с целью определения возрастания или убывания функции. Для этого необходимо поочередно подставлять к значениям, заключенных внутри каждого интервала, в исходную функцию и проверять её значение на положительность или отрицательность. В этом есть суть нахождения всех решений, в том числе интервалов решений. Когда вы сами решите неравенство и увидите все интервалы с решениями, то поймете, насколько применим такой подход для дальнейших действий. Сайт Math34.biz предлагает вам перепроверить свои результаты вычислений с помощью мощного современного калькулятора на этой странице. Вы сможете с легкостью выявить неточности и недочеты в своих расчетах, использую уникальный решебник неравенств. Студенты часто задаются вопросом, где найти такой полезный ресурс? Благодаря инновационному подходу к возможности определения потребностей инженеров, калькулятор создан на базе мощных вычислительных серверов с использованием только новых технологий. По сути решение неравенств онлайн заключается в решении уравнения с вычислением всех возможных корней. Полученные решения отмечаются на прямой, а далее производится стандартная операция по определению значения функции на каждом промежутке. А что же делать, если корни уравнения получаются комплексные, как в этом случае решить неравенство в полной форме, которое бы удовлетворяло всем правилам написания результата? Ответ на этот и многие другие вопросы с легкость даст наш сервис Math34.biz, для которого нет ничего невозможного в решении математических задач онлайн. В пользу вышесказанного добавим следующее: каждый, кто всерьез занимается изучением такой дисциплиной как математика, обязан изучить тему неравенств. Неравенства бывают разных типов и решить неравенство онлайн порой сделать непросто, так как необходимо знать принципы подходов к каждому из них. На этом базируется основа успеха и стабильности. Для примера можно рассмотреть такие типы, как логарифмические неравенства или трансцендентные неравенства. Это вообще особый вид таких, сложных на первый взгляд, задач для студентов, тем более для школьников. Преподаватели институтов уделяют немало времени из подготовки практикантов для достижения профессиональных навыков в работе. К таким же типам отнесем тригонометрические неравенства и обозначим общий подход при решении множества практических примеров из постановочной задачи. В ряде случаев сначала нужно привести все к уравнению, упростить его, разложить на разные множители, короче говоря, привести к вполне наглядному виду. Во все времена человечество стремилось найти оптимальный подход в любых начинаниях. Благодаря современным технологиям, человечество сделало просто огромный прорыв в будущее свое развитие. Инновации все чаще и чаще, день за днем вливаются в нашу жизнь. В основу вычислительной техники легла, разумеется, математика со своим принципами и строгим подходом к делу. Math34.biz представляет собой общий математический ресурс, в котором имеется разработанный калькулятор неравенств и многие другие полезные сервисы. Используйте наш сайт и у вас будет уверенность в правильности решенных задач. Из теории известно, что объекты нечисловой природы также изучаются неравенствами онлайн, только этот подход представляет собой особый способ изучения данного раздела в алгебре, геометрии и других направлениях математики. Решать неравенства можно по-разному, неизменным остается конечная проверка решений и лучше всего это делать прямой подстановкой значений в само неравенство. Во многих случаях полученный ответ очевиден и его легко проверить в уме. Предположим нам задано решить дробное неравенство, в котором присутствуют искомые переменные в знаменателях дробных выражений. Тогда решение неравенств сведется к приведению всех слагаемых к общему знаменателю, предварительно переместив все в левую и правую часть неравенства. Далее нужно решить однородное уравнение, полученное в знаменателе дроби. Эти числовые корни будут точками, не включенными в интервалы общего решения неравенства, или ка их еще называют — проколотые точки, в которых функция обращается в бесконечность, то есть функция не определена, а можно только получить ее предельное значение в данной точке. Решив полученное в числителе уравнение, все точки нанесем на числовую ось. Заштрихуем те точки, в которых числитель дроби обращаемся в ноль. Соответственно все остальные точки оставляем пустыми или проколотыми. Найдем знак дроби на каждом интервале и после этого выпишем окончательный ответ. Если на границах интервала будут заштрихованные точки, то тогда включаем эти значения в решение. Если на границах интервала будут проколотые точки — эти значения в решение не включаем. После того, как решите неравенство, вам потребуется в обязательном порядке проверить полученный результат. Можно это сделать руками, каждое значение из интервалов ответа поочередно подставить в начальное выражение и выявить ошибки. Сайт Math34.biz с легкостью выдаст вам все решения неравенства, и вы сразу сравните полученные вами и калькулятором ответы. Если все-таки ошибка будет иметь место, то на нашем ресурсе решение неравенств онлайн окажется вам очень полезным. Рекомендуем всем студентам вначале приступать не к решению напрямую неравенства, а сначала получить результат на Math34.biz, потому что в дальнейшем будет намного проще самому сделать правильный расчет. В текстовых задачах практически всегда решение сводится к составлению системы неравенств с несколькими неизвестными. Решить неравенство онлайн в считанные секунды поможет наш ресурс. При этом решение будет произведено мощной вычислительной программой с высокой точностью и без всяких погрешностей в конечном ответе. Тем самым вы сможете сэкономить колоссальное количество времени на решении данным калькулятором примеров. В ряде случаев школьники испытывают затруднения, когда на практике или в лабораторных работах встречают логарифмические неравенства, а еще хуже, когда видят перед собой тригонометрические неравенства со сложными дробными выражениями с синусами, косинусами или вообще с обратными тригонометрическими функциями. Как ни крути, но без помощи калькулятора неравенств справиться будет очень сложно и не исключены ошибки на любом этапе решения задачи. Пользуйтесь ресурсом Math34.biz совершенно бесплатно, он доступен каждому пользователю каждый день. Начинать действовать с нашего сервиса-помощника очень хорошая идея, поскольку аналогов существует множество, а по-настоящему качественных сервисов единицы. Мы гарантируем точность вычислений при длительности поиска ответа в несколько секунд. От вас требуется только записать неравенства онлайн, а мы в свою очередь сразу предоставим вам точный результат решения неравенства. Искать подобный ресурс может оказаться бессмысленным занятием, так как вряд ли вы встретите такой же качественный сервис как у нас. Можно обойтись без теории про решение неравенств онлайн, но без качественного и быстрого калькулятора вам не обойтись. Желаем вам успехов в учебе! По-настоящему выбрать оптимальное решение неравенства онлайн зачастую связано с логическим подходом для случайной величины. Если пренебречь малым отклонением замкнутого поля, то вектор нарастающего значения пропорционален наименьшему значению на промежутке убывания линии ординат. Инвариант пропорционален двукратному увеличению отображаемым функциям наряду с исходящим ненулевым вектором. Лучший ответ всегда содержит точность вычислений. Наше решение неравенств примет вид однородной функции последовательно сопряженных числовых подмножеств главного направления. За первый интервал возьмем как раз наихудшее по точности значение нашего представления переменной. Вычислим на максимальное отклонение предыдущее выражение. Будем пользоваться сервисом на усмотрение предложенных вариантов по мере необходимости. Будет ли найдено решение неравенств онлайн с помощью хорошего в своем классе калькулятора — это риторический вопрос, разумеется, студентам такой инструмент пойдет только на пользу и принесет огромный успех в математике. Наложим ограничение на область с множеством, которое сведем к элементам с восприятием импульсов по напряжению. Физические значения таких экстремумов математически описывают возрастание и убывание кусочно-непрерывных функций. На протяжении всего пути ученые находили доказательства существования элементов на разных уровнях изучения. Расположим все последовательно идущие подмножества одного комплексного пространства в один ряд с такими объектами, как шар, куб или цилиндр. Из нашего результата можно сделать однозначный вывод и когда решите неравенство, то на выходе, безусловно, прольется свет на высказанное математическое предположение об интеграции метода на практике. В текущем положении вещей необходимое условие будет также являться и достаточным условием. Критерии неопределенности зачастую вызывают у студентов разногласия по причине недостоверных данных. Это упущение должны взять на себя преподаватели ВУЗов, а также учителя в школах, так как на начальном этапе обучения необходимо это тоже учитывать. Из вышесказанного вывода на взгляд опытных людей можно делать выводы, что решить неравенство онлайн очень сложное задание при вхождении в неравенство неизвестных разного типа данных. Об этом сказано на научной конференции в западном округе, на которой выдвигали самые различные обоснования по поводу научных открытий в области математики и физики, а также молекулярного анализа биологически устроенных систем. В нахождении оптимального решения абсолютно все логарифмические неравенства представляют научную ценность для всего человечества. Исследуем данный подход на предмет логических заключений по ряду несовпадений на высшем уровне понятий о существующем объекте. Логика подсказывает иное, чем видно на первый взгляд неопытному студенту. По причине возникновения масштабных аналогий, будет рационально сначала приравнять отношения к разности предметов исследуемой области, а затем показать на практике наличие общего аналитического результата. Решение неравенств абсолютным образом завязано на применении теории и будет важно для каждого изучить такой необходимый для дальнейших исследований раздел математики. Однако, при решении неравенств вам нужно найти все корни составленного уравнения, а уже затем нанести все точки на ось ординат. Некоторые точки будут проколоты, а остальные войдут в интервалы с общим решением. Начнем изучать раздел математики с азов важнейшей дисциплины школьной программы. Если тригонометрические неравенства являются неотъемлемой частью текстовой задачи, то, как раз применять ресурс для вычисления ответа просто необходимо. Введите левую и правую части неравенства корректно, нажмите на кнопу и получите результат в течение нескольких секунд. Для быстрых и точных математических вычислений с числовыми или символьными коэффициентами перед неизвестными, вам как всегда понадобится универсальный калькулятор неравенств и уравнений, который сможет в считанные секунды предоставить ответ на поставленную вами задачку. Если у вас нет времени на написание целого ряда письменных упражнений, то обоснованность сервиса неоспорима даже невооруженным глазом. Для студентов такой подход является более оптимальным и оправданным с точки зрения экономии материальных ресурсов и времени. Напротив катета лежит угол, а для его измерения необходим циркуль, но вы сможете в любо момент воспользоваться подсказками и решите неравенство не применяя никаких формул приведения. Означает ли это успешное завершение начатого действия? Однозначно ответ будет положительным.

math24.biz

Неравенства онлайн. Математика онлайн

Решение неравенств. Неравенства бывают разных видов и требуют разного подхода к их решению. Если вы не желаете тратить время и силы на решение неравенств или решили неравенство самостоятельно и хотите проверить, верный ли ответ вы получили, то предлагаем вам решать неравенства онлайн и воспользоваться для этого нашим сервисом Math34.su. Он решает как линейные, так и квадратные неравенства, в том числе иррациональные и дробные неравенства. Обязательно укажите обе части неравенства в соответствующих полях и выберете знак неравенства между ними, затем нажмите кнопку «Решение». Чтобы продемонстрировать как в сервисе реализовано решение неравенств, можно просмотреть различные виды примеров и их решений (выбираются справа от кнопки «Решение»). Сервис выдает как интервалы решения, так и целочисленные значения. Пользователи, которые попадают на Math34.su впервые, восхищаются высокой скоростью работы сервиса, ведь решить неравенства онлайн можно за считанные секунды, а пользоваться сервисом можно абсолютно бесплатно неограниченное количество раз. Работа сервиса автоматизирована, вычисление в нем делает программа, а не человек. Вам не нужно устанавливать себе на компьютер какое-либо программное обеспечение, регистрироваться, вводить личные данные или e-mail. Также исключены опечатки и ошибки в расчетах, полученному результату можно доверять на 100%. Преимущества решения неравенств онлайн. Благодаря высокой скорости и удобству использования сервис Math34.su стал надежным помощником многих школьников и студентов. Неравенства часто встречаются в школьных программах и курсе института по высшей математике и те, кто использует наш онлайн сервис, получают большие преимущества перед остальными. Math34.su доступен круглосуточно, не требует регистрации, платы за использование и вдобавок мультиязычен. Не стоит пренебрегать онлайн сервисом и тем, кто ищет решение неравенств самостоятельно. Ведь Math34.su – это отличная возможность проверить правильность своих вычислений, найти, где совершена ошибка, просмотреть, как решаются различные виды неравенств. Еще одна причина, по которой будет более рационально решать неравенства онлайн, это когда решение неравенств не является основной задачей, а только ее частью. В этом случае просто нет смысла тратить много времени и сил на вычисление, а лучше доверить его онлайн сервису, в то время как самому сосредоточиться на решении основной задачи. Как видно, онлайн сервис для решения неравенств будет полезен как тем, кто самостоятельно решает данный вид математических задач, так и тем, кто не хочет тратить время и усилия на длительные расчеты, а нуждается в быстром получении ответа. Поэтому, когда вы сталкиваетесь с неравенствами, то не забывайте использовать наш сервис, чтобы решать любые неравенства онлайн: линейные, квадратные, иррациональные, тригонометрические, логарифмические. Что такое неравенства и как они обозначаются. Неравенство выступает обратной стороной равенства и как понятие связано со сравнением двух объектов. В зависимости от характеристик сравниваемых объектов, мы говорим выше, ниже, короче, длиннее, толще, тоньше и т.д. В математике смысл неравенств не теряется, но здесь речь идет уже про неравенства математических объектов: числа, выражения, значения величин, фигур и т.д. Принято использовать несколько знаков неравенств: , ≤, ≥. Математические выражения с такими знаками и называют неравенствами. Знак > (больше) ставится между большим и меньшим объектами, Знак обозначают строгие неравенства. Нестрогие неравенства описывают ситуацию, когда одно выражение «не больше» («не меньше») другого. «Не больше» означает, что меньше или столько же, а «не меньше» значит, что больше или столько же.

math24.su

Системы неравенств. Как решить систему неравенств?

Системой неравенств называют несколько неравенств, которые должны выполняться одновременно.

Например:

\(\begin{cases}5x+2≥0\\x<2x+1\\x-4>2\end{cases}\)

\(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)

\(\begin{cases}(x^2+1)(x^2+3)(x^2-1)≥0\\x<3\end{cases}\)

Решение системы неравенств

Чтобы решить систему неравенств нужно найти значения иксов, которые подойдут всем неравенствам в системе – это и значит, что они выполняются одновременно.

Пример. Решим систему \(\begin{cases}x>4\\x\leq7\end{cases}\)
Решение: Первое неравенство становится верным, если икс больше \(4\). То есть, решения первого неравенства – все значения иксов из интервала \((4;\infty)\), или на числовой оси:


Второму неравенству подойдут значения иксов меньшие чем 7, включая саму семерку, то есть любой икс  из интервала \((-\infty;7]\) или на числовой оси:


А какие значения подойдут обоим неравенствам? Те, которые принадлежат обоим промежуткам, то есть где промежутки пересекаются.


Ответ: \((4;7]\)

Как вы могли заметить для пересечения решений неравенств в системе удобно использовать числовые оси.

Общий принцип решения систем неравенств: нужно найти решение каждого неравенства, а потом пересечь эти решения с помощью числовой прямой.

Пример: (Задание из ОГЭ)  Решить систему \(\begin{cases} 7(3x+2)-3(7x+2)>2x\\(x-5)(x+8)<0\end{cases}\)


Решение:

\(\begin{cases} 7(3x+2)-3(7x+2)>2x\\(x-5)(x+8)<0\end{cases}\)

Давайте каждое неравенство решим отдельно от другого.

1) \(7(3x+2)-3(7x+2)>2x\)

Раскроем скобки.

\(21x+14-21x-6>2x\)

Приведем подобные слагаемые.

\(8>2x\)

Перевернем получившееся неравенство.

\(2x<8\)

Поделим все неравенство на \(2\).

\(x<4\)

Отметим решение на числовой прямой.

   

Запишем ответ для первого неравенства.

\(x∈(-∞;4)\)

Теперь решим второе неравенство.

2) \((x-5)(x+8)<0\)

Неравенство уже в идеальном виде для применения метода интервалов.

 

Запишем ответ для второго неравенства.

\(x∈(-8;5)\)

Объединим оба решения с помощью числовых осей.

         

Выпишем в ответ промежуток, на котором есть решение обоих неравенств — и первого, и второго.

Ответ: \((-8;4)\)

Пример: (Задание из ОГЭ)  Решить систему \(\begin{cases} \frac{10-2x}{3+(5-2x)^2}≥0\\ 2-7x≤14-3x \end{cases}\)


Решение:

\(\begin{cases} \frac{10-2x}{3+(5-2x)^2}≥0\\ 2-7x≤14-3x \end{cases}\)

Снова будем решать неравенства по отдельности.

1)\(\frac{10-2x}{3+(5-2x)^2}\)\(≥0\)

Если вас испугал знаменатель – не бойтесь, сейчас мы его уберем.
Дело в том, что \(3+(5-2x)^2\)– всегда положительное выражение. Посудите сами: \((5-2x)^2 \)из-за квадрата либо положительно, либо равно нулю. \((5-2x)^2+3\) – точно положительно. Значит можно неравенство смело умножать на \(3+(5-2x)^2\)

\(10-2x≥0\)

Перед нами обычное линейное неравенство – выразим \(x\). Для этого перенесем \(10\) в правую часть.

\(-2x≥-10\)

Поделим неравенство на \(-2\). Так как число отрицательное меняем знак неравенства.

\(x≤5\)

Отметим решение на числовой прямой.

Запишем ответ к первому неравенству.

\(x∈(-∞;5]\)

На данном этапе главное не забыть, что есть второе неравенство.

2) \(2-7x≤14-3x\)

Опять линейное неравенство – опять выражаем \(x\).

\(-7x+3x≤14-2\)

Приводим подобные слагаемые.

\(-4x≤12\)

Делим все неравенство на \(-4\), перевернув при этом знак.

\(x≥-3\)

Изобразим решение на числовой оси и выпишем ответ для этого неравенства.

\(x∈[-3;∞)\)

А теперь объединим решения.

Запишем ответ.

Ответ: \([-3;5]\)

Пример:  Решить систему \(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)


Решение:

\(\begin{cases}x^2-55x+250<(x-14)^2\\x^2-55x+250≥0\\x-14>0\end{cases}\)

В первом неравенстве раскроем скобку,  во втором — разложим квадратный трехчлен на множители, а в третьем — перенесем 14 в правую 

\(\begin{cases}x^2-55x+250<x^2-28x+196\\(x-5)(x-50)≥0\\x>14\end{cases}\)

В первом перенесем все слагаемые в левую часть. И приведем подобные слагаемые.

\(\begin{cases}-27x+54<0\\(x-5)(x-50)≥0\\x>14\end{cases}\)

Теперь в нем же перенесем \(54\) в левую сторону и поделим обе части на \((-27)\), не забыв при этом перевернуть знак сравнения.

\(\begin{cases}x>2\\(x-5)(x-50)≥0\\x>14\end{cases}\)

Отметим решения неравенств на числовых прямых.

Решения подходящие всем неравенствам системы находятся от \(50\) и дальше. Запишем ответ.

Ответ: \([50;+∞)\)


Смотрите также:

Системы линейных неравенств
Совокупности неравенств

Скачать статью

cos-cos.ru

Решение системы неравенств графическим методом — 29 Августа 2012 — Примеры решений задач

Пример 1. Найти область решений (ОР) и область допустимых решений (ОДР) системы неравенств и определить координаты угловых точек ОДР

 

                  

РЕШЕНИЕ. Найдем ОР первого неравенства: X2 + 3X2 ≥ 3.

Построим граничную прямую X1 +3X2 – 3 = 0 (рис. 1).

Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства (1) является полуплоскость, не содержащая точку (0,0).

Аналогично найдем решения остальных неравенств системы.

Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.
 

 

 

Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых

Решая систему, получим А(3/7, 6/7). Точку В найдем как точку пересечения прямых

 

 

 

Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).

Ответ: ОР и ОДР совпадают, является многоугольник ABCD.

Пример 2 Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР.

Решение.

Ответ: А(3/7, 6/7), В(5/3, 10/3), С(11/4, 9/4), D(21/10, 3/10), ОР и ОДР совпадают.

На следующем примере покажем отличие ОР и ОДР

Пример 3. Найти ОР и ОДР системы неравенств

Решение.

Область решения (ОР) системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j = 1,n), называется областью неотрицательных, или допустимых, решений (ОДР).

Ответ: ACFM – ОР, ABDEKM – ОДР.

Общее решение и область допустимых значений системы неравенств могут иметь одну общую точку, рассмотрим данный случай на следующем примере.

Пример 4.Найти ОР и ОДР системы неравенств

 

Решение.

Ответ:ABC – ОР, точка B – ОДР.

ОР и ОДР системы несовместные, смотри следующий пример.

Пример 5.Найти ОР и ОДР системы неравенств

 

Решение.

Ответ: ОР и ОДР несовместны.

Для того, чтобы найти угловые точки:

 

www.reshim.su

Как решить неравенство онлайн с подробным решением

Неравенством в математике именуют все уравнения, где знак «=» заменяется на любой из этих значков: \[ > \] \[ \geq \] \[

* линейным;

* квадратным;

* дробным;

* показательным;

* тригонометрическим;

* логарифмическим.

В зависимости от этого и неравенства называются линейными, дробными и т.д.

Об этих знаках нужно знать следующее:

* неравенства со значком больше (>), или меньше (

* неравенства со значками больше или равно \[ \geq \], меньше или равно [\leq \] называются нестрогими;

* значок не равно \[ \ne \] стоит особняком, но решать примеры с таким значком тоже приходится постоянно.

Решаются данного рода неравенства при помощи тождественных преобразований.

Так же читайте нашу статью «Решить целое уравнение онлайн решателем»

Допустим, дано неравенство такого вида:

\[x+3 > 5x-5\]

Оно решается точно так же, как и линейное уравнение, но необходимо внимательно следить за знаком неравенства. Изначально выполним перенос членов с неизвестной в левую сторону, с известной в правую, меняя знаки на противоположные:

\[x-5x > -5-3\]

\[-4x > -8\]

Далее выполним деление обеих частей на -4 и меняем знак неравенства на противоположный:

\[x

Это и будет ответом для данного уравнения.

Где можно решить неравенство онлайн?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

www.pocketteacher.ru

Решение иррациональных неравенств онлайн · Как пользоваться Контрольная Работа РУ

Иррациональные неравенства бывают как простые но так и сложные — и всех их можно решить онлайн и с подробным решением с помощью калькулятора неравенств.

Итак:

Простые иррациональные неравенства

Будем считать, что простые неравенства будут содержат только одну часть иррациональности. Тогда рассмотрим пример:

2*x >= sqrt(2/3 + x) + 3

Введём это неравенство в форму калькулятора

Тогда, вы получите подробное решение:

Дано неравенство:


             _________
2*x >= 3 + \/ 2/3 + x 

Чтобы решить это нер-во — надо сначала решить соотвествующее ур-ние:


            _________
2*x = 3 + \/ 2/3 + x 

Решаем:

Дано уравнение


            _________
2*x = 3 + \/ 2/3 + x 

Перенесём правую часть уравнения левую часть уравнения со знаком минус


   _________          
-\/ 2/3 + x  = 3 - 2*x

Возведём обе части ур-ния в(о) 2-ую степень


                        2
2/3 + x = 9 - 12*x + 4*x 

Перенесём правую часть уравнения левую часть уравнения со знаком минус


  25      2           
- -- - 4*x  + 13*x = 0
  3                   

Это уравнение вида

Квадратное уравнение можно решить

с помощью дискриминанта.

Корни квадратного уравнения:


       ___    
     \/ D  - b
x1 = ---------
        2*a   

            ___
     -b - \/ D 
x2 = ----------
        2*a    

где D = b^2 — 4*a*c — это дискриминант.

Т.к.

, то


(13)^2 - 4 * (-4) * (-25/3) = 107/3

Т.к. D > 0, то уравнение имеет два корня.


x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

или


            _____
     13   \/ 321 
x1 = -- - -------
     8       24  

            _____
     13   \/ 321 
x2 = -- + -------
     8       24  

 

Т.к.


  _________           
\/ 2/3 + x  = -3 + 2*x

и


  _________     
\/ 2/3 + x  >= 0

то

или


            _____
     13   \/ 321 
x2 = -- + -------
     8       24  

            _____
     13   \/ 321 
x1 = -- + -------
     8       24  

            _____
     13   \/ 321 
x1 = -- + -------
     8       24  

Данные корни


            _____
     13   \/ 321 
x1 = -- + -------
     8       24  

являются точками смены знака неравенства в решениях.

Сначала определимся со знаком до крайней левой точки:

Возьмём например точку

=


       _____    
13   \/ 321     
-- + ------- - 1
8       24      

=


      _____
5   \/ 321 
- + -------
8      24  

подставляем в выражение


             _________
2*x >= 3 + \/ 2/3 + x 

                                 ______________________
  /       _____    \            /            _____     
  |13   \/ 321     |           /  2   13   \/ 321      
2*|-- + ------- - 1| >= 3 +   /   - + -- + ------- - 1 
  \8       24      /        \/    3   8       24       

      _____             ______________
5   \/ 321             /        _____ 
- + ------- >=        /  31   \/ 321  
4      12      3 +   /   -- + ------- 
        \/    24      24   

но


      _____            ______________
5   \/ 321            /        _____ 
- + ------- <        /  31   \/ 321  
4      12     3 +   /   -- + ------- 
       \/    24      24   

Тогда


            _____
     13   \/ 321 
x <= -- + -------
     8       24  

не выполняется

значит решение неравенства будет при:


            _____
     13   \/ 321 
x >= -- + -------
     8       24  

         _____  
        /
-------•-------
       x1

Средние иррациональные неравенства

Средними же будем считать уравнения, которые содержат две иррациональные части в неравенстве.

Например,

sqrt(x — 13)  > sqrt(x + 8)  — 3

надо ввести в форму в калькуляторе

Результат будет таким:

Дано неравенство:


  _________          _______
\/ -13 + x  > -3 + \/ 8 + x 

Чтобы решить это нер-во — надо сначала решить соотвествующее ур-ние:


  _________          _______
\/ -13 + x  = -3 + \/ 8 + x 

Решаем:

Дано уравнение


  _________          _______
\/ -13 + x  = -3 + \/ 8 + x 

преобразуем:


  _________     _______     
\/ -13 + x  - \/ 8 + x  = -3

Возведём обе части ур-ния в(о) 2-ую степень


                         2    
/  _________     _______\     
\\/ -13 + x  - \/ 8 + x /  = 9

или


 2                __________________       2            
1 *(x - 13) - 2*\/ (x - 13)*(x + 8)  + (-1) *(x + 8) = 9

или


          _________________          
         /         2                 
-5 - 2*\/  -104 + x  - 5*x  + 2*x = 9

преобразуем:


      _________________           
     /         2                  
-2*\/  -104 + x  - 5*x  = 14 - 2*x

Возведём обе части ур-ния в(о) 2-ую степень


                 2             2
-416 - 20*x + 4*x  = (14 - 2*x) 

                 2                   2
-416 - 20*x + 4*x  = 196 - 56*x + 4*x 

Перенесём правую часть уравнения левую часть уравнения со знаком минус

Переносим свободные слагаемые (без x)

из левой части в правую, получим:

Разделим обе части ур-ния на 36

 

Т.к.


   _________________         
  /         2                
\/  -104 + x  - 5*x  = -7 + x

и


   _________________     
  /         2            
\/  -104 + x  - 5*x  >= 0

то

или

проверяем:


      __________     ________    
3 + \/ -13 + x1  - \/ 8 + x1  = 0

=


  __________         ________    
\/ -13 + 17  + 3 - \/ 8 + 17  = 0

=

— тождество

Тогда, окончательный ответ:

Данные корни

являются точками смены знака неравенства в решениях.

Сначала определимся со знаком до крайней левой точки:

Возьмём например точку

=

=

подставляем в выражение


  _________          _______
\/ -13 + x  > -3 + \/ 8 + x 

  __________          ________
\/ -13 + 16  > -3 + \/ 8 + 16 

  ___            ___
\/ 3  > -3 + 2*\/ 6 
   

Тогда

не выполняется

значит решение неравенства будет при:


         _____  
        /
-------ο-------
       x1

Сложные иррациональные неравенства

Самыми сложными же будут неравенства с тремя частями иррациональностями, значит будет такой пример:

sqrt(x + 5)  — sqrt(x — 1)  <= sqrt(2*x + 4)

В форме калькулятора это будет выглядеть так:

www.kontrolnaya-rabota.ru

Решение систем неравенств — презентация онлайн

Решение систем неравенств Тема «Решение систем неравенств» Цель 1)В ходе изучения темы учащиеся должны знать,что множество решений системы неравенств есть пересечение множеств решений неравенств, входящих в эту систему 2) Научить решать системы, составленные из двух линейных неравенств.

Повторение Математический диктант Изучение нового материала Закрепление Итог урока Повторение а≤х ≤ в, называется отрезкоми обозначается [а ;

в] Если а < в , то множество чиселх, удовлетворяющих неравенствам а<х < в, называется интерваломи обозначается (а ;

в) а<х ≤ ви а≤х < в называются полуинтерваламии обозначаются (а ;

в]и [а ;

в) Числовые промежутки Отрезки [ a;

в] Интервалы (а ;

в) Полуинтервалы [ a;

в) или ( а;

в] Повторение Лучих>а или х< в Математический диктант Запишите числовой промежуток, служащий множеством решений неравенства5,1,63≤х Проверь себя [3;6], [1,5;5] Математический диктант Какие из целых чисел принадлежат промежутку (-1;

3,6], [-6,6;1)? Проверь себя 0,1,2,3 -6,-5,-4,-3,-2,0 Математический диктант Укажите наибольшее и наименьшее целое число, принадлежащее промежуткам (-8;

8), (-6;-2) Проверь себя Наибольшее7 Наименьшее -7 Наибольшее -3 Наименьшее -5 Математический диктант Записать неравенства, множеством решения которых служат промежутки-23Х-14Х Проверь себя41)4;1[32]3;2(<≤−≤<−х Изучение нового материала Чтобы решить систему линейных неравенств, достаточно решить каждое из входящих в неё неравенство и найти пересечение множеств их решений.

Рассмотрим примеры решения задач 5Х-1 > 3( Х+ 1), 2(Х+4) > Х+5 Решим первое неравенство 5Х-1.> 3Х+3, 2Х > 4, Х > 2 Решим второе неравенство 2Х+8 > Х+ 5, Х > -3{ Изобразим на числовой оси множество решений неравенств системы Решение 1 неравенства все точки луча Х > 2 Решение 2 неравенства все точки луча Х >-32 Ответ: x>2x Решить систему неравенств 3(Х-1) ≤ 2Х + 4, 3Х-3 ≤2Х+4, Х ≤ 7 4Х-3 ≥ 13;

4Х ≥ 16 ;

Х ≥ 4 [4;7]{{{ 4 7x Ответ: 4 ≤ x ≤ 7 Итог урока.

• Рассмотрены примеры решения систем линейных неравенств.

• Учащиеся научились показывать множество

ppt-online.org

Интегрирование функций – Интегрирование некоторых функций

Интегрирование некоторых функций

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Интегрирование некоторых функций» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Интегрирование некоторых функций

  1. Интегрирование рациональных функций

Функция вида называется рациональной дробью, если её числитель и знаменатель являются многочленами. Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя. Если же степень числителя больше либо равна степени знаменателя, то рациональная дробь называется неправильной.

Так как всякая неправильная дробь может быть представлена в виде суммы многочлена и правильной дроби, то интегрирование неправильной рациональной дроби сводится к интегрированию многочлена и правильной рациональной дроби.

Многочлены интегрируются просто. Рассмотрим интегрирование дробей вида , , которые называютсяпростейшими рациональными дробями.

.

.

Пусть знаменатель дробиимеет действительные корни и может быть представлен произведением множителей вида . Тогда для каждого такого множителя имеет место разложение вида. Таким образом, всякую правильную рациональную дробь можно представить в виде суммы конечного числа простейших дробей. Выполняется это с помощью метода неопределённых коэффициентов.

Пример 1. Проинтегрировать дробь .

Решение. Разложим подынтегральную функцию на простейшие дроби:

. Приравняем коэффициенты при и свободные члены:Решим эту систему уравнений и получим,. Тогда

.

  1. Интегрирование некоторых иррациональных функций

Если подынтегральная функция иррациональна, то с помощью замены переменной во многих случаях можно привести её к рациональному виду или к такой функции, интеграл от которой является табличным. Интегрирование при помощи замены переменной, которая приводит подынтегральное выражение к рациональному виду, называется интегрированием посредством рационализации подынтегрального выражения.

Интегралы вида приводятся к интегралам от рациональных функций аргумента t с помощью подстановки , гдеk – наименьшее общее кратное чисел .

Пример 2. Найти интеграл .

Решение. Наименьшее общее кратное чисел иравно 6. Поэтому нужно применить подстановку. Тогда

. Подынтегральную функцию разложим на простейшие: . Приравняем коэффициенты прии свободные члены:Отсюда найдёмТогда. Таким образом,=. Так как, то. Подставим в полученное выражение:

.

Интегралы вида приводятся к интегралам от рациональных функций с помощью подстановки.

Пример 3. Найти интеграл .

Решение. Выполним подстановку :

.

  1. Интегрирование выражений, содержащих

тригонометрические функции

Рассмотрим основные случаи интегрирования выражений, содержащих тригонометрические функции.

При нахождении интегралов вида ,

, подынтегральные функции из произ-

ведений преобразовываются в суммы с помощью формул:

,

,

.

В результате полученные интегралы находятся с использованием методов интегрирования и таблицы интегралов. При этом можно использовать формулы и.

Пример 4. Найти интеграл .

Решение. Воспользуемся первой из вышеприведённых формул:

Интегралы вида можно находить довольно просто в следующих случаях.

Если m – положительное нечётное число, то можно отделить первую степень синуса и применить подстановку . Тогдаи подынтегральное выражение с помощью тригонометрических формул сведётся к степенным функциям. Еслиn — положительное нечётное число, то можно отделить первую степень косинуса и выполнить замену . Тогдаи подынтегральное выражение с помощью тригонометрических функций тоже сведётся к степенным функциям.

Пример 5. Найти интеграл .

Решение.

.

Пример 6. Найти интеграл .

Решение.

.

Если m и n – неотрицательные чётные числа, то преобразование подынтегральных выражений можно выполнять с помощью формул понижения степени и.

Пример 7. Найти интеграл .

Решение.

.

Подынтегральная функция представляет собой дробь, в числителе которой находится степень синуса, а в знаменателе – степень косинуса, или наоборот. При этом показатели степени или оба чётные, или оба нечётные, т.е. одинаковой чётности.

В этом случае, если в числителе синус, то наиболее подходящей является подстановка . Отсюда,,,.

Если же в числителе косинус, то удобно использовать подстановку . Тогда,,,.

Пример 8. Найти интеграл .

Решение.

.

Нахождение интегралов вида сводится с помощью подстановкик нахождению интегралов от рациональных функций. Подстановканазываетсяуниверсальной тригонометрической подстановкой, которая всегда приводит к результату. В этом случае ,,,,.

Пример 9. Найти интеграл .

Решение. .

Вопросы для самоконтроля знаний

  1. Какая функция называется рациональной?

  2. Какая рациональная дробь называется правильной, а какая – неправильной?

  3. С помощью какой подстановки интегралы вида приводятся к интегралам от рациональных функций аргумента?

  4. С помощью какой подстановки интегралы вида

приводятся к интегралам от рациональных функций?

  1. Как находятся интегралы вида ,

,

  1. Что называется универсальной тригонометрической подстановкой и когда она используется?

Задания для самостоятельной работы

  1. Найти интегралы от рациональных функций:

а) ; б); в).

2) Проинтегрировать выражения, содержащие тригонометрические функции:

а) ; б); в);

г) ; д).

10

studfiles.net

Примеры интегрирования функций

Ниже приведены примеры интегрирования, каторые охватывают значительную часть разнообразных способов нахождения неопределенного интеграла. Такого типа примеры интегрирования функций Вы чаще всего увидите на 1,2 курсах учебы из высшей математики. Ниже приведены ответы одновременно и объясняют методику взятия интегралов, и служат инструкцией по их вычислению. Чтобы сэкономить время и место самих условий до примеров мы не выписывали.

Пример 1. Если бы перед интегралом имели множителем «икс», то его можно было бы внести под дифференциал и провести замену переменных.
Однако интеграл более сложен, потому выражения в скобках подносим к кубу, а дальше выполняем интегрирование каждого из слагаемых.


Пример 2. Задана дробная функция в знаменателе которой содержится иррациональность. Чтобы от нее избавиться функцию под корнем обозначим за новую переменную, дальше находим ее дифференциал и подставляем в интеграл. После незначительных манипуляций с показателями вычисляем интеграл, и вместо переменной подставляем выполненную замену.


Пример 3. Кто часто вычисляет интегралы или хорошо знает теорию интегралов, то в этом и подобных заданиях за новую переменную выбирает логарифм. При дифференцировании логарифма получаем единицу разделенную на «икс», который значительно упрощает дальнейшее интегрирование.
Напоследок не забывайте в примерах на замену переменных перейти к начальной переменной «икс».


Пример 4. Выполняем интегрирование частями, для этого синус вносим под дифференциал

После первого раза опять получим интеграл, который вычисляем интегрированием частями.


Пример 5. Имеем задание под правило интегрирования частями u*dv. За переменную выбираем экспоненту, а синус вносим под дифференциал.

После повторного интегрирования частями придем к рекуррентной формуле, из которой и определяем интеграл.


Пример 6. В этом интеграле квадратный трехчлен, который стоит в знаменателе надо возвести к сумме или разнице квадратов.

Дальше за формулами интегрирования получим арктангенс.


Пример 7. Интегрирование произведения тригонометрических функций дается не всем студентам, и здесь нужно учитывать как степени, так и сам вид функций.
В этом примере один косинус нужно внести под дифференциал и свести задание к интегрированию функции от синуса.


Сам интеграл не сложен и находится по правилу степенных функций .


Пример 8. Если имеем синусы или косинусы в показателях больше единицы, то за тригонометрическими формулами их надо расписать вплоть до первой степени. Дальше применяют формулы интегрирования синусов или косинусов.


Пример 9. Чтобы найти интеграл от дробной функции сначала разделим числитель на знаменатель, и полученную в остатке дробь распишем на самые простые дроби. После этого, используя формулы интегрирования, вычисляем значение каждого из интегралов.


Пример 10. Имеем интеграл от дробной функции

Записываем ее через самые простые дроби первого и второго типов.

Дальше возводим дроби под общий знаменатель и из условия равенства числителей складываем систему линейных уравнений для вычисления неизвестных постоянных.


После ее решения возвращаемся к дроби, подставляем сталые и выполняем интегрирование.


Пример 11. Имеем интеграл от дробной иррациональной функции. Для раскрытия иррациональности выполняем следующую замену переменных под интегралом

В результате придем к дробной рациональной функции под интегралом, которую расписав на простые дроби легко проинтегрировать.


Пример 12. В этом задании чтобы избавиться иррациональности под интегралом необходимо использовать одну известную схему.
Она заключается в том, что проведя следующую замену переменных придем к рациональной функции от косинуса.


После интегрирования возвращаемся к выполненной замене и на этом вычислению можно завершить.
Однако, если иметь под рукой тригонометрические формулы то ответ можно упростить и записать в более компактном виде.


Пример 13. Имеем в знаменателе рациональную функцию от косинуса и синуса. Такие интегралы следует находить через универсальную тригонометрическую замену t=tg (x/2)

После подстановки формул синус и косинуса через тангенс половины кута подинтегральная функция превратится к дробной, в знаменателе которой будем иметь квадратный трехчлен. Его возводим к квадрату выражения, которое содержит переменную и интегрируем по правилу степенных функций .

После интегрирования не забываем, что наше t=tg (x/2) и подставляем его в формулу интеграла.


На этом подборка примеров завершается, больше примеров Вы найдете в категории интегрирования.
Для увеличения базы готовых интегралов присылайте интересные примеры на Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. или заказывайте у нас решение контрольных и расчетных работ.

yukhym.com

Решение интегралов. Рассказываем, как решать интегралы.

Интегралы и их решение многих пугает. Давайте избавимся от страхов и узнаем, что это такое и как решать интегралы!
Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое.
Решение интегралов (интегрирование) есть операция обратная диференциированию.
Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему.
В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .



Так вот площадь закрашенной области, есть интеграл от функции в пределах от a до b.
Не верится? Проверим на любой функции. Возьмем простейшую у=3. Ограничим функцию значениями а=1 и b=2. Построим:

Итак ограниченная фигура прямоугольник. Площадь прямоугольника равна произведению длины на ширину. В наше случае длина 3, ширина 1, площадь 3*1=3.
Попробуем решить тоже самое не прибегая к построению, используя интегрирование:

Как видите ответ получился тот же. Решение интегралов – это собирание во едино каких-либо элементарных частей. В случае с площадью суммируются полоски бесконечно малой ширины. Интегралы могут быть определенными и неопределенными.
Решить определенный интеграл значит найти значение функции в заданных границах. Решение неопределенного интеграла сводиться к нахождению первообразной.

F(x) – первообразная. Дифференцируя первообразую, мы получим исходное подинтегральное выражение. Чтобы проверить правильно ли мы решили интеграл, мы дифференциируем полученный ответ и сравниваем с исходным выражением.
Основные функции и первообразные для них приведены в таблице:

Таблица первообразных для решения интегралов


Основные приемы решения интегралов:
Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду.
Сначала следует запомнить основные свойства интегралов:

Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные приемы решения интегралов. Данные приемы охватывают большую часть заданий по теме нахождения интегралов.
Также мы рассмотрим несколько базовых примеров решения интегралов на базе этих приемов. Важно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.

Основные приемы решения интегралов

1. Замена переменной.

Для выполнения данного приема потребуется хороший навык нахождения производных.

2. Интегрирование по частям. Пользуются следующей формулой.

Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.

3. Интегрирование дробно-рациональных функций.
— разложить дробь на простейшие
— выделить полный квадрат.
— создать в числителе дифференциал знаменателя.

4. Интегрирование дробно-иррациональных функций.
— выделить под корнем полный квадрат
— создать в числителе дифференциал подкоренного выважения.
5. Интегрирование тригонометрических функций.
При интегрировании выражений вида
применяет формулы разложения для произведения.
Для выражений
m-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1
m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2
Для выражений вида:
— Применяем свойство tg2x=1/cos2x — 1

С базовыми приемами на этой всё. Теперь выведем своего рода алгоритм:
Алгоритм обучения решению интегралов:
1. Разобраться в сути интегралов. Необходимо понять базовую сущность интеграла и его решения. Интеграл по сути есть сумма элементарных частей объекта интегрирования. Если речь идет об интегрирование функции, то интеграл есть площадь фигуры между графиком функции, осью х и границами интегрирования. Если интеграл неопределенный, то есть границы интегрирования не указаны, то решение сводиться к нахождению первобразной. Если интеграл определенный, то необходимо подставить значения границ в найденную функцию.
2. Отработать использование таблицы первообразных и основным свойства интегралов. Необходимо научиться пользоваться таблицей первообразных. По множеству функций первообразные найдены и занесены в таблицу. Если мы имеем интеграл, которые есть в таблице, можно сказать, что он решен.
3. Разобраться в приемах и наработать навыки решения интегралов.Если интеграла не табличного вида, то его решение сводиться к приведению его к виду одного из табличных интегралов. Для этого мы используем основные свойства и приемы решения. В случае, если на каких то этапах применения приемов у вас возникают трудности и непонимания, то вы более подробно разбираетесь именно по этому приему, смотрите примеры подобного плана, спрашиваете у преподавателя.
Дополнительно после решения интеграла на первых этапах рекомендуется сверять решение. Для этого мы дифференциируем полученное выражение и сравниваем с исходным интегралом.
Отработаем основные моменты на нескольких примерах:

Примеры решения интегралов

Пример 1:
Решить интеграл:

Интеграл неопределенный. Находим первообразную.
Для этого интеграл суммы разложим на сумму интегралов.

Каждый из интегралов табличного вида. Смотрим первообразные по таблице.
Решение интеграла:

Проверим решение(найдем производную):

Пример 2. Решаем интеграл

Интеграл неопределенный. Находим первообразную.
Сравниваем с таблицей. В таблице нет.
Разложить, пользуясь свойствами, нельзя.
Смотрим приемы. Наиболее подходит замена переменной.
Заменяем х+5 на t5. t5 = x+5 . Получаем.

Но dx нужно тоже заменить на t. x= t5 — 5, dx = (t5 — 5)’ = 5t4. Подставляем:

Интеграл из таблицы. Считаем:

Подставляем в ответ вместо t ,

Решение интеграла:

Пример 3. Решение интеграла:

Для решения в этом случае необходимо выделить полный квадрат. Выделяем:

В данном случае коэфециент ? перед интегралом получился в результате замены dx на ?*d(2x+1). Если вы найдете производные x’ = 1 и ?*(2x+1)’= 1, то поймете почему так.
В результате мы привели интеграл к табличному виду.
Находим первообразную.

В итоге получаем:

Для закрепления темы интегралов рекомендуем также посмотреть видео.

В нем мы на примере физики показываем практическое применение интегрирования, а также решаем еще несколько задач.

Надеюсь вопрос, как решать интегралы для вас прояснился. Мы дорабатываем статью по мере поступления предложений. Поэтому если у вас появились какие то предложения или вопросы по теме решения интегралов, пишите в комментариях.

Рекламная заметка: Для особо пытливых умов советуем Видео-лекции по математическому программированию. Программирование одна из дочек математики!


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Интегрирование рациональных функций

Рациональная функция — это дробь вида , числитель и знаменатель которой — многочлены или произведения многочленов.

Из урока «Интегрирование некоторых рациональных дробей и иррациональностей» известно, что рациональные дроби бывают неправильные, если степень многочлена в её числителе не меньше степени многочлена в знаменателе, и правильные, если степень многочлена в числителе меньше степени многочлена в знаменателе. В том же уроке говорилось о том, как представить неправильную дробь в виде суммы её целой части и некоторой правильной дроби.

На этом уроке будем учиться интегрировать такие рациональные функции, которые представлены в виде правильных дробей. Для этого существует метод неопределённых коэффициентов, основанный на теореме, которая гласит, что всякая правильная дробь может быть представлена в виде суммы простых дробей.

Приведённый ниже алгоритм интегирования рациональных функций будет пошагово проиллюстрирован в примерах.

Алгоритм интегрирования рациональных функций

  • Шаг 1. Определить вид многочлена в знаменателе дроби (он может иметь действительные, кратные действительные, комплексные и кратные комплексные корни) и в зависимости от вида разложить дробь на простые дроби, в числителях которых — неопределённые коэффициенты, число которых равно степени знаменателя.
  • Шаг 2. Определить значения неопределённых коэффициентов. Для этого потребуется решить систему уравнений, сводящуюся к системе линейных уравнений.
  • Шаг 3. Найти интеграл исходной рациональной функции (дроби) как сумму интегралов полученных простых дробей, к которым применяются табличные интегралы.

Переходим к первому шагу алгоритма

Многочлен в знаменателе имеет действительные корни. То есть, в знаменателе имеет место цепочка сомножителей вида , в которой каждый из сомножителей находится в первой степени. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

Пример 1. Шаг 1. Дан интеграл от рациональной функции .

От нас требуется разложить подынтегральное выражение — правильную дробь на простые дроби.

Решение. Дискриминант уравнения положительный, поэтому многочлен в знаменателе имеет действительные корни. Получаем следующее разложение исходной дроби на сумму простых дробей:

.

Пример 2. Шаг 1.Дан интеграл от рациональной функции

.

Решение. Разложим знаменатель подынтегрального выражения на множители. Сначала можно вынести за скобки x. (На сайте есть урок о вынесении общего множителя за скобки.) Получаем следующую дробь:

.

Для разложения квадратного трёхчлена в скобках решаем квадратное уравнение:

Получаем разложение знаменателя на множители в подынтегральном выражении:

.

Дискриминант решённого выше квадратного уравнения положительный, то есть имеем дело со случаем, когда многочлен в знаменателе имеет действительные корни. Разложение исходной дроби подынтегрального выражения будет следующим:

.

Как и в первом примере, числа, обозначенные большими буквами, пока неизвестны. Отсюда и название — метод неопределённых коэффициентов.

Многочлен в знаменателе имеет кратные действительные корни. Этот случай имеет место, когда в цепочке сомножителей в знаменателе присутствует выражение вида , то есть один из многочленов в степени 2 и больше. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

Пример 3. Шаг 1. Дан интеграл от рациональной функции .

Решение. Представляем разность квадратов в виде произведения суммы и разности .

Тогда подынтегральное выражение запишется в виде

,

все уравнения с многочленами которого имеют действительные корни. Это случай кратных действительных корней, так как последний сомножитель находится во второй степени. Получаем следующее разложение исходной дроби на простые дроби:

Как видим, в этом случае нужно понижать степень кратного многочлена с исходной до первой и записывать простую дробь с каждой из этих степеней в знаменатель.

Пример 4. Шаг 1. Дан интеграл от рациональной функции .

Решение. Уравнения с многочленами в знаменателе имеют действительные корни, а сами многочлены присутствуют в степенях больше первой. Поэтому получаем следующее разложение исходной дроби на простые дроби:

.

Многочлен в знаменателе имеет комплексные корни: дискриминант квадратного уравнения , присутствующего в цепочке сомножителей в знаменателе, меньше нуля. В этом случае при разложении дроби в простой дроби, соответствующей описанному выше сомножителю, в числителе нужно записывать линейное выражение с переменной x (это выражение — последнее в следующей записи):

Пример 5. Шаг 1. Дан интеграл от рациональной функции .

Решение. Уравнение в скобках имеет комплексные корни, а оба сомножителя присутствуют в знаменателе в первой степени. Поэтому получаем следующее разложение исходной дроби на простые дроби:

.

Пример 6. Шаг 1. Дан интеграл от рациональной функции .

Решение. Представим знаменатель дроби в подынтегральном выражении в виде следующего произведения сомножителей:

.

Решение. Уравнение с последним сомножителем имеет комплексные корни, а все сомножители присутствуют в знаменателе в первой степени. Поэтому получаем следующее разложение исходной дроби на простые дроби:

Многочлен в знаменателе имеет кратные комплексные корни: дискриминант квадратного уравнения , присутствующего в цепочке сомножителей в знаменателе, меньше нуля и этот сомножитель присутствует в степени 2 или больше. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

То есть в сумме простых дробей число простых дробей с линейным выражением в числителе должно быть равно степени сомножителя, имеющего комплексные корни.

Пример 7. Шаг 1. Дан интеграл от рациональной функции .

Решение. Квадратный трёхчлен имеет комплексные корни и присутствует в знаменателе подынтегральной дроби во второй степени. Поэтому получаем следующее разложение дробного выражения:

.

Пример 8. Шаг 1. Дан интеграл от рациональной функции .

Решение. Квадратный трёхчлен в знаменателе имеет комплексные корни и присутствует в подынтегральной дроби во второй степени. Поэтому получаем следующее разложение дробного выражения:

.

На первом шаге мы представили подынтегральные дроби в виде суммы дробей с неопределёнными коэффициентами. В начале этого шага потребуется привести полученную сумму дробей к общему знаменателю. После этого в их числителях будут произведения неопределённых коэффициентов на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях.

Полученное таким образом выражение приравнивается к числителю исходной дроби. Затем составляется система из уравнений, в которых степени икса одинаковы. Путём решения системы и находятся неопределённые коэффициенты. Для решения достаточно знать, как системы уравнений решаются методом подстановки и методом сложения.

Пример 1. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

.

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

.

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем:

Можно заметить, что если принять за значение икса единицу, то второе и третье слагаемые в правой части равенства обратятся в нули и нет необходимости их вычислять. Тогда получаем, что . Далее по уже отработанной схеме получаем систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Полученные простые дроби и интегировать проще. К исходной сумме дробей применяется правило интеграла суммы (интеграл суммы равен сумме интегралов) и табличные интегралы. Чаще всего требуется применять табличные интегралы, приводящие к натуральному логарифму и арктангенсу.

Пример 1. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируем изначальную рациональную функцию как сумму дробей и используем табличный интеграл, приводящий к натуральному логарифму:

Последнее действие с натуральным логарифмом — приведение к единому выражению под логарифмом — может требоваться при выполнении работ, но требуется не всегда.

Пример 2. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Вновь применяем табличный интеграл, приводящий к натуральному логарифму:

Пример 3. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

В результате интегрирования получаем сумму натуральных логарифмов и одной простой дроби, на случай, если требуется преобразование к единому логарифму, делаем и это:

Пример 4. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

В результате интегрирования получаем сумму натуральных логарифмов и одной дроби, на случай, если требуется преобразование к единому логарифму, делаем и это:

Пример 5. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируем и получаем сумму натурального логарифма и арктангенса:

Пример 6. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Опять получаем сумму натурального логарифма и арктангенса:

Пример 7. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируя, получаем натуральные логарифмы и дробь:

Приведение к единому логарифму попробуйте выполнить самостоятельно.

Пример 8. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируя, получаем сумму натурального логарифма, арктангенса и дроби:

Начало темы «Интеграл»

Продолжение темы «Интеграл»

function-x.ru

Интегрирование функций — ПриМат

Рациональной функцией (или дробью) называется функция вида
$$f(x) = \displaystyle\frac{P(x)}{Q(x)},$$
где $P(x)$ и $Q(x)$ – многочлены. Если степень числителя меньше степени знаменателя, то рациональная дробь называется правильной. Ясно, что каждая рациональная дробь может быть представлена в виде
$$\displaystyle\frac{P(x)}{Q(x)} = R(x) + \displaystyle\frac{P_{1}(x)}{Q(x)},$$
где $R(x)$ – многочлен, а дробь $\displaystyle\frac{P_{1}(x)}{Q(x)}$ – правильная. Поскольку интегралы от многочленов вычисляются совсем просто, то мы будем рассматривать методы интегрирования правильных дробей.

Будем различать следующие четыре вида дробей:

  • $\displaystyle\frac{A}{x-a}$, где $A$, $a$ — постоянные.
  • $\displaystyle\frac{A}{(x-a)^k}$, где $A$, $a$ — постоянные, $k = 2,3 \ldots$
  • $\displaystyle\frac{Mx + N}{x^2 + px + q}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.
  • $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$, где $M$, $N$, $p$, $q$ – постоянные, квадратный трехчлен в знаменателе не имеет действительных корней.

Покажем как вычисляются интегралы от каждой из этих дробей.

  • $\int \displaystyle\frac{a}{x-a}dx = A\ln\left | x — a \right | + C$.
  • $\int \displaystyle\frac{a}{(x-a)^k}dx = -\frac{A}{k-1}\cdot \displaystyle\frac{1}{(x-a)^{k-1}} + C$.
  • $\int \displaystyle\frac{Mx + N}{x^2 + px + q}dx$. Для вычисления этого интеграла представим подынтегральное выражение в виде
    $$\displaystyle\frac{Mx + N}{x^2 + px + q} = \displaystyle\frac{\frac{M}{2}(2x+p) + N — p\frac{M}{2}}{x^2 + px + q} = \displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{x^2 + px + q} + \displaystyle\frac{N-p\displaystyle\frac{M}{2}}{x^2 + px + q}.$$
    Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q$. Тогда получим
    $$\int \displaystyle\frac{2x + p}{x^2 + px + q} = \ln(x^2 + px + q) + C.$$
    Для вычисления интеграла от второго слагаемого справа выделим полный квадрат в знаменателе, т.е. представим знаменатель в виде $x^2 + px + q = (x+\displaystyle\frac{p}{2})^2 + q — \displaystyle\frac{p^2}{4}$. Поскольку квадратный трехчлен в знаменателе не имеет действительных корней, то его дискриминант $\displaystyle\frac{p^2}{4} — q < 0$. Обозначим $a^2 = q — \displaystyle\frac{p^2}{4}$. Выполняя замену $x + \displaystyle\frac{p}{2} = t$, получим
    $$\int \displaystyle\frac{1}{x^2 + px + q}dx = \int \displaystyle\frac{1}{(x+\displaystyle\frac{p}{2})^2 + a^2}dx = \int \displaystyle\frac{dt}{t^2 + a^2} = \frac{1}{a^2} \int \displaystyle\frac{dt}{\displaystyle\frac{t^2}{a^2} + 1} =\\= \displaystyle\frac{1}{a} \int \displaystyle\frac{d(\displaystyle\frac{t}{a})}{(\displaystyle\frac{t}{a})^2 + 1} = \displaystyle\frac{1}{a} \text{arctg}\: \displaystyle\frac{t}{a} + C .$$
    Возвращаясь теперь к старой переменной, получим исходный интеграл.
  • $\displaystyle\frac{Mx + N}{(x^2 + px + q)^k}$. Для вычисления этого интеграла, как и в предыдущем случае, представим подынтегральное выражение в виде
    $$\displaystyle\frac{Mx + N}{(x^2 + px + q)^k} = \displaystyle\frac{\frac{M}{2}(2x + p) + N — p\displaystyle\frac{M}{2}}{(x^2 + px + q)^k} =\\=\displaystyle\frac{M}{2} \cdot \displaystyle\frac{2x+p}{(x^2 + px + q)^k} + \displaystyle\frac{N-p\frac{m}{2}}{(x^2 + px + q)^k}.$$
    Для вычисления интеграла от первого слагаемого справа, очевидно, достаточно выполнить замену $t = x^2 + px + q.$ Тогда получим
    $$\int \displaystyle\frac{2x + p}{(x^2 + px + q)^k}dx = \displaystyle\frac{1}{-k+1}(x^2+px+q)^{-k+1} +C.$$
    Для вычисления интеграла от второго слагаемого, как и в предыдущем случае, выделим полный квадрат из квадратного трехчлена в знаменателе. Тогда после замены переменной $t = x+\displaystyle\frac{p}{2}$ он сведется к интегралу вида $\int \displaystyle\frac{dt}{(t^2+a^2)^k}$. Обозначим этот интеграл через $I_{k}$ и выведем рекуррентную формулу для вычисления этого интеграла. Будем применять формулу интегрирования по частям. Имеем
    $$ I_{k} = \int \displaystyle\frac{dt}{(t^2 + a^2)^k} = \begin{bmatrix}u = \displaystyle\frac{1}{(t^2+a^2)^k}, & dv = dt \\ du = -\displaystyle\frac{2kt}{(t^2+a^2)^{k+1}}, & v = t \end{bmatrix} =\\=\displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{t^2}{(t^2 + a^2)^{k+1}}dt = \displaystyle\frac{t}{(t^2 + a^2)^k}+2k\int\displaystyle\frac{t^2 + a^2 — a^2}{(t^2 + a^2)^{k+1}}dt =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2k\int \displaystyle\frac{dt}{(t^2 + a^2)^k} — 2ka^2 \int \displaystyle\frac{dt}{(t^2 + a^2)^{k+1}} =\\= \displaystyle\frac{t}{(t^2 + a^2)^k} + 2kI_{k} — 2ka^2I_{k+1}.$$
    Отсюда находим
    $$I_{k+1} = \displaystyle\frac{1}{2ka^2}\begin{bmatrix} \displaystyle\frac{t}{(t^2 + a^2)^k} +(2k-1)I_k \end{bmatrix} (k = 1,2,\ldots).$$
    При этом, как мы уже вычислили ранее,
    $$I_{1} = \int \displaystyle\frac{dt}{t^2 + a^2} = \displaystyle\frac{1}{a} \text{arctg}\:\displaystyle\frac{t}{a} + C.$$
    Итак, и в этом случае мы получили правило вычисления интеграла от дроби четвертого вида.

Из основной теоремы алгебры следует, что каждый многочлен с действительными коэффициентами может быть представлен в виде произведения конечного числа линейных сомножителей вида $x — a$ и квадратичных сомножителей вида $x^2 + px + q$, где $\displaystyle\frac{p^2}{4} — q < 0$. Именно, справедливо равенство
$$Q(x) = A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x+q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}, (1)$$
где $k_i$ и $m_i$ – целые неотрицательные числа.
С использованием этого представления можно показать, что справедлива следующая

Теорема. Пусть $\displaystyle\frac{P(x)}{Q(x)}$ – правильная дробь, знаменатель которой допускает разложение (1). Тогда эта дробь единственным образом может быть представлена в виде суммы простых дробей, т.е.
$$\displaystyle\frac{P(x)}{Q(x)} = \sum_{i=1}^{r}\sum_{j=1}^{k_i}\displaystyle\frac{A_{ij}}{(x-a_i)^j} + \sum_{i=1}^{r}\sum_{j=1}^{m_i}\displaystyle\frac{M_{ij}x + N_{ij}}{(x^2 + P_ix+q_i)^j}.$$

Выше уже показано, что интеграл от каждой простой дроби выражается через элементарные функции. Таким образом, справедлива

Теорема. Каждая рациональная дробь имеет первообразную, которая выражается через элементарные функции, а именно, с помощью рациональных функций, логарифмической функции и арктангенса.

Метод Остроградского. Этот метод интегрирования рациональных дробей предназначен для выделения рациональной части из интеграла от рациональной функции. Именно, используя представление (1), интеграл от правильной дроби представляется в виде
$$\int \displaystyle\frac{P(x)}{Q(x)} =\\=\int \displaystyle\frac{P(x)}{A(x-a_1)^{k_1}\ldots(x-a_r)^{k_r}(x^2+p_1x +q_1)^{m_1}\ldots(x^2+p_sx+q_s)^{m_s}}dx =\\=\int \displaystyle\frac{R_{k_1 + \ldots + k_r + 2(m_1 + \ldots + m_s) — r — 2s — 1}(x)dx}{A(x-a_1)^{k_1-1}\ldots(x-a_r)^{k_r-1}(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)^{m_s-1}} +\\+ \int \displaystyle\frac{S_{r+2r-1}(x)}{A(x-a_1)…(x-a_r)(x^2+p_1x +q_1)^{m_1-1}\ldots(x^2+p_sx+q_s)}dx,$$
где многочлены $R_{k_1+\ldots+k_r+2(m_1 + \ldots + m_s)-r-2s-1}(x)$ и $S_{r+2s-1}(x)$ степени $k_1+\ldots+k_r+2(m_1+\ldots+m_s)-r-2s-1$ и $r+2s-1$ соответственно имеют неопределенные коэффициенты. Эти коэффициенты находятся затем из условия равенства производных левой и правой частей записанного равенства. Таким образом, вычисление интеграла от правильной дроби сводится к вычислению интеграла от другой правильной дроби, у которой в знаменателе все множители в первой степени. Такой интеграл вычисляется, как указано выше, путем разложения подынтегрального выражения
на простые дроби. Тем самым отпадает необходимость в использовании полученной выше рекуррентной формулы для вычисления интегралов от простой дроби четвертого типа.

Примеры решения задач

  1. Найти неопределенный интеграл $I = \int \displaystyle\frac{2x^2 — 3x + 3}{x^3 — 2x^2 + x}dx$.
    Решение

    Разложим знаменатель на множители: $x^3 -2x^2 + x = x(x-1)^2$. Тогда подынтегральная функция представима в виде

    $$\displaystyle\frac{2x^2-3x+3}{x(x-1)^2} = \displaystyle\frac{A}{x} + \displaystyle\frac{B}{x-1} + \displaystyle\frac{C}{(x-1)^2},$$
    где $A$, $B$, $C $ – постоянные коэффициенты. Для их нахождения приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем

    $$2x^2-3x+3=A(x-1)^2 + Bx(x-1)+Cx.$$

    Поскольку это тождество имеет место при всех $x$, кроме $x=0,x=1,$ то коэффициенты этих многочленов при одинаковых степенях $x$ равны. Приравнивая их, получаем линейную систему уравнений

    $$\left.\begin{matrix}x^2 : & A+B=2\\ x : & -2A-B+C=-3\\ x^0 : & A=3\end{matrix}\right\}$$

    Решая эту систему, находим $A = 3$, $B = −1$, $C = 2.$ Подставляя эти значения в разложение подынтегральной функции и вычисляя соответствующие интегралы, получаем
    $$I=3\ln\left | x \right | — \ln \left | x-1 \right | — \displaystyle\frac{2}{x-1} + C = \ln \displaystyle\frac{\left | x \right |^3}{\left | x-1 \right |} — \displaystyle\frac{2}{x-1} +C.$$

  2. Найти неопределенный интеграл $I = \int \displaystyle\frac{x dx}{x^3 + 1}dx$.
    Решение

    Как и в предыдущем примере, разложим на множители знаменатель:

    $$x^3 + 1 = (x+1)(x^2-x+1).$$
    Раскладываем подынтегральное выражение с неопределнными коэффициентами
    $$\displaystyle\frac{x}{x^3 + 1} = \displaystyle\frac{A}{x+1} + \displaystyle\frac{Mx+N}{x^2-x+1},$$
    откуда $x = A(x^2−x+1)+(Mx+N)(x+1)$. Приравнивая коэффициенты при одинаковых степенях $x$, составляем линейную систему для нахождения чисел $A$, $M$, $N$:
    $$\left.\begin{matrix}x^2 : & 0+A+M,\\ x : & 1=-A+M+N,\\ x^0 : & 0=A+N.\end{matrix}\right\}$$
    Решая эту систему, находим $A = −\displaystyle\frac{1}{3}, M = N =\displaystyle\frac{1}{3}$. Поэтому
    $$I=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{3}\int \displaystyle\frac{x+1}{x^2-x+1}dx=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\int \displaystyle\frac{2x-1}{x^2-x+1}dx + \displaystyle\frac{1}{2}\int \displaystyle\frac{dx}{x^2-x+1}=\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{2} \int \displaystyle\frac{dx}{(x — \displaystyle\frac{1}{2})^2 + \displaystyle\frac{3}{4}} =\\=-\displaystyle\frac{1}{3}\ln\left | x+1 \right | + \displaystyle\frac{1}{6}\ln(x^2-x+1) + \displaystyle\frac{1}{\sqrt{3}}\text{arctg}\:\displaystyle\frac{2}{\sqrt{3}}(x-\displaystyle\frac{1}{2}) + C.$$

  3. Найти неопределенный интеграл $\int \displaystyle\frac{(x^2 — 19x + 6)}{(x-1)(x^2 + 5x + 6)}dx$
    Решение

    Разложим знаменатель на множители: $(x-1)(x^2+5x+6) = (x-1)(x-2)(x-3).$ Тогда подынтегральная функция представима в виде:
    $$\displaystyle\frac{x^2-19x+6}{(x-1)(x^2+5x+6)} = \displaystyle\frac{A}{x-1} + \displaystyle\frac{B}{x+2} + \displaystyle\frac{C}{x+3}$$
    Для нахождения $A, B$ и $C$ приведем выражение справа к общему знаменателю и, приравнивая числители полученных дробей, найдем
    $$A(x^2 + 5x + 6) + B(x^2 + 2x — 3) + c(x^2 + x — 2) = x^2 -19x+6$$
    Приравнивая коэффициенты при одинаковых степенях $x$, составляем систему линейных уравнений для нахождения чисел $A, B, C$
    $$\left.\begin{matrix} x^2 : & 1=A+B+C \\ x : & -19 = 5A+2B+C \\ x^0 : & 6=6A-3B-2C \end{matrix}\right\}$$
    Решаем систему, получаем значения $A = -1; B = -16; C=18$. Возвращаемся к изначальному интегралу и находим окончательное решение
    $$\int (-\displaystyle\frac{1}{x-1}-\displaystyle\frac{16}{x+2}+\displaystyle\frac{18}{x+3})dx = -\ln\left | x-1 \right | — 16\ln\left | x+2 \right |+18\ln\left | x+3 \right | + C.$$

  4. Найти неопределенный интеграл $\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx$
    Решение

    По формуле суммы кубов раскладываем знаменатель на множители, используя формулу сокращенного умножения $a^3 + b^3 = (a+b)(a^2-ab+b^2)$
    $$\int \displaystyle\frac{x^2-6x+8}{x^3+8}dx = \int \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}dx.$$
    Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей
    $$\displaystyle\frac{A}{x+2} +\displaystyle\frac{Bx+C}{x^2-2x+4} = \displaystyle\frac{x^2-6x+8}{(x+2)(x^2-2x+4)}.$$
    Приводим дробь к общему знаменателю
    $$A(x^2 — 2x + 4) + B(x^2 + 2x) + C(x+2) = x^2-6x+8$$
    Составим и решим систему
    $$\left.\begin{matrix}x^2 : & A+B=1\\ x : & -2A+2B+C=-6\\ x^0 : & 4A+2C=8\end{matrix}\right\}$$
    Подставим значения $A = 2$, $B = -1$, $C = 0$ в функцию и найдем интеграл
    $$\int (\displaystyle\frac{2}{x+2} — \displaystyle\frac{x}{x^2-2x+4})dx = 2\int \displaystyle\frac{dx}{x+2} + \int \displaystyle\frac{-\displaystyle\frac{1}{2}d(x^2-2x+4) — dx}{x^2 -2x +4} =\\= 2\ln \left | x+2 \right | — \displaystyle\frac{1}{2}\int\displaystyle\frac{d(x^2-2x+4)}{x^2-2x+4} — \int\displaystyle\frac{dx}{x^2-2x+1 +3} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \int \frac{d(x-1)}{(x-1)^2 + (\sqrt{3})^2} = \\= 2\ln \left | x+2 \right | — \frac{1}{2}\ln(x^2 — 2x + 4) — \frac{1}{\sqrt{3}}\text{arctg}\:(\frac{x-1}{\sqrt{3}}) + C.$$

Литература:

Смотрите также:

 

Поделиться ссылкой:

ib.mazurok.com

Интегрирование — Электронный учебник K-tree

Задача: посчитать площадь фигуры, которая ограничена произвольной функцией.

Пусть задана некоторая функция f : D ∈ R2 → R на закрытом интервале D=[a,b]. Разобьём область определения на промежутки и представим данный интервал в виде ряда: D = {x0=a,x1,…,xn-1,xn=b}.

Высшая сумма Римана

U(f,D) = Σni=1Mi(xi-xi-1), где Mi = sup x∈[xi-1,xi]{f(x)}

Низшая сумма Римана

L(f,D) = Σni=1Mi(xi-xi-1), где Mi = inf x∈[xi-1,xi]{f(x)}

Интеграл Римана

Пусть дана функция f ограниченная на интервале [a,b]. Функция является интегрируемой на интервале [a,b] и значение интеграла равно s, если

ba f = ∫ba f = s ∴ ∫ba f = s
Критерий интегрируемости Римана

Функция f, ограниченная на интервале [a,b], является интегрируемой, если для любого ε > 0 существует такое разделение области определения, что U(f,D) — L(f,D) < ε

Теоремы интегрального исчисления

Теорема о среднем значении

Пусть дана непрерывная функция f : [a,b] ⊂ R → R, тогда существует c ∈ (a,b) такое, что f(c) = ∫baf(t)dt / (b-a) и это значение будет иметь смысл среднего арифметического.

Основная теорема анализа

Пусть дана непрерывная функция f(x), тогда существует некоторая дифференциируемая функция F(x) такая, что F(x) = ∫xaf(t)dt. При этом F'(x) = f(x). Функция F называется первообразной функции f. Если F и G — две первообразные фукнции f, то они различаются на константу: G(x) = F(x) + c

baf(x)dx = F(b) — F(a) = F(x) ]x=bx=a

Интегрирование по частям

d(u⋅v) = du⋅v + dv⋅u
∫udv = u⋅v — ∫v du
bau⋅dv = u⋅v]ba — ∫bav du

Замена переменной

Пусть даны две функции f и g, G — первообразная g, тогда по правилу цепочки:
(G○f(x))’ = G'(f(x))⋅f'(x) = g(f(x))⋅f'(x)
Заменим t = f(x), dt = f'(x)dx и получим следующий интеграл:
∫g(f(x))f'(x)dx = ∫g(t)dt = G(t) + C = G(f(x)) + C

Нахождение площади с помощью интеграла

Задача: найти площадь фигуры, ограниченной эллипсом с радиусами a и b.

Уравнение эллипса выглядит так: x2/a2 + y2/b2 = 1.
Для расчёта площади нам необходимо получить выражение функции y=f(x), выразим y:
y = √[b2(1-x2/a2)]
Площадь фигуры:
A = 2∫a-af(x)dx = 2 ∫a-a √[b2(1-x2/a2)dx] = 2 (b/a)∫√[a2-x2]dx
Воспользуемся заменой переменной a⋅sin(t) = x, a⋅cos(t)dt = dx:
= 2(b/a)a2π/2-π/2cos2tdt = 2ba∫π/2-π/2[(1+cos2t)/2]dt = ab(t + &half;sin2t)π/2-π/2 = πab
Площадь между графиками двух функций

Площадь между двумя функциями на закрытом интервале [a,b] определяется как ∫ba|f(x)-g(x)|dx. На практике проще разбить интеграл на интервалы, в которых не меняется знак и проинтегрировать найденные участки отдельно.

Объём фигуры метод дисков

Пусть дана некоторая функция f : [a,b] → R. Объём фигуры, образованной путём вращения функции вокруг оси X можно найти с помощью интеграла: V = ∫bay2dx

Длина кривой

Длина кривой, образованной некоторой функцией f, между точками a и b равна интегралу: L = ∫ba √[1+f'(x)]dx.

Площадь поверхности тела вращения

Площадь поверхности тела вращения, образованного в результате вращения функции f(x) вокруг оси x, равна интегралу: A = 2π∫baf(x)√[1+f'(x)2]dx

k-tree.ru

Интегрирование функций методом замены переменных

Примеры на интегрирование функций методом замены переменных взято из материалов контрольной работы, которую задавали студентам 1, 2 курсов математических факультетов. Для экономии Вашего времени сами условия задач пропущенные, везде нужно или «Найти неопределенный интеграл» или «Вычислить интеграл». Текста в комментариях к каждому заданию ровно столько, сколько нужно Вам для усвоения материала и изучение методики и схем интегрирования.


Пример 1. При интегрировании дробной функции необходимо в знаменателе корень квадратный превратить в показатель, далее разделить числитель на знаменатель и полученные слагаемые проинтегрировать. Если не вдаваться в детали то в конечном варианте интеграл примет значение

Для большинства студентов ход вычислений должен быть понятным, если переход между последними двумя строками Вы не можете осуществить то начните с того, что откройте или распечатайте основные формулы интегрирования.


Пример 2. Имеем под интегралом дробь от синус функции, которую упрощаем делением числителя на знаменатель. Далее знаменатель дроби во втором интеграле расписываем по теореме косинуса, а синус вносим под дифференциал. Таким образом перейдем к новой переменной t=cos(x) в интегрировании.

Второй интеграл по табличным формулам равный разнице логарифмов от простых множителей знаменателя

Возвращаемся к замене которую выполняли. На этом интегрирования можно было и завершить, а можно записать в компактном виде. Но для этого необходимо знать или иметь под рукой тригонометрические формулы и свойства логарифма.


Пример 3. Для вычисления интеграла запишем знаменатель дроби в виде разности квадратов, а дальше умножим на минус единицу и сведем к разности логарифмов от простых множителей

Минус перед логарифмом преобразовали в показатель функции, поэтому дробь под логарифмом в конечном варианте перевернута.


Пример 4. Очень поучительное задание на интегрирование, побольше бы таких на контрольных и тестах. Если бы в степени имели 3 или 4, то поднимать еще хоть как-то было бы можно. Здесь же стоит 10, поэтому возводить к 10 степени мало кто захочет. Выражение в скобках в подобных заданиях на интегрирование обозначьте за новую переменную t=2x+5. Далее применяем табличную формулу и после того как проинтегрировали не забываем подставить замену.

Хорошо запомните схему вычисления этого интеграла.


Пример 5. На первый взгляд сложный интеграл, однако схема вычислений достаточно проста. Обозначим арккосинус за новую переменную t=arccos(x) и запишем ее дифференциал. Как видите дифференциал равен dx разделить на знаменатель. И такая схема присущая большинству сложных примеров на неопределенные интегралы. Поэтому Ваша основная задача — научиться видеть замены переменных, схемы возведения под табличную формулу, удачно выбирать функцию под правило интегрирования по частям. А для этого нужно решить много интегралов, поэтому лучше учиться на готовых ответах + самостоятельная работа.


Пример 6. Под интегралом имеем дробную иррациональную функцию от экспоненты. Для вычисления интеграла обозначим функцию под корнем за новую переменную. Также преобразуем экспоненту в числителе и найдем дифференциал от новой переменной.

После таких действий полученный интеграл по сложности ничем не будет уступать первому из рассмотренных примеров. После интегрирования не забываем вернуться к выполненной в начале замене переменных.


Пример 7. Для вычисления этого и подобных примеров Вы должны знать что производная от логарифма равна единице разделенной на переменную. Таким образом большинство интегралов где содержится показательная функция от логарифма и «икс» в знаменателе за новую переменную выбирайте логарифм t=ln(x). В результате интеграл существенно упростится и получим компактный ответ


Остальные ответы в следующих материалах. Помните что такого рода интегралы задают на контрольной и тестах, поэтому внимательно разбирайте ответы к заданиям.

Готовые решения контрольной по интегрированию

yukhym.com

Y x 2 49 x 2 – Найдите точку максимума функции y = — x^2 + 49 / x — Задание 12 ЕГЭ по математике (Значение функции)

Задача 89 — точка максимума

Условие

Найдите точку максимума функции $y=-\frac{{{x}^{2}}+49}{x}$.

Решение

Для того чтобы найти точку максимума функции, необходимо выполнить следующие шаги:

  • Найти область определения функции
  • Найти производную рассматриваемой функции
  • Найти подозрительные на экстремумы точки (те точки, в которых производная заданной функции равна нулю или не существует)
  • Отметить найденные точки на числовой прямой, определить знаки производной на получившихся промежутках
  • Сделать вывод о характере точек экстремума, найти необходимые точки

Областью определения функции $y=-\frac{{{x}^{2}}+49}{x}$являются все значения $x$, кроме $x=0$, т. к. в этой точке знаменатель дроби равен нулю, что недопустимо.

То есть, $x\ne 0$

Вычислим производную заданной функции. Мы видим, что сама функция представляет собой частное. Поэтому, для вычисления её производной воспользуемся правилом вычисления производной частного:

\[{{\left( \frac{f}{q} \right)}^{‘}}=\frac{{{f}^{‘}}\cdot g-f\cdot {{g}^{‘}}}{{{g}^{2}}}\]

А также правилом вычисления производной от элементарной, степенной функции и константы:

\[\begin{align}& {{\left( {{x}^{n}} \right)}^{‘}}=n\left( {{x}^{n-1}} \right) \\ & {{\left( Cx \right)}^{‘}}=C \\& {{\left( C \right)}^{^{‘}}}=0 \\ \end{align}\]

Вычислим ${{y}^{‘}}$:

\[\begin{align}& {{y}^{‘}}=-\frac{{{\left( {{x}^{2}}+49 \right)}^{‘}}x-{{x}^{‘}}\left( {{x}^{2}}+49 \right)}{{{x}^{2}}} \\ & {{y}^{‘}}=-\frac{2{{x}^{2}}-{{x}^{2}}-49}{{{x}^{2}}} \\ & {{y}^{‘}}=\frac{49-{{x}^{2}}}{{{x}^{2}}} \\ \end{align}\]

Из области определения производной, видим, что $x\ne 0$, но эта точка не может являться критической точкой, поскольку она не входит в область определения функции $y=-\frac{{{x}^{2}}+49}{x}$, а, следовательно, и экстремума в этой точке быть не может, даже если производная при переходе через нее меняет свой знак.

Теперь вычислим точки, в которых производная ${{y}^{‘}}=0$, не забывая о том, что $x\ne 0$:

\[\begin{align}& \left\{ \begin{matrix}\frac{49-{{x}^{2}}}{{{x}^{2}}}=0\\x\ne 0\\\end{matrix} \right. \\ & \left\{ \begin{matrix}\left( 7-x \right)\left( 7+x \right)=0\\x\ne 0\\\end{matrix} \right. \\ & \left\{ \begin{matrix}{{x}_{1}}=7,{{x}_{2}}=-7\\x\ne 0\\\end{matrix} \right. \\ \end{align}\]

Отметив на рисунке, все точки, в которых производная может менять знак, определим поведение функции:

Получаем:

при $x < -7$ производная ${{y}^{‘}} < 0$, а значит, функция $y=-\frac{{{x}^{2}}+49}{x}$ убывает на этом промежутке,

при $-7 < x < 7$, $x\ne 0$ производная ${{y}^{‘}} > 0$, а значит, функция $y=-\frac{{{x}^{2}}+49}{x}$возрастает на этом промежутке,

при $x > 7$ производная ${{y}^{‘}} < 0$, а значит, функция $y=-\frac{{{x}^{2}}+49}{x}$ убывает на этом промежутке.

Точка максимума функции — это точка из области определения функции, при переходе через которую её производная меняет знак с + на –, а значит, точкой максимума функции $y=-\frac{{{x}^{2}}+49}{x}$является точка $x=7$.

Правильный ответ

$x=7$

Смотрите также:

  1. Как считать логарифмы еще быстрее
  2. Тригонометрия в задаче B15: решаем без производных
  3. Умножение и деление дробей
  4. Комбинаторика в задаче B6: средний тест
  5. Как решать задачу 18: графический подход
  6. Как формулы приведения работают в задаче B11

www.berdov.com

Найдите точку максимума функции y = –x^2 + 49 / x

Задание.
Найдите точку максимума функции y = -x^2 + 49 / x.
 
Решение.
Начнем с того, что найдем промежутки, для которых функция будет существовать. Рассмотрим ее уравнение:

   

Из него видно, что это уравнение параболы с ветвями, направленными вниз. К тому же есть одно ограничение — функция не может существовать при х = 0.
Теперь нужно найти производную функцию от заданной:

   

Для того, чтобы получить критические точки, нужно производную функцию приравнять к нулю и решить уравнение:

   

Домножим уравнение на квадрат х, чтобы избавиться от дроби:

   

Упростим уравнение, сократив его на —2:

   

Получили кубическое уравнение:

   

   

Его можно решить приближенно так:

   

Получили только одну точку с подозрением на экстремум. Найдем значение функции в этой точке:

   

Проверим, является ли найденная точка точкой максимума. Для этого вычислим знак производной на промежутках до х = —2,9 и после этого значения:
— функция возрастает
— функция убывает
 
Ответ. Точка (—2,9; —25,31) — точка максимума.
 
Эту же задачу можно было решить более быстрым способом. Как оговаривалось в начале решения, что графиком функции будет парабола с ветвями, направленными вниз. А как известно, у такой параболы максимальной точкой является точка вершины. Поэтому можно было вычислить просто координаты точки вершины. Но представленный здесь алгоритм является более универсальным и подойдет для решения многих подобных задач.

ru.solverbook.com

Найдите точку максимума функции y = — (x^2 + 49) / x….

Ответ оставил Гость

Область определения функции: 

Вычислим производную функции:


Приравниваем производную функции к нулю.


Дробь равен нулю, если числитель равен нулю:

___-___(-7)__+__(0)___+__(7)____-___

В окрестности  производная функции меняет знак с  на . Следовательно, точка  — точка максимума.

Оцени ответ

shkolniku.com

Mathway | Популярные задачи

1 Вычислить 6^3-4^3-7^2
2 Найти медиану 11 , 13 , 5 , 15 , 14 , , , ,
3 Найти объем сфера (5)
4 Вычислить квадратный корень 12
5 Преобразовать в десятичную форму 3/8
6 Преобразовать в десятичную форму 5/8
7 Найти длину окружности окружность (5)
8 Вычислить 10^2
9 Вычислить квадратный корень 75
10 График y=2x
11 Вычислить квадратный корень 48
12 Найти площадь окружность (5)
13 Найти площадь окружность (6)
14 Вычислить 3^4
15 Вычислить 5^3
16 Вычислить 2^4
17 Вычислить квадратный корень 32
18 Вычислить квадратный корень 18
19 Вычислить квадратный корень 2
20 Вычислить квадратный корень 25
21 Вычислить квадратный корень 8
22 Найти площадь окружность (4)
23 Разложить на простые множители 360
24 Вычислить 3^-2
25 Вычислить 2+2
26 Преобразовать в десятичную форму 1/3
27 Вычислить квадратный корень 9
28 Вычислить квадратный корень 64
29 Преобразовать в десятичную форму 3/5
30 Вычислить квадратный корень 20
31 Вычислить pi
32 Вычислить -3^2
33 Вычислить 2^3
34 Вычислить (-3)^3
35 Вычислить квадратный корень 27
36 Вычислить квадратный корень 5
37 Вычислить квадратный корень 50
38 Вычислить квадратный корень 16
39 Преобразовать в десятичную форму 3/4
40 Преобразовать в десятичную форму 2/3
41 Найти площадь окружность (3)
42 Вычислить 3^2
43 Вычислить -9^2
44 Вычислить квадратный корень 72
45 Преобразовать в десятичную форму 2/5
46 Вычислить квадратный корень 100
47 Найти объем сфера (3)
48 Вычислить 2^5
49 Множитель x^2-4
50 Вычислить -8^2
51 Вычислить -6^2
52 Вычислить -7^2
53 Вычислить -3^4
54 Вычислить (-2)^3
55 Множитель x^2-9
56 Найти объем сфера (6)
57 Найти площадь окружность (8)
58 Вычислить квадратный корень 81
59 Вычислить кубический корень 64
60 Вычислить кубический корень 125
61 Вычислить квадратный корень 169
62 Вычислить квадратный корень 225
63 Вычислить квадратный корень 3
64 Преобразовать в десятичную форму 1/4
65 Преобразовать в смешанную дробь 5/2
66 Преобразовать в десятичную форму 1/2
67 Множитель x^2-16
68 Вычислить 5^2
69 Вычислить 4^-2
70 Вычислить 8^2
71 Преобразовать в смешанную дробь 13/4
72 Вычислить квадратный корень 24
73 Вычислить квадратный корень 28
74 Вычислить кубический корень 27
75 Найти длину окружности окружность (4)
76 Найти площадь окружность (7)
77 Найти объем сфера (2)
78 График y=3x
79 Найти объем сфера (4)
80 Найти длину окружности окружность (6)
81 Вычислить квадратный корень 150
82 Вычислить квадратный корень 45
83 Вычислить 4^3
84 Вычислить 2^-3
85 Вычислить 2^2
86 Вычислить -(-3)^3
87 Вычислить 3^3
88 Вычислить квадратный корень 54
89 Вычислить квадратный корень 10
90 Найти длину окружности окружность (3)
91 Преобразовать в смешанную дробь 10/3
92 Преобразовать в десятичную форму 2/5
93 Разложить на простые множители 36
94 Вычислить квадратный корень 144
95 Вычислить (-7)^2
96 Множитель x^2+5x+6
97 Вычислить (-4)^3
98 Вычислить (-5)^3
99 Вычислить 10^2
100 Вычислить 6^2

www.mathway.com

18 формула – Автошкола в Ижевске «Формула»

Автошкола в Ижевске «Формула»

Настоящая Политика конфиденциальности регулирует порядок обработки и использования персональных и иных данных сотрудником ООО «Формула» (сайт: http://formula18.ru), ответственным за Персональные данные пользователей, далее — Оператор.

Передавая Оператору персональные и иные данные посредством Сайта, Пользователь подтверждает свое согласие на использование указанных данных на условиях, изложенных в настоящей Политике конфиденциальности.

Если Пользователь не согласен с условиями настоящей Политики конфиденциальности, он обязан прекратить использование Сайта.

Безусловным акцептом настоящей Политики конфиденциальности является начало использования Сайта Пользователем.

1. ТЕРМИНЫ.

1.1. Сайт — сайт, расположенный в сети Интернет по адресу: http://formula18.ru.

Все исключительные права на Сайт и его отдельные элементы (включая программное обеспечение, дизайн) принадлежат ООО «Формула» в полном объеме. Передача исключительных прав Пользователю не является предметом настоящей Политики конфиденциальности.

1.2. Пользователь — лицо использующее Сайт.

1.3. Законодательство — действующее законодательство Российской Федерации.

1.4. Персональные данные — персональные данные Пользователя, которые Пользователь предоставляет о себе самостоятельно при отправлении заявки или в процессе использования функционала Сайта.

1.5. Данные — иные данные о Пользователе (не входящие в понятие Персональных данных).

1.6. Отправление заявки — заполнение Пользователем Регистрационной формы, расположенной на Сайте, путем указания необходимых сведений и отправка их Оператору.

1.7. Регистрационная форма — форма, расположенная на Сайте, которую Пользователь должен заполнить для отправления заявки.

1.8. Услуга(и) — услуги, предоставляемые ООО «Формула» на основании Оферты.

2. СБОР И ОБРАБОТКА ПЕРСОНАЛЬНЫХ ДАННЫХ.

2.1. Оператор собирает и хранит только те Персональные данные, которые необходимы для оказания Услуг Оператором и взаимодействия с Пользователем.

2.2. Персональные данные могут использоваться в следующих целях:

2.2.1. Оказание Услуг Пользователю, а также для информационно-консультационных целей;

2.2.2. Идентификация Пользователя;

2.2.3. Взаимодействие с Пользователем;

2.2.4. Оповещение Пользователя о предстоящих акциях и других мероприятиях;

2.2.5. Проведение статистических и иных исследований;

2.2.6. Обработка платежей Пользователя;

2.2.7. Мониторинг операций Пользователя в целях предотвращения мошенничества, противоправных ставок, отмывания денег.

2.3. Оператор в том числе обрабатывает следующие данные:

2.3.1. Фамилия, имя и отчество;

2.3.2. Адрес электронной почты;

2.3.3. Номер мобильного телефона.

2.4. Пользователю запрещается указывать на Сайте персональные данные третьих лиц.

3. ПОРЯДОК ОБРАБОТКИ ПЕРСОНАЛЬНЫХ И ИНЫХ ДАННЫХ.

3.1. Оператор обязуется использовать Персональные данные в соответствии с Федеральным Законом «О персональных данных» № 152-ФЗ от 27 июля 2006 г. и внутренними документами Оператора.

3.2. Пользователь, отправляя свои персональные данные и (или) иную информацию, дает свое согласие на обработку и использование Оператором предоставленной им информации и (или) его персональных данных с целью осуществления по указанному Пользователем контактному телефону и (или) контактному электронному адресу информационной рассылки (об услугах Оператора, вносимых изменениях, проводимых акциях и т.п. мероприятиях) бессрочно, до получения Оператором письменного уведомления по электронной почте об отказе от получения рассылок. Пользователь также дает свое согласие на передачу, в целях осуществления действий, предусмотренных настоящим пунктом, Оператором предоставленной им информации и (или) его персональных данных третьим лицам при наличии надлежаще заключенного между Оператором и такими третьими лицами договора.

3.2. В отношении Персональных данных и иных Данных Пользователя сохраняется их конфиденциальность, кроме случаев, когда указанные данные являются общедоступными.

3.3. Оператор имеет право хранить Персональные данные и Данные на серверах вне территории Российской Федерации.

3.4. Оператор имеет право передавать Персональные данные и Данные Пользователя без согласия Пользователя следующим лицам:

3.4.1. Государственным органам, в том числе органам дознания и следствия, и органам местного самоуправления по их мотивированному запросу;

3.4.2. Партнерам Оператора;

3.4.3. В иных случаях, прямо предусмотренных действующим законодательством РФ.

3.5. Оператор имеет право передавать Персональные данные и Данные третьим лицам, не указанным в п. 3.4. настоящей Политики конфиденциальности, в следующих случаях:

3.5.1. Пользователь выразил свое согласие на такие действия;

3.5.2. Передача необходима в рамках использования Пользователем Сайта или оказания Услуг Пользователю;

3.5.3. Передача происходит в рамках продажи или иной передачи бизнеса (полностью или в части), при этом к приобретателю переходят все обязательства по соблюдению условий настоящей Политики.

3.6. Оператор осуществляет автоматизированную и неавтоматизированную обработку Персональных данных и Данных.

4. ИЗМЕНЕНИЕ ПЕРСОНАЛЬНЫХ ДАННЫХ.

4.1. Пользователь гарантирует, что все Персональные данные являются актуальными и не относятся к третьим лицам.

4.2. Пользователь может в любой момент изменить (обновить, дополнить) Персональные данные путем направления письменного заявления Оператору.

4.3. Пользователь в любой момент имеет право удалить свои Персональные данные, для этого ему достаточно отправить электронное письмо с соответствующим заявлением на Email:

Тригонометрические функции

Синус

Косинус

Тангенс

Секанс

Косеканс

Котангенс

Арксинус

Арккосинус

Арктангенс

Арксеканс

Арккосеканс

Арккотангенс

sin(x)

cos(x)

tan(x)

sec(x)

csc(x)

cot(x)

asin(x)

acos(x)

atan(x)

asec(x)

acsc(x)

acot(x)

Гиперболические функции

sinh(x)

cosh(x)

tanh(x)

sech(x)

csch(x)

coth(x)

asinh(x)

acosh(x)

atanh(x)

asech(x)

acsch(x)

acoth(x)

Прочее

Натуральный логарифм

Логарифм

Квадратный корень

Модуль

Округление в меньшую сторону

Округление в большую сторону

 ln(x)

log(x)

sqrt(x)

abs(x)

floor(x)

ceil(x)

Минимум

Максимум

min(выражение1,выражение2,…)

max(выражение1,выражение2,…)

Вариант

k1

k2

k3

1

-5

7

-3

2

2

5

-3

3

-2

3

1

4

4

3

-3

5

2

3

-2

6

4

-4

-3

7

-1

-2

3

8

2

-4

1

9

3

-5

2

10

5

2

-3

Вариант

МатрицаА

Вариант

МатрицаА

1

6

2

7

3

8

4

9

5

10